51
|
Quigley IK, Kintner C. Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression. PLoS Genet 2017; 13:e1006538. [PMID: 28103240 PMCID: PMC5245798 DOI: 10.1371/journal.pgen.1006538] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Cooperative transcription factor binding at cis-regulatory sites in the genome drives robust eukaryotic gene expression, and many such sites must be coordinated to produce coherent transcriptional programs. The transcriptional program leading to motile cilia formation requires members of the DNA-binding forkhead (Fox) and Rfx transcription factor families and these factors co-localize to cilia gene promoters, but it is not clear how many cilia genes are regulated by these two factors, whether these factors act directly or indirectly, or how these factors act with specificity in the context of a 3-dimensional genome. Here, we use genome-wide approaches to show that cilia genes reside at the boundaries of topological domains and that these areas have low enhancer density. We show that the transcription factors Foxj1 and Rfx2 binding occurs in the promoters of more cilia genes than other known cilia transcription factors and that while Rfx2 binds directly to promoters and enhancers equally, Foxj1 prefers direct binding to enhancers and is stabilized at promoters by Rfx2. Finally, we show that Rfx2 and Foxj1 lie at the anchor endpoints of chromatin loops, suggesting that target genes are activated when Foxj1 bound at distal sites is recruited via a loop created by Rfx2 binding at both sites. We speculate that the primary function of Rfx2 is to stabilize distal enhancers with proximal promoters by operating as a scaffolding factor, bringing key regulatory domains bound by Foxj1 into close physical proximity and enabling coordinated cilia gene expression. The multiciliated cell extends hundreds of motile cilia to produce fluid flow in the airways and other organ systems. The formation of this specialized cell type requires the coordinated expression of hundreds of genes in order to produce all the protein parts motile cilia require. While a relatively small number of transcription factors has been identified that promote gene expression during multiciliate cell differentiation, it is not clear how they work together to coordinate the expression of genes required for multiple motile ciliation. Here, we show that two transcription factors known to drive cilia formation, Foxj1 and Rfx2, play complementary roles wherein Foxj1 activates target genes but tends not to bind near them in the genome, whereas Rfx2 can’t activate target genes by itself but instead acts as a scaffold by localizing Foxj1 to the proper targets. These results suggest not only a mechanism by which complex gene expression is coordinated in multiciliated cells, but also how transcriptional programs in general could be modular and deployed across different cellular contexts with the same basic promoter configuration.
Collapse
Affiliation(s)
- Ian K. Quigley
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, California, United States of America
- * E-mail:
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, California, United States of America
| |
Collapse
|
52
|
Walentek P, Quigley IK. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia. Genesis 2017; 55:10.1002/dvg.23001. [PMID: 28095645 PMCID: PMC5276738 DOI: 10.1002/dvg.23001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases.
Collapse
Affiliation(s)
- Peter Walentek
- Department of Molecular and Cell Biology; Genetics, Genomics and Development Division; Developmental and Regenerative Biology Group; University of California, Berkeley, CA 94720, USA
| | - Ian K. Quigley
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
53
|
Abstract
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs.
Collapse
Affiliation(s)
- Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
54
|
Sena E, Feistel K, Durand BC. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. J Dev Biol 2016; 4:jdb4040031. [PMID: 29615594 PMCID: PMC5831802 DOI: 10.3390/jdb4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli). The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh) whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN).
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstr. 30, 70593 Stuttgart, Germany.
| | - Béatrice C Durand
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| |
Collapse
|
55
|
TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. Am J Hum Genet 2016; 99:460-9. [PMID: 27486780 PMCID: PMC4974089 DOI: 10.1016/j.ajhg.2016.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
Multiprotein complexes referred to as outer dynein arms (ODAs) develop the main mechanical force to generate the ciliary and flagellar beat. ODA defects are the most common cause of primary ciliary dyskinesia (PCD), a congenital disorder of ciliary beating, characterized by recurrent infections of the upper and lower airways, as well as by progressive lung failure and randomization of left-right body asymmetry. Using a whole-exome sequencing approach, we identified recessive loss-of-function mutations within TTC25 in three individuals from two unrelated families affected by PCD. Mice generated by CRISPR/Cas9 technology and carrying a deletion of exons 2 and 3 in Ttc25 presented with laterality defects. Consistently, we observed immotile nodal cilia and missing leftward flow via particle image velocimetry. Furthermore, transmission electron microscopy (TEM) analysis in TTC25-deficient mice revealed an absence of ODAs. Consistent with our findings in mice, we were able to show loss of the ciliary ODAs in humans via TEM and immunofluorescence (IF) analyses. Additionally, IF analyses revealed an absence of the ODA docking complex (ODA-DC), along with its known components CCDC114, CCDC151, and ARMC4. Co-immunoprecipitation revealed interaction between the ODA-DC component CCDC114 and TTC25. Thus, here we report TTC25 as a new member of the ODA-DC machinery in humans and mice.
