51
|
Campbell TM, Castro MA, de Santiago I, Fletcher MN, Halim S, Prathalingam R, Ponder BA, Meyer KB. FGFR2 risk SNPs confer breast cancer risk by augmenting oestrogen responsiveness. Carcinogenesis 2016; 37:741-750. [PMID: 27236187 PMCID: PMC4967216 DOI: 10.1093/carcin/bgw065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/21/2016] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) locus is consistently the top hit in genome-wide association studies for oestrogen receptor-positive (ER(+)) breast cancer. Yet, its mode of action continues to be controversial. Here, we employ a systems biology approach to demonstrate that signalling via FGFR2 counteracts cell activation by oestrogen. In the presence of oestrogen, the oestrogen receptor (ESR1) regulon (set of ESR1 target genes) is in an active state. However, signalling by FGFR2 is able to reverse the activity of the ESR1 regulon. This effect is seen in multiple distinct FGFR2 signalling model systems, across multiple cells lines and is dependent on the presence of FGFR2. Increased oestrogen exposure has long been associated with an increased risk of breast cancer. We therefore hypothesized that risk variants should reduce FGFR2 expression and subsequent signalling. Indeed, transient transfection experiments assaying the three independent variants of the FGFR2 risk locus (rs2981578, rs35054928 and rs45631563) in their normal chromosomal context show that these single-nucleotide polymorphisms (SNPs) map to transcriptional silencer elements and that, compared with wild type, the risk alleles augment silencer activity. The presence of risk variants results in lower FGFR2 expression and increased oestrogen responsiveness. We thus propose a molecular mechanism by which FGFR2 can confer increased breast cancer risk that is consistent with oestrogen exposure as a major driver of breast cancer risk. Our findings may have implications for the clinical use of FGFR2 inhibitors.
Collapse
Affiliation(s)
- Thomas M. Campbell
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Mauro A.A. Castro
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
| | - Ines de Santiago
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Michael N.C. Fletcher
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Silvia Halim
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Bruce A.J. Ponder
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Kerstin B. Meyer
- *To whom correspondence should be addressed; Tel: +44 1223 769651; Fax: +44 1223 769510;
| |
Collapse
|
52
|
A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud. PLoS Comput Biol 2016; 12:e1004839. [PMID: 27115287 PMCID: PMC4845990 DOI: 10.1371/journal.pcbi.1004839] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/01/2016] [Indexed: 11/29/2022] Open
Abstract
Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB), the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct. Our paper describes a mathematical model of mammary ductal elongation during pubertal development. We make several conclusions that will be of interest to scientists studying mammary gland biology, epithelial tube formation, and branching morphogenesis. First, our model indicates that a common measurement of developmental outgrowth (‘percent fat pad filled’) underestimates the total growth and leads to mischaracterization of mutant phenotypes. Second, we show that cap cells, a population enriched with putative mammary stem cells, do not contribute to the luminal lineage as previously hypothesized. Further, we find that a high percentage of proliferation in these cells is not used productively to actually form the mammary duct. We believe our model has future application to other branching organs and also for the modeling of disease states in the breast.
Collapse
|
53
|
Cruz J, Bota-Rabassedas N, Franch-Marro X. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2. Sci Rep 2015; 5:17806. [PMID: 26632449 PMCID: PMC4668582 DOI: 10.1038/srep17806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/05/2015] [Indexed: 01/25/2023] Open
Abstract
How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth.
Collapse
Affiliation(s)
- Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Neus Bota-Rabassedas
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
54
|
Al Alam D, El Agha E, Sakurai R, Kheirollahi V, Moiseenko A, Danopoulos S, Shrestha A, Schmoldt C, Quantius J, Herold S, Chao CM, Tiozzo C, De Langhe S, Plikus MV, Thornton M, Grubbs B, Minoo P, Rehan VK, Bellusci S. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development. Development 2015; 142:4139-50. [PMID: 26511927 DOI: 10.1242/dev.109173] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
Abstract
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.
Collapse
Affiliation(s)
- Denise Al Alam
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Soula Danopoulos
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Amit Shrestha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Carole Schmoldt
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Jennifer Quantius
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Susanne Herold
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Cho-Ming Chao
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90033, USA
| | - Parviz Minoo
- Division of Neonatal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | - Saverio Bellusci
- Department of Surgery, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine II, Klinikstrasse 36, Giessen, Hessen 35392, Germany Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
55
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
56
|
Al Alam D, Danopoulos S, Schall K, Sala FG, Almohazey D, Fernandez GE, Georgia S, Frey MR, Ford HR, Grikscheit T, Bellusci S. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2015; 308:G678-90. [PMID: 25721301 PMCID: PMC4398841 DOI: 10.1152/ajpgi.00158.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/12/2015] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.
Collapse
Affiliation(s)
- Denise Al Alam
- Keck School of Medicine, University of Southern California, Los Angeles, California; Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Soula Danopoulos
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Kathy Schall
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Frederic G. Sala
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Dana Almohazey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - G. Esteban Fernandez
- 1Keck School of Medicine, University of Southern California, Los Angeles, California;
| | - Senta Georgia
- 2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Mark R. Frey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Henri R. Ford
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Tracy Grikscheit
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Saverio Bellusci
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; ,3Department of Internal Medicine II, University of Giessen Lung Center and Member of the German Lung Center, Giessen, Germany; and ,4Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
57
|
MacKenzie B, Henneke I, Hezel S, Al Alam D, El Agha E, Chao CM, Quantius J, Wilhelm J, Jones M, Goth K, Li X, Seeger W, Königshoff M, Herold S, Rizvanov AA, Günther A, Bellusci S. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1014-24. [PMID: 25820524 DOI: 10.1152/ajplung.00291.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/07/2015] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Denise Al Alam
- Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jennifer Quantius
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Matthew Jones
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Kerstin Goth
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, China
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Susanne Herold
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany; AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany; German Center for Lung Research, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany; Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
58
|
Kunasegaran K, Ho V, Chang TH.T, De Silva D, Bakker ML, Christoffels VM, Pietersen AM. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS One 2014; 9:e110191. [PMID: 25343378 PMCID: PMC4208772 DOI: 10.1371/journal.pone.0110191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 02/03/2023] Open
Abstract
The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.
