51
|
Wawrzyniak M, Morsy Y, Mladenov R, Tontodonati G, Turgay Y, Herwig S, Back J, Mally M, Faridmoayer A, Scharl M. Fucosylation and Sialylation of Fc-Fragment of anti-Tumour Necrosis Factor Alpha Antibodies do not Influence Their Immunogenicity in Monocyte-Derived Dendritic Cells. J Crohns Colitis 2021; 15:1596-1601. [PMID: 33631789 DOI: 10.1093/ecco-jcc/jjab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Antibodies targeting tumor necrosis factor-alpha [TNF-alpha] are a mainstay in the treatment of inflammatory bowel disease. However, they fail to demonstrate efficacy in a considerable proportion of patients. On the other hand, glycosylation of antibodies might influence not only their immunogenicity but also their structure and function. We investigated whether specific glycosylation patterns of the Fc-fragment would affect the immunogenicity of anti-TNF-alpha antibody in monocyte-derived dendritic cells. METHODS The effect of a specific Fc-glycosylation pattern on antibody uptake by monocyte-derived dendritic cells [mo-DCs] and how this process shapes the immunologic profile of mo-DCs was investigated. Three N-glycoforms of the anti-TNF-alpha antibody adalimumab, that differed in the content of fucose or sialic acid, were tested: [1] mock treated Humira, abbreviated 'Fuc-G0', where the N-glycan mainly consist of fucose and N-acetylglucosamine [GlcNAc], without sialic acid; [2] 'Fuc-G2S1/G2S2' with fucose and alpha 2,6 linked sialic acid; and [3] 'G2S1/G2S2' with alpha 2,6 linked sialic acid, without fucose. RESULTS Our data demonstrated that neither fucosylation nor sialylation of anti-TNF-Abs [Fuc-G0, FucG2S1/G2S2, G2S1/G2S2] influence their uptake by mo-DCs. Additionally, none of the differentially glycosylated antibodies altered CD80, CD86, CD273, CD274 levels on mo-DCs stimulated in with lipopolysaccharide in the presence of antibodies. Next, we evaluated the levels of cytokines in the supernatant of mo-DCs stimulated with lipopolysaccharide in the presence of Fuc-G0, Fuc-G2S1/G2S2 or G2S1/G2S2-glycosylated anti-TNF antibodies. Only IL-2 and IL-17 levels were downregulated, and IL-5 production was upregulated by uptake of Fuc-G0 antibodies, as compared to control without antibodies. CONCLUSIONS The specific modification in the Fc-glycosylation pattern of anti-TNF-alpha Abs does not affect their immunogenicity under the tested conditions. As this study was limited to mo-DCs, further investigation is required to clarify whether Ab uptake into mo-DCs might change the immunological profile of T- and B-cells, in order to ultimately reduce the formation of anti-drug antibodies and to improve the patient care.
Collapse
Affiliation(s)
- Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
52
|
Reis CA, Tauber R, Blanchard V. Glycosylation is a key in SARS-CoV-2 infection. J Mol Med (Berl) 2021; 99:1023-1031. [PMID: 34023935 PMCID: PMC8140746 DOI: 10.1007/s00109-021-02092-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 causes the respiratory syndrome COVID-19 and is responsible for the current pandemic. The S protein of SARS-CoV-2-mediating virus binding to target cells and subsequent viral uptake is extensively glycosylated. Here we focus on how glycosylation of both SARS-CoV-2 and target cells crucially impacts SARS-CoV-2 infection at different levels: (1) virus binding and entry to host cells, with glycosaminoglycans of host cells acting as a necessary co-factor for SARS-CoV-2 infection by interacting with the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, (2) innate and adaptive immune response where glycosylation plays both a protective role and contributes to immune evasion by masking of viral polypeptide epitopes and may add to the cytokine cascade via non-fucosylated IgG, and (3) therapy and vaccination where a monoclonal antibody-neutralizing SARS-CoV-2 was shown to interact also with a distinct glycan epitope on the SARS-CoV-2 spike protein. These evidences highlight the importance of ensuring that glycans are considered when tackling this disease, particularly in the development of vaccines, therapeutic strategies and serological testing.
Collapse
Affiliation(s)
- Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Rudolf Tauber
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
53
|
Zhao WB, Shen Y, Liu WH, Li YM, Jin SJ, Xu YC, Pan LQ, Zhou Z, Chen SQ. Soluble Expression of Fc-Fused T Cell Receptors Allows Yielding Novel Bispecific T Cell Engagers. Biomedicines 2021; 9:790. [PMID: 34356854 PMCID: PMC8301436 DOI: 10.3390/biomedicines9070790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
The specific recognition of T cell receptors (TCR) and peptides presented by human leukocyte antigens (pHLAs) is the core step for T cell triggering to execute anti-tumor activity. However, TCR assembly and soluble expression are challenging, which precludes the broad use of TCR in tumor therapy. Herein, we used heterodimeric Fc to assist in the correct assembly of TCRs to achieve the stable and soluble expression of several TCRs in mammalian cells, and the soluble TCRs enable us to yield novel bispecific T cell engagers (TCR/aCD3) through pairing them with an anti-CD3 antibody. The NY-ESO-1/LAGE-1 targeted TCR/aCD3 (NY-TCR/aCD3) that we generated can redirect naïve T cells to specific lysis antigen-positive tumor cells, but the potency of the NY-TCR/aCD3 was disappointing. Furthermore, we found that the activation of T cells by NY-TCR/aCD3 was mild and unabiding, and the activity of NY-TCR/aCD3 could be significantly improved when we replaced naïve T cells with pre-activated T cells. Therefore, we employed the robust T cell activation ability of staphylococcal enterotoxin C2 (SEC2) to optimize the activity of NY-TCR/aCD3. Moreover, we found that the secretions of SEC2-activated T cells can promote HLA-I expression and thus increase target levels, which may further contribute to improving the activity of NY-TCR/aCD3. Our study described novel strategies for soluble TCR expression, and the optimization of the generation and potency of TCR/aCD3 provided a representative for us to fully exploit TCRs for the precision targeting of cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.-B.Z.); (Y.S.); (W.-H.L.); (Y.-M.L.); (S.-J.J.); (Y.-C.X.); (L.-Q.P.)