Collapse
|
56
|
Tammimies K, Bieder A, Lauter G, Sugiaman-Trapman D, Torchet R, Hokkanen ME, Burghoorn J, Castrén E, Kere J, Tapia-Páez I, Swoboda P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs. FASEB J 2016; 30:3578-3587. [PMID: 27451412 PMCID: PMC5024701 DOI: 10.1096/fj.201500124rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/05/2016] [Indexed: 11/11/2022]
Abstract
DYX1C1, DCDC2, and KIAA0319 are
three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs
were implicated in functions at the cilium. Here, we investigate the regulation of
these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family
known for transcriptionally regulating ciliary genes. We identify conserved X-box
motifs in the promoter regions of DYX1C1, DCDC2, and
KIAA0319 and demonstrate their functionality, as well as the
ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift
assays. Furthermore, we uncover a complex regulation pattern between
RFX1, RFX2, and RFX3 and their
significant effect on modifying the endogenous expression of DYX1C1
and DCDC2 in a human retinal pigmented epithelial cell line
immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis
increases the expression of RFX TFs and DCGs. At the protein level, we show that
endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along
the entire axoneme of the cilium, thereby validating earlier localization studies
using overexpression models. Our results corroborate the emerging role of DCGs in
ciliary function and characterize functional noncoding elements, X-box promoter
motifs, in DCG promoter regions, which thus can be targeted for mutation screening in
dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder,
A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J.,
Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia
candidate genes DYX1C1 and DCDC2 are regulated by
Regulatory Factor (RF) X transcription factors through X-box promoter motifs.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Center of Neurodevelopmental Disorders (KIND), Pediatric Neuropsychiatry Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Rachel Torchet
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Burghoorn
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland; and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden;
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden;
| |
Collapse
|
57
|
Terré B, Piergiovanni G, Segura-Bayona S, Gil-Gómez G, Youssef SA, Attolini CSO, Wilsch-Bräuninger M, Jung C, Rojas AM, Marjanović M, Knobel PA, Palenzuela L, López-Rovira T, Forrow S, Huttner WB, Valverde MA, de Bruin A, Costanzo V, Stracker TH. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J 2016; 35:942-60. [PMID: 26933123 DOI: 10.15252/embj.201592821] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.
Collapse
Affiliation(s)
- Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gabriel Gil-Gómez
- IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Carole Jung
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Marko Marjanović
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teresa López-Rovira
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
58
|
Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 2016; 18:18-24. [PMID: 26476603 PMCID: PMC4864047 DOI: 10.1016/j.prrv.2015.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022]
Abstract
Ciliopathies are a growing class of disorders caused by abnormal ciliary axonemal structure and function. Our understanding of the complex genetic and functional phenotypes of these conditions has rapidly progressed. Primary ciliary dyskinesia (PCD) remains the sole genetic disorder of motile cilia dysfunction. However, unlike many Mendelian genetic disorders, PCD is not caused by mutations in a single gene or locus, but rather, autosomal recessive mutation in one of many genes that lead to a similar phenotype. The first reported PCD mutations, more than a decade ago, identified genes encoding known structural components of the ciliary axoneme. In recent years, mutations in genes encoding novel cytoplasmic and regulatory proteins have been discovered. These findings have provided new insights into the functions of the motile cilia, and a better understanding of motile cilia disease. Advances in genetic tools will soon allow more precise genetic testing, mandating that clinicians must understand the genetic basis of PCD. Here, we review genetic mutations, their biological impact on cilia structure and function, and the implication of emerging genetic diagnostic tools.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Thomas W Ferkol
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
,Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K. Dutcher
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
,Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven L Brody
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
59
|
Wu Y, Hu X, Li Z, Wang M, Li S, Wang X, Lin X, Liao S, Zhang Z, Feng X, Wang S, Cui X, Wang Y, Gao F, Hess RA, Han C. Transcription Factor RFX2 Is a Key Regulator of Mouse Spermiogenesis. Sci Rep 2016; 6:20435. [PMID: 26853561 PMCID: PMC4745085 DOI: 10.1038/srep20435] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