Collapse
Affiliation(s)
- Kamini Kunasegaran
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Victor Ho
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Ted H-. T. Chang
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Duvini De Silva
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Martijn L. Bakker
- Center for Heart Failure Research, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - Alexandra M. Pietersen
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
59
|
Salmans ML, Yu Z, Watanabe K, Cam E, Sun P, Smyth P, Dai X, Andersen B. The co-factor of LIM domains (CLIM/LDB/NLI) maintains basal mammary epithelial stem cells and promotes breast tumorigenesis. PLoS Genet 2014; 10:e1004520. [PMID: 25079073 PMCID: PMC4117441 DOI: 10.1371/journal.pgen.1004520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022] Open
Abstract
Mammary gland branching morphogenesis and ductal homeostasis relies on mammary stem cell function for the maintenance of basal and luminal cell compartments. The mechanisms of transcriptional regulation of the basal cell compartment are currently unknown. We explored these mechanisms in the basal cell compartment and identified the Co-factor of LIM domains (CLIM/LDB/NLI) as a transcriptional regulator that maintains these cells. Clims act within the basal cell compartment to promote branching morphogenesis by maintaining the number and proliferative potential of basal mammary epithelial stem cells. Clim2, in a complex with LMO4, supports mammary stem cells by directly targeting the Fgfr2 promoter in basal cells to increase its expression. Strikingly, Clims also coordinate basal-specific transcriptional programs to preserve luminal cell identity. These basal-derived cues inhibit epidermis-like differentiation of the luminal cell compartment and enhance the expression of luminal cell-specific oncogenes ErbB2 and ErbB3. Consistently, basal-expressed Clims promote the initiation and progression of breast cancer in the MMTV-PyMT tumor model, and the Clim-regulated branching morphogenesis gene network is a prognostic indicator of poor breast cancer outcome in humans. Recent advancements in mammary gland biology demonstrate conflicting models in maintenance of basal and luminal cell compartments by either unipotent or bipotent mammary stem cells. However, the molecular mechanisms underlying control of the basal cell compartment, including stem cells, remain poorly understood. Here we explore the currently unknown transcriptional mechanisms of basal stem cell (BSC) maintenance, in addition to addressing the role of the basal cell compartment in preserving luminal cell fate and promoting development of human breast tumors of luminal origin. We discover a novel function for the Co-factor of LIM domains (Clim) transcriptional regulator in promoting mammary gland branching morphogenesis and breast tumorigenesis through maintenance of the basal stem cell population. The transcriptional networks coordinated by Clims in basal mammary epithelial cells also preserve the identity of luminal epithelial cells, demonstrating a crosstalk between these two cellular compartments. Furthermore, we correlate developmental gene expression data with human breast cancer to investigate the role of developmental pathways during the initiation and progression of breast cancer. The gene regulatory networks identified during development, including those specifically coordinated by Clims, correlate with breast cancer patient outcome, suggesting these genes play an important role in the progression of breast cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinogenesis/genetics
- Cell Differentiation/genetics
- DNA-Binding Proteins/genetics
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- LIM Domain Proteins/genetics
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Neoplasms, Basal Cell/genetics
- Neoplasms, Basal Cell/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Receptor, ErbB-2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Michael L. Salmans
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
| | - Zhengquan Yu
- State Key Laboratories for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Eric Cam
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Padhraic Smyth
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
- Department of Medicine, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
60
|
Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 2014; 141:3352-62. [PMID: 25078648 DOI: 10.1242/dev.106732] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FGF signaling is essential for mammary gland development, yet the mechanisms by which different members of the FGF family control stem cell function and epithelial morphogenesis in this tissue are not well understood. Here, we have examined the requirement of Fgfr2 in mouse mammary gland morphogenesis using a postnatal organ regeneration model. We found that tissue regeneration from basal stem cells is a multistep event, including luminal differentiation and subsequent epithelial branching morphogenesis. Basal cells lacking Fgfr2 did not generate an epithelial network owing to a failure in luminal differentiation. Moreover, Fgfr2 null epithelium was unable to undergo ductal branch initiation and elongation due to a deficiency in directional migration. We identified FGF10 and FGF2 as stromal ligands that control distinct aspects of mammary ductal branching. FGF10 regulates branch initiation, which depends on directional epithelial migration. By contrast, FGF2 controls ductal elongation, requiring cell proliferation and epithelial expansion. Together, our data highlight a pleiotropic role of Fgfr2 in stem cell differentiation and branch initiation, and reveal that different FGF ligands regulate distinct aspects of epithelial behavior.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Denisse Martinez
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Zuzana Koledova
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
61
|
Coleman SJ, Grose RP, Kocher HM. Fibroblast growth factor family as a potential target in the treatment of hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:43-54. [PMID: 27508175 PMCID: PMC4918266 DOI: 10.2147/jhc.s48958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular cancer (HCC) is currently the third leading cause of cancer death worldwide. The prognosis of patients diagnosed with late-stage disease is dismal due to high resistance to conventional systemic therapies. The introduction of sorafenib, despite its limited efficacy, as the standard systemic therapy for advanced HCC has paved a way for targeted molecular therapies for HCC. Fibroblast growth factor (FGF) signaling plays an important role in the developing embryo and the adult. The FGF signaling pathway is often hijacked by cancer cells, including HCC. Several alterations in FGF signaling correlate with poor outcome in HCC patients, suggesting that this family of signaling molecules plays an important role in the development of HCC. Multikinase inhibitors targeting FGF signaling are currently under investigation in clinical trials. This review discusses the current understanding of the biological and clinical implications of aberrant FGF signaling in the prognosis, diagnosis, and treatment of HCC.