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.-B.Z.); (Y.S.); (W.-H.L.); (Y.-M.L.); (S.-J.J.); (Y.-C.X.); (L.-Q.P.)
| |
Collapse
|
54
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
55
|
Zhou Q, Jaworski J, Zhou Y, Valente D, Cotton J, Honey D, Boudanova E, Beninga J, Rao E, Wei R, Mauriac C, Pan C, Park A, Qiu H. Engineered Fc-glycosylation switch to eliminate antibody effector function. MAbs 2021; 12:1814583. [PMID: 32892677 PMCID: PMC7531572 DOI: 10.1080/19420862.2020.1814583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antibodies mediate effector functions through Fcγ receptor (FcγR) interactions and complement activation, causing cytokine release, degranulation, phagocytosis, and cell death. They are often undesired for development of therapeutic antibodies where only antigen binding or neutralization would be ideal. Effector elimination has been successful with extensive mutagenesis, but these approaches can potentially lead to manufacturability and immunogenicity issues. By switching the native glycosylation site from position 297 to 298, we created alternative antibody glycosylation variants in the receptor interaction interface as a novel strategy to eliminate the effector functions. The engineered glycosylation site at Asn298 was confirmed by SDS-PAGE, mass spectrometry, and X-ray crystallography (PDB code 6X3I). The lead NNAS mutant (S298N/T299A/Y300S) shows no detectable binding to mouse or human FcγRs by surface plasmon resonance analyses. The effector functions of the mutant are completely eliminated when measured in antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. In vivo, the NNAS mutant made on an antibody against a human lymphocyte antigen does not deplete T cells or B cells in transgenic mice, in contrast to wild-type antibody. Structural study confirms the successful glycosylation switch to the engineered Asn298 site. The engineered glycosylation would clash with approaching FcγRs based on reported Fc-FcγR co-crystal structures. In addition, the NNAS mutants of multiple antibodies retain binding to antigens and neonatal Fc receptor, exhibit comparable purification yields and thermal stability, and display normal circulation half-life in mice and non-human primate. Our work provides a novel approach for generating therapeutic antibodies devoid of any ADCC and CDC activities with potentially lower immunogenicity.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | - Yanfeng Zhou
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | | | - Denise Honey
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | | | - Ercole Rao
- Biologics Research, Sanofi , Frankfurt, Germany
| | - Ronnie Wei
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | - Clark Pan
- Biologics Research, Sanofi , Framingham, MA, USA
| | - Anna Park
- Biologics Research, Sanofi , Framingham, MA, USA
| | - Huawei Qiu
- Biologics Research, Sanofi , Framingham, MA, USA
| |
Collapse
|
56
|
Sim DS, Mallari CR, Teare JM, Feldman RI, Bauzon M, Hermiston TW. In vitro characterization of CT-001-a short-acting factor VIIa with enhanced prohemostatic activity. Res Pract Thromb Haemost 2021; 5:e12530. [PMID: 34263099 PMCID: PMC8265787 DOI: 10.1002/rth2.12530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Traumatic injury and the associated acute bleeding are leading causes of death in people aged 1 to 44 years. Acute bleeding in pathological and surgical settings also represents a significant burden to the society. Yet there are no approved hemostatic drugs currently available. While clinically proven as an effective pro-coagulant, activated factor VII (FVIIa) use in acute bleeding has been hampered by unwanted thromboembolic events. Enhancing the ability of FVIIa to quickly stop a bleed and clear rapidly from circulation may yield an ideal molecule suitable for use in patients with acute bleeding. OBJECTIVES To address this need and the current liability of FVIIa, we produced a novel FVIIa molecule (CT-001) with enhanced potency and shortened plasma residence time by cell line engineering and FVIIa protein engineering for superior efficacy for acute bleeding and safety. METHODS To address safety, CT-001, a FVIIa protein with 4 desialylated N-glycans was generated to promote active recognition and clearance via the asialoglycoprotein receptor. To enhance potency, the gamma-carboxylated domain was modified with P10Q and K32E, which enhanced membrane binding. RESULTS Together, these changes significantly enhanced potency and clearance while retaining the ability to interact with the key hemostatic checkpoint proteins antithrombin and tissue factor pathway inhibitor. CONCLUSIONS These results demonstrate that a FVIIa molecule engineered to combine supra-physiological activity and shorter duration of action has the potential to overcome the current limitations of recombinant FVIIa to be a safe and effective approach to the treatment of acute bleeding.