The regulatory factor X (RFX) family of transcription factors is crucial for ciliogenesis throughout evolution. In mice, Rfx1-4 are highly expressed in the testis where flagellated sperm are produced, but the functions of these factors in spermatogenesis remain unknown. Here, we report the production and characterization of the Rfx2 knockout mice. The male knockout mice were sterile due to the arrest of spermatogenesis at an early round spermatid step. The Rfx2-null round spermatids detached from the seminiferous tubules, forming large multinucleated giant cells that underwent apoptosis. In the mutants, formation of the flagellum was inhibited at its earliest stage. RNA-seq analysis identified a large number of cilia-related genes and testis-specific genes that were regulated by RFX2. Many of these genes were direct targets of RFX2, as revealed by chromatin immunoprecipitation-PCR assays. These findings indicate that RFX2 is a key regulator of the post-meiotic development of mouse spermatogenic cells.
Collapse
Affiliation(s)
- Yujian Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sisi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuqiang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802-6199, USA
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
60
|
Abstract
Xenopus has been one of the earliest and most important vertebrate model organisms for investigating the role and structure of basal bodies. Early transmission electron microscopy studies in Xenopus revealed the fine structures of Xenopus basal bodies and their accessory structures. Subsequent investigations using multiciliated cells in the Xenopus epidermis have further revealed many important features regarding the transcriptional regulation of basal body amplification as well as the regulation of basal body/cilia polarity. Future basal body research using Xenopus is expected to focus on the application of modern genome editing techniques (CRISPR/TALEN) to characterize the components of basal body proteins and their molecular functions.
Collapse
Affiliation(s)
- Siwei Zhang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Brian J Mitchell
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|
61
|
Shawlot W, Vazquez-Chantada M, Wallingford JB, Finnell RH. Rfx2 is required for spermatogenesis in the mouse. Genesis 2015; 53:604-611. [PMID: 26248850 DOI: 10.1002/dvg.22880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RFX transcription factors are key regulators of ciliogenesis in vertebrates. In Xenopus and zebrafish embryos, knockdown of Rfx2 causes defects in neural tube closure and in left-right axis patterning. To determine the essential role of the Rfx2 gene in mammalian development, we generated Rfx2-deficient mice using an embryonic stem cell clone containing a lacZ gene trap reporter inserted into the first intron of the Rfx2 gene. We found that the Rfx2 lacZ reporter is expressed in ciliated tissues during mouse development including the node, the floor plate and the dorsal neural tube. However, mice homozygous for the Rfx2 gene trap mutation did not have defects in neural tube closure or in organ situs. The gene trap insertion appears to create a null allele as Rfx2 mRNA was not detected in Rfx2gt/gt embryos. Although Rfx2-deficient mice do not have an obvious embryonic phenotype, we found that Rfx2gt/gt males are infertile because of a defect in spermatid maturation at or before the round and elongating spermatid stage. Our results indicate that Rfx2 is not essential for embryonic development in the mouse but is required for spermatogenesis. genesis 53:604-611, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William Shawlot
- Department of Nutritional Sciences, The Dell Pediatric Research Institute, The University of Texas at Austin, Texas
| | - Mercedes Vazquez-Chantada
- Department of Nutritional Sciences, The Dell Pediatric Research Institute, The University of Texas at Austin, Texas
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Texas.,Howard Hughes Medical Institute, The University of Texas at Austin, Texas
| | - Richard H Finnell
- Department of Nutritional Sciences, The Dell Pediatric Research Institute, The University of Texas at Austin, Texas
| |
Collapse
|
62
|
Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morlé L, Durand B, Reith W. RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genet 2015; 11:e1005368. [PMID: 26162102 PMCID: PMC4498915 DOI: 10.1371/journal.pgen.1005368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/17/2015] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. Failure of spermatogenesis, which is presumed to often result from genetic defects, is a common cause of male sterility. Although numerous genes associated with defects in male spermatogenesis have been identified, numerous cases of genetic male infertility remain unelucidated. We report here that the transcription factor RFX2 is a master regulator of gene expression programs required for progression through the haploid phase of spermatogenesis. Male RFX2-deficient mice are completely sterile. Spermatogenesis progresses through meiosis, but haploid cells undergo a complete block in development just prior to spermatid elongation. Gene expression profiling and ChIP-Seq analysis revealed that RFX2 controls key pathways implicated in cilium/flagellum formation, as well as genes implicated in microtubule and vesicle associated transport. The set of genes activated by RFX2 in spermatids exhibits virtually no overlap with those controlled by other known transcriptional regulators of spermiogenesis, establishing RFX2 as an essential new player in this developmental process. RFX2-deficient mice should therefore represent a valuable new model for deciphering the regulatory networks that direct sperm formation, and thereby contribute to the identification of causes of human male infertility.