Collapse
Affiliation(s)
- Stacey J Coleman
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
62
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
63
|
Zhang X, Qiao G, Lu P. Modulation of fibroblast growth factor signaling is essential for mammary epithelial morphogenesis. PLoS One 2014; 9:e92735. [PMID: 24718286 PMCID: PMC3981693 DOI: 10.1371/journal.pone.0092735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres AC. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ 2014; 56:255-75. [PMID: 24635767 DOI: 10.1111/dgd.12126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
Abstract
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Collapse
Affiliation(s)
- Philip Kaenel
- Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004, Bern, Switzerland
| | | | | | | | | |
Collapse
|
65
|
Laestander C, Engström W. Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 2014; 47:3-11. [PMID: 24354576 PMCID: PMC6495704 DOI: 10.1111/cpr.12084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1-5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.
Collapse
Affiliation(s)
- C. Laestander
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| | - W. Engström
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
66
|
Danopoulos S, Parsa S, Al Alam D, Tabatabai R, Baptista S, Tiozzo C, Carraro G, Wheeler M, Barreto G, Braun T, Li X, Hajihosseini MK, Bellusci S. Transient Inhibition of FGFR2b-ligands signaling leads to irreversible loss of cellular β-catenin organization and signaling in AER during mouse limb development. PLoS One 2013; 8:e76248. [PMID: 24167544 PMCID: PMC3805551 DOI: 10.1371/journal.pone.0076248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/21/2013] [Indexed: 01/30/2023] Open
Abstract
The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development.
Collapse
Affiliation(s)
- Soula Danopoulos
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sara Parsa
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Reza Tabatabai
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sheryl Baptista
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Caterina Tiozzo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Nassau University Medical Center, Pediatric Department, New York, New York, United States of America
| | - Gianni Carraro
- Department of Internal Medicine II, University of Giessen Lung Center and Member of the German Lung Research Center (DZL), Giessen, Germany
| | - Matthew Wheeler
- Departement of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research and Member of the DZL, Bad Nauheim, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, LOEWE Research Group Lung Cancer Epigenetic, Bad Nauheim, Germany
| | - Thomas Braun
- Departement of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research and Member of the DZL, Bad Nauheim, Germany
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Mohammad K. Hajihosseini
- School of Biological Sciences, University of East Anglia (UEA), Norwich, Norfolk, United Kingdom
| | - Saverio Bellusci
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Internal Medicine II, University of Giessen Lung Center and Member of the German Lung Research Center (DZL), Giessen, Germany
- * E-mail:
| |
Collapse
|
67
|
Genome-wide association study of breast cancer in the Japanese population. PLoS One 2013; 8:e76463. [PMID: 24143190 PMCID: PMC3797071 DOI: 10.1371/journal.pone.0076463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy among women in worldwide including Japan. Several studies have identified common genetic variants to be associated with the risk of breast cancer. Due to the complex linkage disequilibrium structure and various environmental exposures in different populations, it is essential to identify variants associated with breast cancer in each population, which subsequently facilitate the better understanding of mammary carcinogenesis. In this study, we conducted a genome-wide association study (GWAS) as well as whole-genome imputation with 2,642 cases and 2,099 unaffected female controls. We further examined 13 suggestive loci (P<1.0×10−5) using an independent sample set of 2,885 cases and 3,395 controls and successfully validated two previously-reported loci, rs2981578 (combined P-value of 1.31×10−12, OR = 1.23; 95% CI = 1.16–.30) on chromosome 10q26 (FGFR2), rs3803662 (combined P-value of 2.79×10−11, OR = 1.21; 95% CI = 1.15–.28) and rs12922061 (combined P-value of 3.97×10−10, OR = 1.23; 95% CI = 1.15–.31) on chromosome 16q12 (TOX3-LOC643714). Weighted genetic risk score on the basis of three significantly associated variants and two previously reported breast cancer associated loci in East Asian population revealed that individuals who carry the most risk alleles in category 5 have 2.2 times higher risk of developing breast cancer in the Japanese population than those who carry the least risk alleles in reference category 1. Although we could not identify additional loci associated with breast cancer, our study utilized one of the largest sample sizes reported to date, and provided genetic status that represent the Japanese population. Further local and international collaborative study is essential to identify additional genetic variants that could lead to a better, accurate prediction for breast cancer.
Collapse
|
68
|
Pond AC, Bin X, Batts T, Roarty K, Hilsenbeck S, Rosen JM. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function. Stem Cells 2013; 31:178-89. [PMID: 23097355 DOI: 10.1002/stem.1266] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/25/2012] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development.
Collapse
Affiliation(s)
- Adam C Pond
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
69
|
Rauner G, Leviav A, Mavor E, Barash I. Development of Foreign Mammary Epithelial Morphology in the Stroma of Immunodeficient Mice. PLoS One 2013; 8:e68637. [PMID: 23825700 PMCID: PMC3688997 DOI: 10.1371/journal.pone.0068637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023] Open
Abstract
Systemic growth and branching stimuli, and appropriate interactions with the host stroma are essential for the development of foreign epithelia in the mammary gland of immunodeficient mice. These factors were manipulated to promote and investigate the generation of representative bovine epithelial morphology in the transplanted mouse mammary stroma. The bovine mammary epithelium is unique in its commitment to rapid proliferation and high rate of differentiation. Its morphological organization within a fibrotic stroma resembles that of the human breast, and differs significantly from the rudimentary ductal network that penetrates a fatty stroma in mice. Transplantation of bovine mammary epithelial cells into the cleared mammary fat pad of NOD-SCID mice led to continuous growth of epithelial structures. Multilayered hollow spheres developed within fibrotic areas, but in contrast to mice, no epithelial organization was formed between adipocytes. The multilayered spheres shared characteristics with the heifer gland’s epithelium, including lumen size, cell proliferation, cytokeratin orientation, estrogen/progesterone receptor expression and localization, and milk protein synthesis. However, they did not extend into the mouse fat pad via ductal morphology. Pre-transplantation of fibroblasts increased the number of spheres, but did not promote extension of bovine morphology. The bovine cells preserved their fate and rarely participated in chimeric mouse–bovine outgrowths. Nevertheless, a single case of terminal ductal lobuloalveolar unit (TDLU) development was recorded in mice treated with estrogen and progesterone, implying the feasibility of this representative bovine morphology’s development. In vitro extension of these studies revealed paracrine inhibition of bovine epithelial mammosphere development by adipocytes, which was also generalized to breast epithelial mammosphere formation. The rescue of mammosphere development by fibroblast growth factor administration evidences an active equilibrium between inhibitory and supportive effects exerted by the adipose and fibrotic regions of the stroma, respectively, which determines the development of foreign epithelium.