Collapse
Affiliation(s)
| | | | | | | | - Maxine Bauzon
- Were employed at Bayer HealthCare when part of this study was performed
| | | |
Collapse
|
57
|
Dong Z, Ye L, Zhang Y, Chen Z, Li B, Zhang T, Zhao P. Identification of N-linked Glycoproteins in Silkworm Serum Using Con A Lectin Affinity Chromatography and Mass Spectrometry. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6353166. [PMID: 34401920 PMCID: PMC8367846 DOI: 10.1093/jisesa/ieab057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 06/13/2023]
Abstract
Glycosylation is one of the most common post-translational modifications to occur during protein biosynthesis, but remains poorly understood in insects. In this study, we collected serum proteins from two silkworm developmental stages, namely day 7 of the fifth instar larval stage and day 2 of the pupal stage. Results of SDS-PAGE and periodic acid-Schiff staining revealed that most serum proteins with high abundance were putative glycoproteins. LC-MS/MS identified 149 larval and 303 pupal serum proteins in the Con A lectin-enriched fractions. GO analysis revealed that many serum proteins were involved in the proteolysis and carbohydrate metabolic process. 82 N-linked glycoproteins with at least one glycosylation site were identified. N-Linked glycosylation occurred at the sequon, Asn-X-Ser/Thr, and the proportions of Ser and Thr glycosylation at the hydroxy position were found 39.6% and 60.3%, respectively. The N-glycan structures found in serum glycoproteins were mainly Man2FucGlcNAc2 (67.9%). Since storage protein 1 and transferrin had a relatively high abundance in the serum and could be significantly enriched by Con A lectin, their glycosylation was analyzed in detail. Glycoside hydrases, serine proteases and serpins were found to form three interacting glycoprotein networks using the website STRING. This study provides important clues for the understanding of the function of N-linked glycosylation in metabolism, immunity, and metamorphosis.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Lin Ye
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Zhiyong Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Benchi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Tao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
58
|
Gemmell DK, Mack A, Wegmann S, Han D, Tuccelli R, Johnson M, Miller C. Efficacy of minute virus of mice (MVM) inactivation utilizing high temperature short time (HTST) pasteurization and suitability assessment of pasteurized, concentrated glucose feeds in Chinese hamster ovary (CHO) cell expression systems. Eng Life Sci 2021; 21:502-513. [PMID: 34257631 PMCID: PMC8257999 DOI: 10.1002/elsc.202100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/07/2022] Open
Abstract
There is a growing need to provide effective adventitious agent mitigation for high risk upstream cell culture raw materials used for the production of biologics. It is also highly important in the growing fields of cell and gene therapies. Glucose is a critical raw material necessary for effective cell growth and productivity; however, glucose is the highest risk animal-origin-free raw material for viral contamination, and often the highest risk raw material in the upstream process as more companies move to chemically defined media. This study examines the efficacy of utilizing High Temperature Short Time (HTST) pasteurization for inactivation of physiochemically resistant, worst-case parvovirus using a bench-scale HTST system. We demonstrated approximately six log inactivation of Minute Virus of Mice (MVM) in concentrated glucose feeds without impacting the subsequent performance of the glucose in a Chinese Hamster Ovary (CHO) expression system.
Collapse
Affiliation(s)
| | | | | | - David Han
- MilliporeSigma/Merck Life ScienceGlasgowUK
| | | | | | | |
Collapse
|
59
|
Lai X, Tang J, ElSayed MEH. Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery. Expert Opin Drug Discov 2021; 16:1467-1482. [PMID: 34187273 DOI: 10.1080/17460441.2021.1942837] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: To discover and develop a peptide, protein, or antibody into a drug requires overcoming multiple challenges to obtain desired properties. Proteolytic stability is one of the challenges and deserves a focused investigation.Areas covered: This review concentrates on improving proteolytic stability by engineering the amino acids around the cleavage sites of a liable peptide, protein, or antibody. Peptidases are discussed on three levels including all peptidases in databases, mixtures based on organ and tissue types, and individual peptidases. The technique to identify cleavage sites is spotlighted on mass spectrometry-based approaches such as MALDI-TOF and LC-MS. For sequence engineering, the replacements that have been commonly applied with a higher chance of success are highlighted at the beginning, while the rarely used and more complicated replacements are discussed later. Although a one-size-fits-all approach does not exist to apply to different projects, this review provides a 3-step strategy for effectively and efficiently conducting the proteolytic stability experiments to achieve the eventual goal of improving the stability by engineering the molecule itself.Expert opinion: Improving the proteolytic stability is a spiraling up process sequenced by testing and engineering. There are many ways to engineer amino acids, but the choice must consider the cost and properties affected by the changes of the amino acids.
Collapse
Affiliation(s)
- Xianyin Lai
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jason Tang
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mohamed E H ElSayed
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
60
|
Michalak M, Kalteis MS, Ahadova A, Kloor M, Kriegsmann M, Kriegsmann K, Warnken U, Helm D, Kopitz J. Differential Glycosite Profiling-A Versatile Method to Compare Membrane Glycoproteomes. Molecules 2021; 26:molecules26123564. [PMID: 34200965 PMCID: PMC8230608 DOI: 10.3390/molecules26123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is both linked to physiological processes and of high relevance in various disease mechanisms. The cellular glycome is increasingly considered to be a therapeutic target. Here we describe a new strategy to compare membrane glycoproteomes, thereby identifying proteins with altered glycan structures and the respective glycosites. The workflow started with an optimized procedure for the digestion of membrane proteins followed by the lectin-based isolation of glycopeptides. Since alterations in the glycan part of a glycopeptide cause mass alterations, analytical size exclusion chromatography was applied to detect these mass shifts. N-glycosidase treatment combined with nanoUPLC-coupled mass spectrometry identified the altered glycoproteins and respective glycosites. The methodology was established using the colon cancer cell line CX1, which was treated with 2-deoxy-glucose-a modulator of N-glycosylation. The described methodology is not restricted to cell culture, as it can also be adapted to tissue samples or body fluids. Altogether, it is a useful module in various experimental settings that target glycan functions.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.S.K.); (A.A.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (M.M.); (J.K.); Tel.: +49-6221-56-6167 (M.M.)
| | - Martin Simon Kalteis
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.S.K.); (A.A.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.S.K.); (A.A.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.S.K.); (A.A.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany;
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, DKFZ (German Cancer Research Center), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Dominic Helm
- Genomics and Proteomics Core Facility, MS-based Protein Analysis Unit, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.S.K.); (A.A.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (M.M.); (J.K.); Tel.: +49-6221-56-6167 (M.M.)