Collapse
Affiliation(s)
- W. Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (WSK); (BD)
| | - Dominique Baas
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Queralt Seguin-Estevez
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Wenli Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jean-Luc Duteyrat
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
- * E-mail: (WSK); (BD)
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| |
Collapse
|
63
|
Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, Paschaki M, Pedraza M, Métin C, Durand B, Schneider-Maunoury S. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet 2015; 24:4997-5014. [PMID: 26071364 DOI: 10.1093/hmg/ddv221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.
Collapse
Affiliation(s)
- Christine Laclef
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Isabelle Anselme
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Laurianne Besse
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Martin Catala
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and Fédération de Neurologie, Groupe hospitalier Pitié-Salpêtrière-APHP, F-75013 Paris, France
| | - Aurélien Palmyre
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Dominique Baas
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Marie Paschaki
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Maria Pedraza
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Christine Métin
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| |
Collapse
|
64
|
Kang GM, Han YM, Ko HW, Kim J, Oh BC, Kwon I, Kim MS. Leptin Elongates Hypothalamic Neuronal Cilia via Transcriptional Regulation and Actin Destabilization. J Biol Chem 2015; 290:18146-18155. [PMID: 26041775 DOI: 10.1074/jbc.m115.639468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/18/2022] Open
Abstract
Terminally differentiated neurons have a single, primary cilium. The primary cilia of hypothalamic neurons play a critical role in sensing metabolic signals. We recently showed that mice with leptin deficiency or resistance have shorter cilia in the hypothalamic neurons, and leptin treatment elongates cilia in hypothalamic neurons. Here, we investigated the molecular mechanisms by which leptin controls ciliary length in hypothalamic neurons. In N1 hypothalamic neuronal cells, leptin treatment increased the expression of intraflagellar transport proteins. These effects occurred via phosphatase and tensin homolog/glycogen synthase kinase-3β-mediated inhibition of the transcriptional factor RFX1. Actin filament dynamics were also involved in leptin-promoted ciliary elongation. Both leptin and cytochalasin-D treatment induced F-actin disruption and cilium elongation in hypothalamic neurons that was completely abrogated by co-treatment with the F-actin polymerizer phalloidin. Our findings suggest that leptin elongates hypothalamic neuronal cilia by stimulating the production of intraflagellar transport proteins and destabilizing actin filaments.
Collapse
Affiliation(s)
- Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Yu Mi Han
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Hyuk Whan Ko
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido 410-773, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338, Korea
| | - Byung Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
| | - Ijoo Kwon
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea; Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea.