Collapse
Affiliation(s)
- Gat Rauner
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amos Leviav
- Department of Plastic Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Eliezer Mavor
- Department of Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- * E-mail:
| |
Collapse
|
70
|
Oftedal OT, Dhouailly D. Evo-devo of the mammary gland. J Mammary Gland Biol Neoplasia 2013; 18:105-20. [PMID: 23681303 DOI: 10.1007/s10911-013-9290-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022] Open
Abstract
We propose a new scenario for mammary evolution based on comparative review of early mammary development among mammals. Mammary development proceeds through homologous phases across taxa, but evolutionary modifications in early development produce different final morphologies. In monotremes, the mammary placode spreads out to form a plate-like mammary bulb from which more than 100 primary sprouts descend into mesenchyme. At their distal ends, secondary sprouts develop, including pilosebaceous anlagen, resulting in a mature structure in which mammary lobules and sebaceous glands empty into the infundibula of hair follicles; these structural triads (mammolobular-pilo-sebaceous units or MPSUs) represent an ancestral condition. In marsupials a flask-like mammary bulb elongates as a sprout, but then hollows out; its secondary sprouts include hair and sebaceous anlagen (MPSUs), but the hairs are shed during nipple formation. In some eutherians (cat, horse, human) MPSUs form at the distal ends of primary sprouts; pilosebaceous components either regress or develop into mature structures. We propose that a preexisting structural triad (the apocrine-pilo-sebaceous unit) was incorporated into the evolving mammary structure, and coupled to additional developmental processes that form the mammary line, placode, bulb and primary sprout. In this scenario only mammary ductal trees and secretory tissue derive from ancestral apocrine-like glands. The mammary gland appears to have coopted signaling pathways and genes for secretory products from even earlier integumentary structures, such as odontode (tooth-like) or odontode-derived structures. We speculate that modifications in signal use (such as PTHrP and BMP4) may contribute to taxonomic differences in MPSU development.
Collapse
Affiliation(s)
- Olav T Oftedal
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.
| | | |
Collapse
|
71
|
Expression and functions of fibroblast growth factor 10 in the mouse mammary gland. Int J Mol Sci 2013; 14:4094-105. [PMID: 23434672 PMCID: PMC3588087 DOI: 10.3390/ijms14024094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/15/2013] [Accepted: 02/05/2013] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor 10 (FGF10) is important as a mesenchymal mediator of epithelial growth and morphogenesis. In this study, the expression and localization of the FGF10 protein were detected by laser scanning confocal microscopy during mouse postnatal mammary gland development. Mammary explants were cultured to investigate the functions of FGF10. The results revealed that FGF10 localizes mainly in the mesenchyme near the ductal epithelial cells and the alveolar epithelial cells of the mammary gland. Peak FGF10 expression levels were observed at lactation day 10. FGF10 induced FGFR2-IIIb expression in the mammary epithelium, except in virgin or pregnant mice. FGF10 promoted the proliferation of mammary gland epithelial cells and reduced apoptosis. FGF10 is important during the mouse mammary gland growth, development, and reconstruction, and its effects are mediated by FGFR2-IIIb.
Collapse
|
72
|
Kim S, Dubrovska A, Salamone RJ, Walker JR, Grandinetti KB, Bonamy GMC, Orth AP, Elliott J, Porta DG, Garcia-Echeverria C, Reddy VA. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells. PLoS One 2013; 8:e51671. [PMID: 23300950 PMCID: PMC3534701 DOI: 10.1371/journal.pone.0051671] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/05/2012] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.
Collapse
Affiliation(s)
- Sungeun Kim
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (SK); (VAR)
| | - Anna Dubrovska
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Richard J. Salamone
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - John R. Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Kathryn B. Grandinetti
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ghislain M. C. Bonamy
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Anthony P. Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jimmy Elliott
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Diana Graus Porta
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Venkateshwar A. Reddy
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (SK); (VAR)
| |
Collapse
|
73
|
Camacho Leal MDP, Pincini A, Tornillo G, Fiorito E, Bisaro B, Di Luca E, Turco E, Defilippi P, Cabodi S. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF. PLoS One 2012; 7:e49817. [PMID: 23239970 PMCID: PMC3519769 DOI: 10.1371/journal.pone.0049817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/17/2012] [Indexed: 12/04/2022] Open
Abstract
p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR) and Estrogen Receptor (ER) during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2) severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.
Collapse
Affiliation(s)
- Maria del Pilar Camacho Leal
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Alessandra Pincini
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Giusy Tornillo
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Elisa Fiorito
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Oslo, Norway
| | - Brigitte Bisaro
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Elisa Di Luca
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Emilia Turco
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Sara Cabodi
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
74
|
Speer AL, Alam DA, Sala FG, Ford HR, Bellusci S, Grikscheit TC. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis. PLoS One 2012; 7:e49127. [PMID: 23133671 PMCID: PMC3486796 DOI: 10.1371/journal.pone.0049127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.