| |
Collapse
|
61
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
62
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
63
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
64
|
Ebbers HC, Fehrmann B, Ottosen M, Hvorslev N, Høier P, Hwang JW, Chung J, Lim HT, Lee S, Hong J, Rezk MF. Batch-to-Batch Consistency of SB4 and SB2, Etanercept and Infliximab Biosimilars. BioDrugs 2021; 34:225-233. [PMID: 31925703 PMCID: PMC7113226 DOI: 10.1007/s40259-019-00402-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Biosimilars must meet stringent regulatory requirements, both at the time of authorization and during their lifecycle. Yet it has been suggested that divergence in quality attributes over time may lead to clinically meaningful differences between two versions of a biologic. Therefore, this study investigated the batch-to-batch consistency across a range of parameters for released batches of the etanercept biosimilar (SB4) and infliximab biosimilar (SB2). Methods SB4 (Benepali®) and SB2 (Flixabi®) were both developed by Samsung Bioepis and are manufactured in Europe by Biogen at their facility in Hillerød, Denmark. A total of 120 batches of SB4 and 25 batches of SB2 were assessed for consistency and compliance with specified release parameters, including purity, post-translational glycosylation (SB4 only), protein concentration, and biological activity. Results The protein concentration, purity, tumor necrosis factor-α (TNF-α) binding, and TNF-α neutralization of all batches of SB4 and SB2 were within the strict specification limits set by regulatory agencies, as was the total sialic acid (TSA) content of all batches of SB4. Conclusions Quality attributes of SB4 and SB2 batches showed little variation and were consistently within the rigorous specifications defined by regulatory agencies. Electronic supplementary material The online version of this article (10.1007/s40259-019-00402-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hans C Ebbers
- Biogen International GmbH, Neuhofstrasse 30, 6340, Baar, Switzerland.
| | | | - Mette Ottosen
- Biogen (Denmark) Manufacturing APS, Hillerød, Denmark
| | | | - Pia Høier
- Biogen (Denmark) Manufacturing APS, Hillerød, Denmark
| | | | | | | | | | | | | |
Collapse
|
65
|
Peyvandi F, Miri S, Garagiola I. Immune Responses to Plasma-Derived Versus Recombinant FVIII Products. Front Immunol 2021; 11:591878. [PMID: 33552050 PMCID: PMC7862552 DOI: 10.3389/fimmu.2020.591878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022] Open
Abstract
The most severe side effect of hemophilia treatment is the inhibitor development occurring in 30% of patients, during the earliest stages of treatment with factor (F)VIII concentrates. These catastrophic immune responses rapidly inactivate the infused FVIII, rendering the treatment ineffective. This complication is associated with a substantial morbidity and mortality. The risk factors involved in the onset of the inhibitors are both genetic and environmental. The source of FVIII products, i.e. plasma-derived or recombinant FVIII products, is considered one of the most relevant factors for inhibitor development. Numerous studies in the literature report conflicting data on the different immunogenicity of the products. The SIPPET randomized trial showed an increased in the inhibitor rate in patients using recombinant FVIII products than those receiving plasma-derived products in the first exposure days. The SIPPET randomized trial showed an increase in the inhibitor rate in patients using recombinant FVIII products compared to those treated with plasma-derived products in the first days of exposure. The potential increase in the immunogenicity of recombinant products can be attributed to several factors such as: the different post-translational modification in different cell lines, the presence of protein aggregates, and the role played by the chaperon protein of FVIII, the von Willebrand factor, which modulates the uptake of FVIII by antigen presenting cells (APCs). Furthermore, the presence of non-neutralizing antibodies against FVIII has shown to be in increased inhibitor development as demonstrated in a sub-analysis of the SIPPET study. In addition, the presence of the specific subclasses of the immunoglobulins may also be an important biomarker to indicate whether the inhibitor will evolve into a persistent neutralizing antibody or a transient one that would disappear without any specific treatment. Recently, the availability of novel non-replacement therapies as well as emicizumab, administered by weekly subcutaneous infusion, have significantly changed the quality of life of patients with inhibitors showing a considerable reduction of the annual bleeding rate and in most patients the absence of bleeding. Although, these novel drugs improve patients' quality of life, they do not abolish the need to infuse FVIII during acute bleeding or surgery. Therefore, the issue of immunogenicity against FVIII still remains an important side effect of hemophilia treatment.
Collapse
Affiliation(s)
- Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Syna Miri
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Isabella Garagiola
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
66
|
Pharmacokinetics Versus In Vitro Antiproliferative Potency to Design a Novel Hyperglycosylated hIFN-α2 Biobetter. Pharm Res 2021; 38:37-50. [PMID: 33443683 DOI: 10.1007/s11095-020-02978-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE IFN4N is a glycoengineered version of recombinant human interferon alpha 2 (rhIFN-α2) that was modified to exhibit four N-glycosylation sites. It shows reduced in vitro specific biological activity (SBA) mainly due to R23 mutation by N23. However, it has improved pharmacokinetics and led to a high in vivo antitumor activity in mice. In order to prepare a new IFN-based biobetter, this work compares the influence of glycosylation (affecting pharmacokinetics) with the in vitro antiproliferative SBA on the in vivo efficacy. METHODS Based on IFN4N, three groups of muteins were designed, produced, and characterized. Group A: variants with the same glycosylation degree (4N) but higher in vitro antiproliferative SBA (R23 restored); group B: muteins with higher glycosylation degree (5N) but similar in vitro antiproliferative activity; and group C: variants with improved glycosylation (5N and 6N) and in vitro antiproliferative bioactivity. RESULTS Glycoengineering was successful for improving pharmacokinetics, and R23 restoration considerably increased in vitro antiproliferative activity of new muteins compared to IFN4N. Hyperglycosylation was able to improve the in vivo efficacy similarly to or even better than R23 restoration. Additionally, the highest glycosylated mutein exhibited the lowest immunogenicity. CONCLUSIONS Hyperglycosylation constitutes a successful strategy to prepare a novel IFN biobetter.