| |
Collapse
|
65
|
Kawase S, Kuwako K, Imai T, Renault-Mihara F, Yaguchi K, Itohara S, Okano H. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev 2015; 23:2250-61. [PMID: 25058468 DOI: 10.1089/scd.2014.0219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcriptional regulation of neural stem/progenitor cells (NS/PCs) is of great interest in neural development and stem cell biology. The RNA-binding protein Musashi1 (Msi1), which is often employed as a marker for NS/PCs, regulates Notch signaling to maintain NS/PCs in undifferentiated states by the translational repression of Numb expression. Considering these critical roles of Msi1 in the maintenance of NS/PCs, it is extremely important to elucidate the regulatory mechanisms by which Msi1 is selectively expressed in these cells. However, the mechanism regulating Msi1 transcription is unclear. We previously reported that the transcriptional regulatory region of Msi1 is located in the sixth intron of the Msi1 locus in NS/PCs, based on in vitro experiments. In the present study, we generated reporter transgenic mice for the sixth intronic Msi1 enhancer (Msi1-6IE), which show the reporter expression corresponding with endogenous Msi1-positive cells in developing and adult NS/PCs. We found that the core element responsible for this reporter gene activity includes palindromic Regulatory factor X (Rfx) binding sites and that Msi1-6IE was activated by Rfx. Rfx4, which was highly expressed in NS/PCs positive for the Msi1-6IE reporter, bound to this region, and both of the palindromic Rfx binding sites were required for the transactivation of Msi1-6IE. Furthermore, ectopic Rfx4 expression in the developing mouse cerebral cortex transactivates Msi1 expression in the intermediate zone. This study suggests that ciliogenic Rfx transcription factors regulate Msi1 expression through Msi1-6IE in NS/PCs.
Collapse
Affiliation(s)
- Satoshi Kawase
- 1 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y. TGF-β Signaling Regulates the Differentiation of Motile Cilia. Cell Rep 2015; 11:1000-7. [PMID: 25959824 DOI: 10.1016/j.celrep.2015.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022] Open
Abstract
The cilium is a small cellular organelle with motility- and/or sensory-related functions that plays a crucial role during developmental and homeostatic processes. Although many molecules or signal transduction pathways that control cilia assembly have been reported, the mechanisms of ciliary length control have remained enigmatic. Here, we report that Smad2-dependent transforming growth factor β (TGF-β) signaling impacts the length of motile cilia at the Xenopus left-right (LR) organizer, the gastrocoel roof plate (GRP), as well as at the neural tube and the epidermis. Blocking TGF-β signaling resulted in the absence of the transition zone protein B9D1/MSKR-1 from cilia in multi-ciliated cells (MCCs) of the epidermis. Interestingly, this TGF-β activity is not mediated by Mcidas, Foxj1, and RFX2, the known major regulators of ciliogenesis. These data indicate that TGF-β signaling is crucial for the function of the transition zone, which in turn may affect the regulation of cilia length.
Collapse
Affiliation(s)
- Janos Tözser
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Jacob Brown
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Koichi Tanaka
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
67
|
Schweickert A, Feistel K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Wells KL, Rowneki M, Killian DJ. A splice acceptor mutation in C. elegans daf-19/Rfx disrupts functional specialization of male-specific ciliated neurons but does not affect ciliogenesis. Gene 2015; 559:196-202. [DOI: 10.1016/j.gene.2015.01.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023]
|
69
|
Abstract
Cilia are key organelles in development and homeostasis. The ever-expanding complement of cilia associated proteins necessitates rapid and tractable models for in vivo functional investigation. Xenopus laevis provides an attractive model for such studies, having multiple ciliated populations, including primary and multiciliated tissues. The rapid external development of Xenopus and the large cells make it an especially excellent platform for imaging studies. Here we present embryological and cell biological methods for the investigation of cilia structure and function in X. laevis, with a focus on quantitative live and fixed imaging.
Collapse
|
70
|
Futel M, Leclerc C, Le Bouffant R, Buisson I, Néant I, Umbhauer M, Moreau M, Riou JF. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus. J Cell Sci 2015; 128:888-99. [PMID: 25588842 DOI: 10.1242/jcs.155499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2.
Collapse
Affiliation(s)
- Mélinée Futel
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Ronan Le Bouffant
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Buisson
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Muriel Umbhauer
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
71
|
Vieillard J, Jerber J, Durand B. Contrôle transcriptionnel des gènes ciliaires. Med Sci (Paris) 2014; 30:968-75. [DOI: 10.1051/medsci/20143011010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
72
|
Abstract
Cilia are microtubule-based projections that serve a wide variety of essential functions in animal cells. Defects in cilia structure or function have recently been found to underlie diverse human diseases. While many eukaryotic cells possess only one or two cilia, some cells, including those of many unicellular organisms, exhibit many cilia. In vertebrates, multiciliated cells are a specialized population of post-mitotic cells decorated with dozens of motile cilia that beat in a polarized and synchronized fashion to drive directed fluid flow across an epithelium. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite their importance, multiciliated cells are relatively poorly studied and we are only beginning to understand the mechanisms underlying their development and function. Here, we review the general phylogeny and physiology of multiciliation and detail our current understanding of the developmental and cellular events underlying the specification, differentiation and function of multiciliated cells in vertebrates.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA; The Howard Hughes Medical Institute.
| |
Collapse
|
73
|
Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Dev Biol 2014; 395:287-98. [PMID: 25220153 DOI: 10.1016/j.ydbio.2014.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby's embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby's role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning.