Collapse
Affiliation(s)
- Allison L. Speer
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Denise Al Alam
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Frederic G. Sala
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Henri R. Ford
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Saverio Bellusci
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- University of Giessen Lung Center, Department of Internal Medicine II, Giessen, Germany
| | - Tracy C. Grikscheit
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
75
|
Alam DA, Sala FG, Baptista S, Galzote R, Danopoulos S, Tiozzo C, Gage P, Grikscheit T, Warburton D, Frey MR, Bellusci S. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice. Dev Biol 2012; 369:340-8. [PMID: 22819677 PMCID: PMC3725282 DOI: 10.1016/j.ydbio.2012.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor (FGF) signaling to the epithelium and mesenchyme mediated by FGF10 and FGF9, respectively, controls cecal formation during embryonic development. In particular, mesenchymal FGF10 signals to the epithelium via FGFR2b to induce epithelial cecal progenitor cell proliferation. Yet the precise upstream mechanisms controlling mesenchymal FGF10 signaling are unknown. Complete deletion of Fgf9 as well as of Pitx2, a gene encoding a homeobox transcription factor, both lead to cecal agenesis. Herein, we used mouse genetic approaches to determine the precise contribution of the epithelium and/or mesenchyme tissue compartments in this process. Using tissue compartment specific Fgf9 versus Pitx2 loss of function approaches in the gut epithelium and/or mesenchyme, we determined that FGF9 signals to the mesenchyme via Pitx2 to induce mesenchymal Fgf10 expression, which in turn leads to epithelial cecal bud formation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cecum/abnormalities
- Cecum/embryology
- Cecum/metabolism
- Cell Proliferation
- DNA Primers/genetics
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Female
- Fibroblast Growth Factor 10/deficiency
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/metabolism
- Fibroblast Growth Factor 9/deficiency
- Fibroblast Growth Factor 9/genetics
- Fibroblast Growth Factor 9/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Male
- Mesoderm/embryology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Models, Biological
- Pregnancy
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Frederic G Sala
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Sheryl Baptista
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Rosanna Galzote
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Caterina Tiozzo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Philip Gage
- University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, USA
| | - Tracy Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Mark R Frey
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Excellence Cluster in Cardio-Pulmonary Systems, University of Giessen Lung Center, Department of Internal Medicine II, Klinikstrasse 36, 35392 Giessen, Germany
| |
Collapse
|
76
|
Accornero P, Miretti S, Bersani F, Quaglino E, Martignani E, Baratta M. Met receptor acts uniquely for survival and morphogenesis of EGFR-dependent normal mammary epithelial and cancer cells. PLoS One 2012; 7:e44982. [PMID: 23028720 PMCID: PMC3441651 DOI: 10.1371/journal.pone.0044982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022] Open
Abstract
Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Enzyme Activation/drug effects
- Epidermal Growth Factor/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Hepatocyte Growth Factor/pharmacology
- Humans
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mice
- Mice, Transgenic
- Morphogenesis/drug effects
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- Receptor, ErbB-2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Paolo Accornero
- Department of Veterinary Science, University of Torino, Grugliasco (TO), Italy.
| | | | | | | | | | | |
Collapse
|
77
|
Tikoo A, Roh V, Montgomery KG, Ivetac I, Waring P, Pelzer R, Hare L, Shackleton M, Humbert P, Phillips WA. Physiological levels of Pik3ca(H1047R) mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors. PLoS One 2012; 7:e36924. [PMID: 22666336 PMCID: PMC3364244 DOI: 10.1371/journal.pone.0036924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022] Open
Abstract
PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R), into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-); CD29(lo); CD24(+); CD61(+)) cell population. The Pik3ca(H1047R) expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R) in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R) mutation in mammary tumorigenesis both in vivo and in vitro.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Class I Phosphatidylinositol 3-Kinases
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Gene Knock-In Techniques
- Hyperplasia/enzymology
- Hyperplasia/genetics
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Molecular Sequence Data
- Mutation
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Anjali Tikoo
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Vincent Roh
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Karen G. Montgomery
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ivan Ivetac
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Paul Waring
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca Pelzer
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lauren Hare
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mark Shackleton
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Melanoma Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Patrick Humbert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne A. Phillips
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
78
|
Kurley SJ, Bierie B, Carnahan RH, Lobdell NA, Davis MA, Hofmann I, Moses HL, Muller WJ, Reynolds AB. p120-catenin is essential for terminal end bud function and mammary morphogenesis. Development 2012; 139:1754-64. [PMID: 22461563 DOI: 10.1242/dev.072769] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although p120-catenin (p120) is crucial for E-cadherin function, ablation experiments in epithelial tissues from different organ systems reveal markedly different effects. Here, we examine for the first time the consequences of p120 knockout during mouse mammary gland development. An MMTV-Cre driver was used to target knockout to the epithelium at the onset of puberty. p120 ablation was detected in approximately one-quarter of the nascent epithelium at the forth week post-partum. However, p120 null cells were essentially nonadherent, excluded from the process of terminal end bud (TEB) morphogenesis and lost altogether by week six. This elimination process caused a delay in TEB outgrowth, after which the gland developed normally from cells that had retained p120. Mechanistic studies in vitro indicate that TEB dysfunction is likely to stem from striking E-cadherin loss, failure of cell-cell adhesion and near total exclusion from the collective migration process. Our findings reveal an essential role for p120 in mammary morphogenesis.
Collapse
Affiliation(s)
- Sarah J Kurley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat 2011; 133:997-1008. [PMID: 22124578 DOI: 10.1007/s10549-011-1883-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/12/2011] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P < 0.01; Spearman correlation) between FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.
Collapse
|
80
|
Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 2011; 121:4409-19. [PMID: 21985786 DOI: 10.1172/jci58097] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/24/2011] [Indexed: 11/17/2022] Open
Abstract
During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.