Collapse
|
67
|
Abstract
Glycosylation is a common posttranslational modification of therapeutic proteins. The glycosylation pattern is dependent on many parameters such as the host cell line or the culture conditions. N- and O-linked glycans usually play a great role on the stability, safety, and efficacy of the drug. For this reason, glycosylation is considered as a critical quality attribute of therapeutic glycoproteins, and a thorough characterization should be performed, as well as a systematic control for each batch produced. This chapter gives a short presentation of the structure of glycans commonly found on recombinant therapeutic proteins, and their role on the properties of the drug, in terms of stability, pharmacokinetics, safety, and efficacy. Lastly, the use of mass spectrometry for the analysis of glycoproteins is briefly described.
Collapse
|
68
|
|
69
|
van Schaick G, Gstöttner C, Büttner A, Reusch D, Wuhrer M, Domínguez-Vega E. Anion exchange chromatography – Mass spectrometry for monitoring multiple quality attributes of erythropoietin biopharmaceuticals. Anal Chim Acta 2021; 1143:166-172. [DOI: 10.1016/j.aca.2020.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
|
70
|
Brewis N. Improvement of Key Characteristics of Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
71
|
Kissner T, Blaich G, Baumann A, Kronenberg S, Hey A, Kiessling A, Schmitt PM, Driessen W, Carrez C, Kramer D, Fretland J, Richter WF, Paehler T, Hopfer U, Rattel B. Challenges of non-clinical safety testing for biologics: A Report of the 9th BioSafe European Annual General Membership Meeting. MAbs 2021; 13:1938796. [PMID: 34241561 PMCID: PMC8274438 DOI: 10.1080/19420862.2021.1938796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/26/2022] Open
Abstract
New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of in vitro testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities. During the 9th meeting of the European BioSafe members, the following topics were presented and discussed in 6 main sessions (with 3 or 4 presentations per session) and in three small group breakout sessions: 1) DART assessment with biotherapeutics: what did we learn and where to go?; 2) Non-animal testing strategies; 3) Seeing is believing: new frontiers in imaging; 4) Predicting immunogenicity during early drug development: hope or despair?; 5) Challenges in FIH dose projections; and 6) Non-canonical biologics formats: challenges in bioanalytics, PKPD and biotransformation for complex biologics formats. Small group breakout sessions were organized for team discussion about 3 specific topics: 1) Testing of cellular immune function in vitro and in vivo; 2) MABEL approach (toxicology and pharmacokinetic perspective); and 3) mRNA treatments. This workshop report presents the sessions and discussions at the meeting.
Collapse
Affiliation(s)
- Thomas Kissner
- Preclinical Safety, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Guenter Blaich
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Andreas Baumann
- R&D Pharmaceuticals, Translational Sciences, Bayer AG, Berlin, Germany
| | - Sven Kronenberg
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Adam Hey
- Oncology Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | | | - Petra M. Schmitt
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Wouter Driessen
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Chantal Carrez
- Sanofi R&D, Translational In Vivo Models, Sanofi S.A, Vitry-sur-Seine, France
| | - Daniel Kramer
- Sanofi R&D, Translational Medicine & Early Development, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Wolfgang F. Richter
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Paehler
- Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Ulrike Hopfer
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Benno Rattel
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| |
Collapse
|
72
|
Uthailak N, Kajiura H, Misaki R, Fujiyama K. Transient Production of Human β-Glucocerebrosidase With Mannosidic-Type N-Glycan Structure in Glycoengineered Nicotiana benthamiana Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:683762. [PMID: 34163514 PMCID: PMC8215604 DOI: 10.3389/fpls.2021.683762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
Gaucher disease is an inherited lysosomal storage disorder caused by a deficiency of functional enzyme β-glucocerebrosidase (GCase). Recombinant GCase has been used in enzyme replacement therapy to treat Gaucher disease. Importantly, the terminal mannose N-glycan structure is essential for the uptake of recombinant GCase into macrophages via the mannose receptor. In this research, recombinant GCase was produced using Agrobacterium-mediated transient expression in both wild-type (WT) and N-acetylglucosaminyltransferase I (GnTI) downregulated Nicotiana benthamiana (ΔgntI) plants, the latter of which accumulates mannosidic-type N-glycan structures. The successfully produced functional GCase exhibited GCase enzyme activity. The enzyme activity was the same as that of the conventional mammalian-derived GCase. Notably, N-glycan analysis revealed that a mannosidic-type N-glycan structure lacking plant-specific N-glycans (β1,2-xylose and α1,3-fucose residues) was predominant in all glycosylation sites of purified GCase produced from ΔgntI plants. Our research provides a promising alternative plant line as a host for the production of recombinant GCase with a mannosidic-type N-glycan structure. This glycoengineered plant might be applicable to the production of other pharmaceutical proteins, especially mannose receptor targeted protein, for therapeutic uses.