Collapse
|
74
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
75
|
Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y. RFX7 is required for the formation of cilia in the neural tube. Mech Dev 2014; 132:28-37. [PMID: 24530844 DOI: 10.1016/j.mod.2014.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
Regulatory Factor X (RFX) transcription factors are important for development and are likely involved in the pathogenesis of serious human diseases including ciliopathies. While seven RFX genes have been identified in vertebrates and several RFX transcription factors have been reported to be regulators of ciliogenesis, the role of RFX7 in development including ciliogenesis is not known. Here we show that RFX7 in Xenopus laevis is expressed in the neural tube, eye, otic vesicles, and somites. Knockdown of RFX7 in Xenopus embryos resulted in a defect of ciliogenesis in the neural tube and failure of neural tube closure. RFX7 controlled the formation of cilia by regulating the expression of RFX4 gene, which has been reported to be required for ciliogenesis in the neural tube. Moreover, ectopic expression of Foxj1, which is a master regulator of motile cilia formation, suppressed the expression of RFX4 but not RFX7. Taken together, RFX7 plays an important role in the process of neural tube closure at the top of the molecular cascade which controls ciliogenesis in the neural tube.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
76
|
Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB. Coordinated genomic control of ciliogenesis and cell movement by RFX2. eLife 2014; 3:e01439. [PMID: 24424412 PMCID: PMC3889689 DOI: 10.7554/elife.01439] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
The mechanisms linking systems-level programs of gene expression to discrete cell biological processes in vivo remain poorly understood. In this study, we have defined such a program for multi-ciliated epithelial cells (MCCs), a cell type critical for proper development and homeostasis of the airway, brain and reproductive tracts. Starting from genomic analysis of the cilia-associated transcription factor Rfx2, we used bioinformatics and in vivo cell biological approaches to gain insights into the molecular basis of cilia assembly and function. Moreover, we discovered a previously un-recognized role for an Rfx factor in cell movement, finding that Rfx2 cell-autonomously controls apical surface expansion in nascent MCCs. Thus, Rfx2 coordinates multiple, distinct gene expression programs in MCCs, regulating genes that control cell movement, ciliogenesis, and cilia function. As such, the work serves as a paradigm for understanding genomic control of cell biological processes that span from early cell morphogenetic events to terminally differentiated cellular functions. DOI: http://dx.doi.org/10.7554/eLife.01439.001.
Collapse
Affiliation(s)
- Mei-I Chung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Taejoon Kwon
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Eric R Brooks
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rakhi Gupta
- Department of Genetics, Stanford University, Stanford, United States
| | - Matthew Meyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Julie C Baker
- Department of Genetics, Stanford University, Stanford, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, United States
| |
Collapse
|
77
|
Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, Brueckner M, Khokha MK. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 2013; 504:456-9. [PMID: 24226769 PMCID: PMC3869867 DOI: 10.1038/nature12723] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Heterotaxy (Htx) is a disorder of left-right (LR) body patterning, or laterality, that is associated with major congenital heart disease1. The etiology and mechanism underlying most human Htx is poorly understood. In vertebrates, laterality is initiated at the embryonic left-right organizer (LRO), where motile cilia generate leftward flow that is detected by immotile sensory cilia, which transduce flow into downstream asymmetric signals2–6. The mechanism that specifies these two cilia types remains unknown. We now show that the GalNAc-type O-glycosylation enzyme GALNT11 is crucial to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with Htx7, and now demonstrate, in Xenopus, that galnt11 activates Notch signaling. GALNT11 O-glycosylates NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus LRO cilia and show that galnt11-mediated notch1 signaling modulates the spatial distribution and ratio of motile and immotile cilia at the LRO. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. In contrast, Notch overexpression decreases this ratio mimicking the ciliopathy, primary ciliary dyskinesia. Together, our data demonstrate that Galnt11 modifies Notch, establishing an essential balance between motile and immotile cilia at the LRO to determine laterality and identifies a novel mechanism for human Htx.