Collapse
|
82
|
Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CTL, Rohan TE, Kooperberg C, Peters U. Replication of breast cancer GWAS susceptibility loci in the Women's Health Initiative African American SHARe Study. Cancer Epidemiol Biomarkers Prev 2011; 20:1950-9. [PMID: 21795501 PMCID: PMC3202611 DOI: 10.1158/1055-9965.epi-11-0524] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified loci associated with risk of breast cancer. These studies have primarily been conducted in populations of European descent. To fully understand the impact of these loci, it is important to study groups with other genetic ancestries, including African American women. METHODS We examined 22 single-nucleotide polymorphisms (SNP), previously identified in GWAS of breast cancer risk in European and Asian descent women (index SNPs), and SNPs in the surrounding regions in a study of 7,800 African American women (including 316 women with incident invasive breast cancer) from the Women's Health Initiative SNP Health Association Resource. RESULTS Two index SNPs were associated with breast cancer: rs3803662 at 16q12.2/TOX3 (Hazard ratio [HR] for the T allele = 0.79, 95% CI: 0.67-0.92, P = 0.003) and rs10941679 at 5p12 (HR for the G allele = 1.31, 95% CI: 1.06-1.63, P = 0.014). When we expanded to regions, the 3p24.1 region showed an association with breast cancer risk (permutation based P = 0.027) and three regions (10p15.1, 10q26.13/FGFR2, and 16q12.2/TOX3) showed a trend toward association. CONCLUSION Our findings provide evidence that some breast cancer GWAS regions may be associated with breast cancer in African American women. Larger, more comprehensive studies are needed to fully assess generalizability of published GWAS findings and to identify potential novel associations in African American populations. IMPACT Both replication and lack of replication of published GWAS findings in other ancestral groups provides important information of the genetic etiology of this disease and may impact translation of GWAS findings to clinical and public health settings.
Collapse
Affiliation(s)
- Carolyn M Hutter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.
Collapse
|
84
|
Huijts PEA, van Dongen M, de Goeij MCM, van Moolenbroek AJ, Blanken F, Vreeswijk MPG, de Kruijf EM, Mesker WE, van Zwet EW, Tollenaar RAEM, Smit VTHBM, van Asperen CJ, Devilee P. Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. Breast Cancer Res 2011; 13:R72. [PMID: 21767389 PMCID: PMC3236336 DOI: 10.1186/bcr2917] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 02/04/2023] Open
Abstract
Introduction SNPs rs2981582 and rs2981578, located in a linkage disequilibrium block (LD block) within intron 2 of the fibroblast growth factor receptor 2 gene (FGFR2), are associated with a mildly increased breast cancer risk. Allele-specific regulation of FGFR2 mRNA expression has been reported previously, but the molecular basis for the association of these variants with breast cancer has remained elusive to date. Methods mRNA levels of FGFR2 and three fibroblast growth factor genes (FGFs) were measured in primary fibroblast and epithelial cell cultures from 98 breast cancer patients and correlated to their rs2981578 genotype. The phosphorylation levels of downstream FGFR2 targets, FGF receptor substrate 2α (FRS2α) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), were quantified in skin fibroblasts exposed to FGF2. Immunohistochemical markers for angiogenesis and lymphocytic infiltrate were semiquantitatively assessed in 25 breast tumors. Results The risk allele of rs2981578 was associated with increased FGFR2 mRNA levels in skin fibroblasts, but not in skin epithelial cell cultures. FGFR2 mRNA levels in skin fibroblasts and breast fibroblasts correlated strongly in the patients from whom both cultures were available. Tumor-derived fibroblasts expressed, on average, eight times more FGFR2 mRNA than the corresponding fibroblasts from normal breast tissue. Fibroblasts with higher FGFR2 mRNA expression showed more FRS2α and ERK1/2 phosphorylation after exposure to FGF2. In fibroblasts, higher FGFR2 expression correlated with higher FGF10 expression. In 25 breast tumors, no associations between breast tumor characteristics and fibroblast FGFR2 mRNA levels were found. Conclusions The influence of rs2981578 genotypes on FGFR2 mRNA expression levels is cell type-dependent. Expression differences correlated well with signaling levels of the FGFR2 pathway. Our results suggest that the increased breast cancer risk associated with SNP rs2981578 is due to increased FGFR2 signaling activity in stromal fibroblasts, possibly also involving paracrine FGF10 signaling.
Collapse
Affiliation(s)
- Petra E A Huijts
- Department of Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Macias H, Moran A, Samara Y, Moreno M, Compton JE, Harburg G, Strickland P, Hinck L. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell 2011; 20:827-40. [PMID: 21664580 PMCID: PMC3129866 DOI: 10.1016/j.devcel.2011.05.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/12/2011] [Accepted: 05/16/2011] [Indexed: 01/08/2023]
Abstract
In the field of breast biology, there is a growing appreciation for the "gatekeeping function" of basal cells during development and disease processes yet mechanisms regulating the generation of these cells are poorly understood. Here, we report that the proliferation of basal cells is controlled by SLIT/ROBO1 signaling and that production of these cells regulates outgrowth of mammary branches. We identify the negative regulator TGF-β1 upstream of Robo1 and show that it induces Robo1 expression specifically in the basal layer, functioning together with SLIT2 to restrict branch formation. Loss of SLIT/ROBO1 signaling in this layer alone results in precocious branching due to a surplus of basal cells. SLIT2 limits basal cell proliferation by inhibiting canonical WNT signaling, increasing the cytoplasmic and membrane pools of β-catenin at the expense of its nuclear pool. Together, our studies provide mechanistic insight into how specification of basal cell number influences branching morphogenesis.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Angel Moran
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Yazeed Samara
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Melissa Moreno
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Jennifer E Compton
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Gwyndolen Harburg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Phyllis Strickland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
86
|
Pavlovich AL, Boghaert E, Nelson CM. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp Cell Res 2011; 317:1872-84. [PMID: 21459084 DOI: 10.1016/j.yexcr.2011.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/21/2011] [Accepted: 03/27/2011] [Indexed: 01/17/2023]
Abstract
During the branching morphogenesis process that builds epithelial trees, signaling from stimulatory and inhibitory growth factors is integrated to control branch initiation and extension into the surrounding stroma. Here, we examined the relative roles played by these stimulatory and inhibitory signals in the patterning of branch initiation and extension of model mammary epithelial tubules in culture. We found that although several growth factors could stimulate branching, they did not determine the sites at which new branches formed or the lengths to which branches extended. Instead, branch initiation and extension were defined by two separate signals downstream of the inhibitory morphogen, transforming growth factor (TGF)-β. Branch initiation was controlled by signaling through p38 mitogen-activated protein kinase, whereas branch extension was controlled by Smad-mediated induction of a second diffusible inhibitor, Wnt5a. These data suggest that mammary epithelial branching is patterned predominately by repulsive signaling, and that TGFβ activates multiple inhibitory pathways to refine the architecture of the tree.