Collapse
Affiliation(s)
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Cooperative Research Station in Southeast Asia, International Center for Biotechnology, Osaka University, Mahidol University, Bangkok, Thailand
- *Correspondence: Kazuhito Fujiyama
| |
Collapse
|
73
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
74
|
Sadiki A, Vaidya SR, Abdollahi M, Bhardwaj G, Dolan ME, Turna H, Arora V, Sanjeev A, Robinson TD, Koid A, Amin A, Zhou ZS. Site-specific conjugation of native antibody. Antib Ther 2020; 3:271-284. [PMID: 33644685 PMCID: PMC7906296 DOI: 10.1093/abt/tbaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, non-specific chemical conjugations, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity-determining region may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein, we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody–drug conjugates in clinical trials along with the future perspectives of these site-specific methods.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Shefali R Vaidya
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Mina Abdollahi
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Gunjan Bhardwaj
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA.,Downstream Development, Biologics Process Development, Millennium Pharmaceuticals, Inc., (a wholly-owned subsidiary of Takeda Pharmaceuticals Company Limited), Cambridge, Massachusetts 02139, USA
| | - Harpreet Turna
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Varnika Arora
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Athul Sanjeev
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Timothy D Robinson
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Andrea Koid
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Aashka Amin
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| |
Collapse
|
75
|
Moura LFWG, da Silva Costa HP, da Silva Neto JX, Dias LP, Magalhães FEA, van Tilburg MF, Florean EOPT, de Oliveira JTA, Oliveira Bezerra de Sousa DD, Guedes MIF. Orally hypoglycemic activity of an insulin mimetic glycoprotein isolated from Cnidoscolus quercifolius Pohl. (Euphorbiaceae) seeds, Cq-IMP. Int J Biol Macromol 2020; 159:886-895. [PMID: 32413470 DOI: 10.1016/j.ijbiomac.2020.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
The genus Cnidoscolus (Euphorbiaceae) is widely distributed in tropical areas. In the Northeast of Brazil, the species C. quercifolius is endemic and has been used in traditional medicine. In this study, a novel protein was isolated from C. quercifolius seeds and characterized by its molecular weight, primary structure, isoelectric point (pI), and carbohydrate content. The hypoglycemic activity of this protein was investigated by in vitro assay with the RIN-5F glucose-responsive cell line and in vivo test using alloxan-induced diabetic mice models. In addition, safe use of the protein was also investigated by cytotoxicity, hemagglutinating, and immunogenicity assays. The protein which was named Cq-IMP (Cnidoscolus quercifolius - Insulin Mimetic Protein) showed a single 11.18 KDa glycopolypeptide chain (16.4% of carbohydrates, m/m), pI of 8.0 and N-terminal sequence (TKDPELKQcKKQQKKqQQYDDDDKK) with similarity around 46-62% to sucrose binding protein-like and vicilin-like protein that was confirmed by mass spectrometry tryptic peptides analysis. Besides that, Cq-IMP presented anti-insulin antibody cross-reactivity as hypoglycemic activity in both in vitro and in vivo models. Additionally, it did not present any toxicity by methods tested. In conclusion, Cq-IMP is an insulin-mimetic protein, with a potent hypoglycemic activity and no toxicity showing great potential for therapeutic applications and drug development.
Collapse
Affiliation(s)
- Luiz Francisco Wemmenson Gonçalves Moura
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil
| | - Helen Paula da Silva Costa
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil
| | - João Xavier da Silva Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil
| | - Lucas Pinheiro Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil
| | | | - Maurício Fraga van Tilburg
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil; Department of Animal Science, Federal Rural University of Semi-Arid, 59625-900, Brazil
| | | | | | | | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, CE, Brazil.
| |
Collapse
|
76
|
Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol 2020; 11:1951. [PMID: 33013848 PMCID: PMC7461797 DOI: 10.3389/fimmu.2020.01951] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (mAbs) are a crucial asset for human health and modern medicine, however, the repeated administration of mAbs can be highly immunogenic. Drug immunogenicity manifests in the generation of anti-drug antibodies (ADAs), and some mAbs show immunogenicity in up to 70% of patients. ADAs can alter a drug's pharmacokinetic and pharmacodynamic properties, reducing drug efficacy. In more severe cases, ADAs can neutralize the drug's therapeutic effects or cause severe adverse events to the patient. While some contributing factors to ADA formation are known, the molecular mechanisms of how therapeutic mAbs elicit ADAs are not completely clear. Accurate ADA detection is necessary to provide clinicians with sufficient information for patient monitoring and clinical intervention. However, ADA assays present unique challenges because both the analyte and antigen are antibodies, so most assays are cumbersome, costly, time consuming, and lack standardization. This review will discuss aspects related to ADA formation following mAb drug administration. First, we will provide an overview of the prevalence of ADA formation and the available diagnostic tools for their detection. Next, we will review studies that support possible molecular mechanisms causing the formation of ADA. Finally, we will summarize recent approaches used to decrease the propensity of mAbs to induce ADAs.
Collapse
Affiliation(s)
- Anna Vaisman-Mentesh
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, KS, United States
| | - Yariv Wine
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
77
|
Froning K, Maguire J, Sereno A, Huang F, Chang S, Weichert K, Frommelt AJ, Dong J, Wu X, Austin H, Conner EM, Fitchett JR, Heng AR, Balasubramaniam D, Hilgers MT, Kuhlman B, Demarest SJ. Computational stabilization of T cell receptors allows pairing with antibodies to form bispecifics. Nat Commun 2020; 11:2330. [PMID: 32393818 PMCID: PMC7214467 DOI: 10.1038/s41467-020-16231-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
Recombinant T cell receptors (TCRs) can be used to redirect naïve T cells to eliminate virally infected or cancerous cells; however, they are plagued by low stability and uneven expression. Here, we use molecular modeling to identify mutations in the TCR constant domains (Cα/Cβ) that increase the unfolding temperature of Cα/Cβ by 20 °C, improve the expression of four separate α/β TCRs by 3- to 10-fold, and improve the assembly and stability of TCRs with poor intrinsic stability. The stabilizing mutations rescue the expression of TCRs destabilized through variable domain mutation. The improved stability and folding of the TCRs reduces glycosylation, perhaps through conformational stabilization that restricts access to N-linked glycosylation enzymes. The Cα/Cβ mutations enables antibody-like expression and assembly of well-behaved bispecific molecules that combine an anti-CD3 antibody with the stabilized TCR. These TCR/CD3 bispecifics can redirect T cells to kill tumor cells with target HLA/peptide on their surfaces in vitro.