Collapse
Affiliation(s)
- Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
87
|
Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, Purdie CA, Thompson AM, Jordan LB, Berg JN. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes 2011; 4:72. [PMID: 21418638 PMCID: PMC3073906 DOI: 10.1186/1756-0500-4-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 03/21/2011] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Single Nucleotide Polymorphisms (SNPs) in intron 2 of the Fibroblast Growth Factor Receptor Type 2 (FGFR2) gene, including rs2981582, contribute to multifactorial breast cancer susceptibility. The high risk polymorphism haplotype in the FGFR2 gene has been associated with increased mRNA transcription and altered transcription factor binding but the effect on FGFR2 protein expression is unknown. 40 breast tumours were identified from individuals with known rs2981582 genotype. Tumour sections were stained for FGFR2 protein expression, and scored for nuclear and cytoplasmic staining in tumour and surrounding normal tissue. FINDINGS FGFR2 immunohistochemistry demonstrated variable nuclear staining in normal tissue and tumour tissue, as well as consistent cytoplasmic staining. We did not find an association between nuclear staining for FGFR2 and genotype, and there was no association between FGFR2 staining and estrogen or progestogen receptor status. There was an association between presence of nuclear staining for FGFR2 in normal tissue and presence of nuclear staining in the adjacent tumour (Fishers exact test, p = 0.002). CONCLUSIONS Variable nuclear staining for FGFR2 in breast cancer, but an absence of correlation with rs2981582 genotype suggests that the mechanism of action of polymorphisms at the FGFR2 locus may be more complex than a direct effect on mRNA expression levels in the final cancer. The effect may relate to FGFR2 function or localisation during breast development or tumourigenesis. Nuclear localisation of FGFR2 suggests an important additional role for this protein in breast development and breast cancer, in addition to its function as a classical cell surface receptor.
Collapse
Affiliation(s)
- Amy J Martin
- Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Imaoka T, Nishimura M, Iizuka D, Nishimura Y, Ohmachi Y, Shimada Y. Pre- and postpubertal irradiation induces mammary cancers with distinct expression of hormone receptors, ErbB ligands, and developmental genes in rats. Mol Carcinog 2011; 50:539-52. [PMID: 21374731 DOI: 10.1002/mc.20746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/05/2010] [Accepted: 01/14/2011] [Indexed: 11/08/2022]
Abstract
Childhood exposure to carcinogens renders a higher risk of breast cancer. The molecular mechanisms underlying cancer development after such exposure are not, however, well understood. Here we examined how the mechanism of cancer development relates to the age at exposure to ionizing radiation (IR) or the carcinogen 1-methyl-1-nitrosourea (MNU). Pre- and postpubertal (3- and 7-wk-old, respectively) female Sprague-Dawley rats were whole-body γ-irradiated (2 Gy), injected intraperitoneally with MNU (20 mg/kg) or left untreated and were autopsied at 50 wk of age. Mammary carcinomas were examined for estrogen receptor (ER) α, progesterone receptor (PR) and ErbB ligand expression and for expression microarrays. Early histological changes of the ovaries were also evaluated. The incidence of mammary cancer was higher after postpubertal, rather than prepubertal, IR exposure; the inverse was true for MNU. Most cancers were positive for both ERα and PR except for the prepubertal IR group. Cancers of the prepubertal IR group expressed a different set of ErbB ligands from those of the other groups and did not overexpress Areg, which encodes an estrogen-regulated ErbB ligand, or other developmentally related genes including those for hormonally regulated mammary gland development. Prepubertal IR exposure resulted in ovarian dysfunction as revealed by a reduced follicular pool. Evidence thus suggests that mammary carcinogenesis induced by prepubertal IR exposure is independent of ovarian hormones but requires certain ErbB ligands; induction by postpubertal exposure depends on ovarian hormones and different ErbB ligands. In contrast, the mechanism of MNU-induced carcinogenesis was less influenced by the age at exposure.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Experimental Radiobiology for Children's Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Parsa S, Kuremoto KI, Seidel K, Tabatabai R, Mackenzie B, Yamaza T, Akiyama K, Branch J, Koh CJ, Al Alam D, Klein OD, Bellusci S. Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors. Development 2010; 137:3743-52. [PMID: 20978072 DOI: 10.1242/dev.051672] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult.
Collapse
Affiliation(s)
- Sara Parsa
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet 2010; 42:1101-8. [PMID: 21057503 DOI: 10.1038/ng.709] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small noncoding RNAs that carry out post-transcriptional regulation of the expression of their target genes. However, their roles in mammalian organogenesis are only beginning to be understood. Here we show that the microRNA-212/132 family (which comprises miR-212 and miR-132) is indispensable during the development of the mammary glands in mice, particularly for the regulation of the outgrowth of the epithelial ducts. Mammary transplantation experiments revealed that the function of the miR-212/132 family is required in the stroma but not in the epithelia. Both miR-212 and miR-132 are expressed exclusively in mammary stroma and directly target the matrix metalloproteinase MMP-9. In glands that lack miR-212 and miR-132, MMP-9 expression increases and accumulates around the ducts. This may interfere with collagen deposition and lead to hyperactivation of the tumor growth factor-β signaling pathway, thereby impairing ductal outgrowth. Our results identify the miR-212/132 family as one of the main regulators of the epithelial-stromal interactions that are required for proper pubertal development of the mammary gland.
Collapse
|
91
|
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 2010; 8:1439-52. [PMID: 21047773 DOI: 10.1158/1541-7786.mcr-10-0168] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor receptors (FGFR) play essential roles both during development and in the adult. Upon ligand binding, FGFRs induce intracellular signaling networks that tightly regulate key biological processes, such as cell proliferation, survival, migration, and differentiation. Deregulation of FGFR signaling can thus alter tissue homeostasis and has been associated with several developmental syndromes as well as with many types of cancer. In human cancer, FGFRs have been found to be deregulated by multiple mechanisms, including aberrant expression, mutations, chromosomal rearrangements, and amplifications. In this review, we will give an overview of the main FGFR alterations described in human cancer to date and discuss their contribution to cancer progression.
Collapse
Affiliation(s)
- Ellen Margrethe Haugsten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | |
Collapse
|
92
|
Hynes NE, Dey JH. Potential for targeting the fibroblast growth factor receptors in breast cancer. Cancer Res 2010; 70:5199-202. [PMID: 20570901 DOI: 10.1158/0008-5472.can-10-0918] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common cancer of women, accounting yearly for approximately 30% of newly diagnosed cases and ranking second as a cause of death. Despite improvements in breast cancer detection and development of new therapeutic approaches, there are still tumors for which no targeted therapies are available. This review summarizes recent findings on the fibroblast growth factor receptors (FGFR) and the data supporting their role in breast cancer. We will describe the approaches being made to develop therapeutics targeting these receptors. Finally, to improve the chances for success with FGFR signal transduction inhibitors, strategies to choose appropriate breast cancer patients for treatment will be discussed.
Collapse
Affiliation(s)
- Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|
93
|
Hynes NE, Watson CJ. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol 2010; 2:a003186. [PMID: 20554705 DOI: 10.1101/cshperspect.a003186] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal development of the mammary gland proceeds via interactions between the epithelium and the mesenchyme that start during embryogenesis and continue during pubertal outgrowth and differentiation. The function of specific peptide growth factors that bind members of the receptor tyrosine kinase family and the cytokine receptor family are required at each stage. In many cases the peptides are produced in one compartment and act on receptors in the other compartment. One of the striking differences between normal development and cancer is the loss of this cross-talk. Mammary tumor cells often produce a peptide and express the receptor on the same cell leading to autocrine activation of signaling pathways, a mechanism that is characteristic for cancer cells. We will discuss different peptides in the context of normal development and cancer in this review.
Collapse
Affiliation(s)
- Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerestrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
94
|
Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, Godwin AK, Korach KS, Visvader JE, Kaestner KH, Abdul-Karim FW, Montano MM, Keri RA. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development 2010; 137:2045-54. [PMID: 20501593 PMCID: PMC2875844 DOI: 10.1242/dev.043299] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 01/19/2023]
Abstract
FOXA1, estrogen receptor alpha (ERalpha) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERalpha and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERalpha expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERalpha and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERalpha expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERalpha-positive breast cancers, at least in part, through its control of ERalpha expression.
Collapse
Affiliation(s)
- Gina M. Bernardo
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kristen L. Lozada
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - John D. Miedler
- Department of Pathology, University Hospitals-Case Medical Center, Cleveland, OH, 44106, USA
| | - Gwyndolen Harburg
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Sylvia C. Hewitt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jonathan D. Mosley
- Department of Internal Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew K. Godwin
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jane E. Visvader
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Fadi W. Abdul-Karim
- Department of Pathology, University Hospitals-Case Medical Center, Cleveland, OH, 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
95
|
|
96
|
Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM, Guenther A, Warburton D, Driscoll B, Minoo P, Bellusci S. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2009; 180:424-36. [PMID: 19498056 DOI: 10.1164/rccm.200811-1794oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Fibroblast growth factor-10 (FGF10) controls survival, proliferation, and differentiation of distal-alveolar epithelial progenitor cells during lung development. OBJECTIVES To test for the protective and regenerative effect of Fgf10 overexpression in a bleomycin-induced mouse model of pulmonary inflammation and fibrosis. METHODS In SP-C-rtTA; tet(O)Fgf10 double-transgenic mice, lung fibrosis was induced in 2-month-old transgenic mice by subcutaneous delivery of bleomycin (BLM), using an osmotic minipump for 1 week. Exogenous Fgf10 expression in the alveolar epithelium was induced for 7 days with doxycycline during the first, second, and third weeks after bleomycin pump implantation, and lungs were examined at 28 days. MEASUREMENTS AND MAIN RESULTS Fgf10 overexpression during Week 1 (inflammatory phase) resulted in increased survival and attenuated lung fibrosis score and collagen deposition. In these Fgf10-overexpressing mice, an increase in regulatory T cells and a reduction in both transforming growth factor-beta(1) and matrix metalloproteinase-2 activity were observed in bronchoalveolar lavage fluids whereas the number of surfactant protein C (SP-C)-positive, alveolar epithelial type II cells (AEC2) was markedly elevated. Analysis of SP-C and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end labeling) double-positive cells and isolation of AEC2 from lungs overexpressing Fgf10 demonstrated increased AEC2 survival. Expression of Fgf10 during Weeks 2 and 3 (fibrotic phase) showed significant attenuation of the lung fibrosis score and collagen deposition. CONCLUSIONS In the bleomycin model of lung inflammation and fibrosis, Fgf10 overexpression during both the inflammatory and fibrotic phases results in a greatly reduced extent of lung fibrosis, suggesting that FGF10 may be useful as a novel approach to the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Varsha V Gupte
- Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 2008; 321:77-87. [PMID: 18585375 DOI: 10.1016/j.ydbio.2008.06.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | | | |
Collapse
|