Collapse
Affiliation(s)
- Karen Froning
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jack Maguire
- Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene Sereno
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Flora Huang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Shawn Chang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Kenneth Weichert
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Anton J Frommelt
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jessica Dong
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Xiufeng Wu
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Heather Austin
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Elaine M Conner
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jonathan R Fitchett
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Aik Roy Heng
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | | | - Mark T Hilgers
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Stephen J Demarest
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
78
|
Ahn SH, Vaughn BA, Solis WA, Lupher ML, Hallam TJ, Boros E. Site-Specific 89Zr- and 111In-Radiolabeling and In Vivo Evaluation of Glycan-free Antibodies by Azide-Alkyne Cycloaddition with a Non-natural Amino Acid. Bioconjug Chem 2020; 31:1177-1187. [PMID: 32138509 DOI: 10.1021/acs.bioconjchem.0c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are a class of targeted therapeutics consisting of a monoclonal antibody coupled to a cytotoxic payload. Various bioconjugation methods for producing site-specific ADCs have been reported recently, in efforts to improve immunoreactivity and pharmacokinetics and minimize batch variance-potential issues associated with first-generation ADCs prepared via stochastic peptide coupling of lysines or reduced cysteines. Recently, cell-free protein synthesis of antibodies incorporating para-azidomethyl phenylalanine (pAMF) at specific locations within the protein sequence has emerged as a means to generate antibody-drug conjugates with strictly defined drug-antibody-ratio, leading to ADCs with markedly improved stability, activity, and specificity. The incorporation of pAMF enables the conjugation of payloads functionalized for strain-promoted azide-alkyne cycloaddition. Here, we introduce two dibenzylcyclooctyne-functionalized bifunctional chelators that enable the incorporation of radioisotopes for positron emission tomography with 89Zr (t1/2 = 78.4 h, β+ = 395 keV (22%), γ = 897 keV) or single photon emission computed tomography with 111In (t1/2 = 67.3 h, γ = 171 keV (91%), 245 keV (94%)) under physiologically compatible conditions. We show that the corresponding radiolabeled conjugates with site-specifically functionalized antibodies targeting HER2 are amenable to targeted molecular imaging of HER2+ expressing tumor xenografts in mice and exhibit a favorable biodistribution profile in comparison with conventional, glycosylated antibody conjugates generated by stochastic bioconjugation.
Collapse
Affiliation(s)
- Shin Hye Ahn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Brett A Vaughn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Willy A Solis
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Mark L Lupher
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Trevor J Hallam
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| |
Collapse
|
79
|
Keating CL, Kuhn E, Bals J, Cocco AR, Yousif AS, Matysiak C, Sangesland M, Ronsard L, Smoot M, Moreno TB, Okonkwo V, Setliff I, Georgiev I, Balazs AB, Carr SA, Lingwood D. Spontaneous Glycan Reattachment Following N-Glycanase Treatment of Influenza and HIV Vaccine Antigens. J Proteome Res 2020; 19:733-743. [PMID: 31913636 DOI: 10.1021/acs.jproteome.9b00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.
Collapse
Affiliation(s)
- Celina L Keating
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Eric Kuhn
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Julia Bals
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Alexandra R Cocco
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Colette Matysiak
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Matthew Smoot
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Vintus Okonkwo
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Ian Setliff
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America
| | - Ivelin Georgiev
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America.,Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , C-3322 Medical Center North , Nashville , Tennessee 37232-2561 , United States of America.,Department of Electrical Engineering and Computer Science , Vanderbilt University , 2301 Vanderbilt Place , Nashville , Tennessee 37235-1826 , United States of America
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Steven A Carr
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| |
Collapse
|
80
|
Vimer S, Ben-Nissan G, Sharon M. Direct characterization of overproduced proteins by native mass spectrometry. Nat Protoc 2020; 15:236-265. [PMID: 31942081 DOI: 10.1038/s41596-019-0233-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Proteins derived by recombinant technologies must be characterized to ensure quality, consistency and optimal production. These properties are usually assayed following purification procedures that are time consuming and labor intensive. Here, we describe a native mass spectrometry (MS) approach, direct-MS, for rapid characterization of intact overexpressed proteins immediately from crude samples. In this protocol, we discuss the multiple applications of the method and outline the necessary steps required for sample preparation, data collection and interpretation of results. We begin with the sample preparation workflows, which are relevant for recombinant proteins produced within bacteria, those analyzed straight from crude cell lysate, and secreted proteins generated in eukaryotic expression systems that are assessed directly from the growth culture medium. We continue with the mass acquisition steps that enable immediate definition of properties such as expressibility, solubility, assembly state, folding, overall structure, stability, post-translational modifications and associations with biomolecules. We demonstrate the applicability of the method by presenting the characterization of a computationally designed toxin-antitoxin heterodimer, activity and protein-interaction determination of a regulatory protein and detailed glycosylation analysis of a designed intact antibody. Overall, we describe a simple and rapid protocol that is relevant to both prokaryotic and eukaryotic expression systems and can be carried out on multiple mass spectrometers, such as Orbitrap and quadrupole time-of-flight (QTOF)-based mass spectroscopy platforms, that enable intact protein detection. The procedure takes from 30 min to several hours, from sample collection to data acquisition, depending on the depth of MS analysis.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
81
|
Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104:1905-1914. [DOI: 10.1007/s00253-020-10368-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
82
|
Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis 2020; 9:4. [PMID: 31913260 PMCID: PMC6949223 DOI: 10.1038/s41389-019-0188-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
SGK196 is a protein O-mannose kinase involved in an indispensable phosphorylation step during laminin-binding glycan synthesis on alpha-dystroglycan (α-DG). However, the function of SGK196 in cancer diseases remains elusive. In the current study, we demonstrated that SGK196 is primarily modified by N-glycosylation in breast cancer (BC) cells. Furthermore, gain and loss-of-function studies showed that N-glycosylated SGK196 suppresses cell migration, invasion, and metastasis in BC, particularly in the basal-like breast cancer (BLBC) type. In addition, we found that SGK196 N-glycosylation performs the regulatory function through the PI3K/AKT/GSK3β signaling pathway. Collectively, our results show that N-glycosylated SGK196 plays suppression roles in BLBC metastases, therefore providing new insights into SGK196 function in BC.
Collapse
Affiliation(s)
- Ci Xu
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
83
|
Dantas RC, Caetano LF, Torres ALS, Alves MS, Silva ETMF, Teixeira LPR, Teixeira DC, de Azevedo Moreira R, Fonseca MHG, Gaudêncio Neto S, Martins LT, Furtado GP, Tavares KCS. Expression of a recombinant bacterial L-asparaginase in human cells. BMC Res Notes 2019; 12:794. [PMID: 31806048 PMCID: PMC6896745 DOI: 10.1186/s13104-019-4836-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Abstract
Objective l-Asparaginase (ASNase) is an enzyme used in the treatment of acute lymphoblastic leukemia (ALL). As the therapeutic ASNases has bacterial origin, severe side effects are associated with its use, among them hypersensitivity and inactivation of the enzyme. In this context, the objective of this work was to produce a recombinant ASNase of bacterial origin in human cells in order to determine the presence and consequences of potential post-translational modifications on the enzyme. Results Recombinant ASNase was expressed in human cells with a molecular weight of 60 kDa, larger than in Escherichia coli, which is 35 kDa. N-glycosylation analysis demonstrated that the increased molecular weight resulted from the addition of glycans to the protein by mammalian cells. The glycosylated ASNase presented in vitro activity at physiological pH and temperature. Given that glycosylation can act to reduce antigenicity by masking protein epitopes, our data may contribute to the development of an alternative ASNase in the treatment of ALL in patients who demonstrate side effects to currently marketed enzymes.
Collapse
Affiliation(s)
- Raquel Caminha Dantas
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | | | | | - Matheus Soares Alves
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | | | | | - Daniel Câmara Teixeira
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | | | | | - Saul Gaudêncio Neto
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | | | | | | |
Collapse
|
84
|
Kanduc D, Shoenfeld Y. Human Papillomavirus Epitope Mimicry and Autoimmunity: The Molecular Truth of Peptide Sharing. Pathobiology 2019; 86:285-295. [PMID: 31593963 DOI: 10.1159/000502889] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/22/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To define the cross-reactivity potential and the consequent autoimmunity intrinsic to viral versus human peptide sharing. METHODS Using human papillomavirus (HPV) infection/active immunization as a research model, the experimentally validated HPV L1 epitopes catalogued at the Immune Epitope DataBase were analyzed for peptide sharing with the human proteome. RESULTS The final data show that the totality of the immunoreactive HPV L1 epi-topes is mostly composed by peptides present in human proteins. CONCLUSIONS Immunologically, the high extent of peptide sharing between the HPV L1 epitopes and human proteins invites to revise the concept of the negative selection of self-reactive lymphocytes. Pathologically, the data highlight a cross-reactive potential for a spectrum of autoimmune diseases that includes ovarian failure, systemic lupus erythematosus (SLE), breast cancer and sudden death, among others. Therapeutically, analyzing already validated immunoreactive epitopes filters out the peptide sharing possibly exempt of self-reactivity, defines the effective potential for pathologic autoimmunity, and allows singling out peptide epitopes for safe immunotherapeutic protocols.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy,
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated to Tel-Aviv, University School of Medicine, Ramat Gan, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian, Federation, Sechenov University, Moscow, Russian Federation
| |
Collapse
|
85
|
Doevendans E, Schellekens H. Immunogenicity of Innovative and Biosimilar Monoclonal Antibodies. Antibodies (Basel) 2019; 8:antib8010021. [PMID: 31544827 PMCID: PMC6640699 DOI: 10.3390/antib8010021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
The development of hybridoma technology for producing monoclonal antibodies (mAbs) by Kohler and Milstein (1975) counts as one of the major medical breakthroughs, opening up endless possibilities for research, diagnosis and for treatment of a whole variety of diseases. Therapeutic mAbs were introduced three decades ago. The first generation of therapeutic mAbs of murine origin showed high immunogenicity, which limited efficacy and was associated with severe infusion reactions. Subsequently chimeric, humanized, and fully human antibodies were introduced as therapeutics, these mAbs were considerably less immunogenic. Unexpectedly humanized mAbs generally show similar immunogenicity as chimeric antibodies; based on sequence homology chimeric mAbs are sometimes more “human” than humanized mAbs. With the introduction of the regulatory concept of similar biological medicines (biosimilars) a key concern is the similarity in terms of immunogenicity of these biosimilars with their originators. This review focuses briefly on the mechanisms of induction of immunogenicity by biopharmaceuticals, mAbs in particular, in relation to the target of the immune system.
Collapse
Affiliation(s)
- Erik Doevendans
- Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands.
| | - Huub Schellekens
- Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands.
| |
Collapse
|