Collapse
Affiliation(s)
- Marko T Boskovski
- 1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2] [3] Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Shiaulou Yuan
- 1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2]
| | - Nis Borbye Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Building 24.6.30, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Christoffer Knak Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Building 24.6.30, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Svetlana Makova
- Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Building 24.6.30, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Martina Brueckner
- Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Mustafa K Khokha
- Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
78
|
Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K. Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2013; 2:12. [PMID: 24229449 PMCID: PMC3848805 DOI: 10.1186/2046-2530-2-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background Circulation of cerebrospinal fluid (CSF) through the ventricular system is driven by motile cilia on ependymal cells of the brain. Disturbed ciliary motility induces the formation of hydrocephalus, a pathological accumulation of CSF resulting in ventricle dilatation and increased intracranial pressure. The mechanism by which loss of motile cilia causes hydrocephalus has not been elucidated. The aim of this study was: (1) to provide a detailed account of the development of ciliation in the brain of the African clawed frog Xenopus laevis; and (2) to analyze the relevance of ependymal cilia motility for CSF circulation and brain ventricle morphogenesis in Xenopus. Methods Gene expression analysis of foxj1, the bona fide marker for motile cilia, was used to identify potentially ciliated regions in the developing central nervous system (CNS) of the tadpole. Scanning electron microscopy (SEM) was used to reveal the distribution of mono- and multiciliated cells during successive stages of brain morphogenesis, which was functionally assessed by bead injection and video microscopy of ventricular CSF flow. An antisense morpholino oligonucleotide (MO)-mediated gene knock-down that targeted foxj1 in the CNS was applied to assess the role of motile cilia in the ventricles. Results RNA transcripts of foxj1 in the CNS were found from neurula stages onwards. Following neural tube closure, foxj1 expression was seen in distinct ventricular regions such as the zona limitans intrathalamica (ZLI), subcommissural organ (SCO), floor plate, choroid plexus (CP), and rhombomere boundaries. In all areas, expression of foxj1 preceded the outgrowth of monocilia and the subsequent switch to multiciliated ependymal cells. Cilia were absent in foxj1 morphants, causing impaired CSF flow and fourth ventricle hydrocephalus in tadpole-stage embryos. Conclusions Motile ependymal cilia are important organelles in the Xenopus CNS, as they are essential for the circulation of CSF and maintenance of homeostatic fluid pressure. The Xenopus CNS ventricles might serve as a novel model system for the analysis of human ciliary genes whose deficiency cause hydrocephalus.
Collapse
Affiliation(s)
- Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstr, 30, Stuttgart 70593, Germany.
| | | | | | | | | |
Collapse
|
79
|
Didon L, Zwick RK, Chao IW, Walters MS, Wang R, Hackett NR, Crystal RG. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013; 14:70. [PMID: 23822649 PMCID: PMC3710277 DOI: 10.1186/1465-9921-14-70] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Ciliated cells play a central role in cleansing the airways of inhaled contaminants. They are derived from basal cells that include the airway stem/progenitor cells. In animal models, the transcription factor FOXJ1 has been shown to induce differentiation to the ciliated cell lineage, and the RFX transcription factor-family has been shown to be necessary for, but not sufficient to induce, correct cilia development. Methods To test the hypothesis that FOXJ1 and RFX3 cooperatively induce expression of ciliated genes in the differentiation process of basal progenitor cells toward a ciliated cell linage in the human airway epithelium, primary human airway basal cells were assessed under conditions of in vitro differentiation induced by plasmid-mediated gene transfer of FOXJ1 and/or RFX3. TaqMan PCR was used to quantify mRNA levels of basal, secretory, and cilia-associated genes. Results Basal cells, when cultured in air-liquid interface, differentiated into a ciliated epithelium, expressing FOXJ1 and RFX3. Transfection of FOXJ1 into resting basal cells activated promoters and induced expression of ciliated cell genes as well as both FOXJ1 and RFX3, but not basal cell genes. Transfection of RFX3 induced expression of RFX3 but not FOXJ1, nor the expression of cilia-related genes. The combination of FOXJ1 + RFX3 enhanced ciliated gene promoter activity and mRNA expression beyond that due to FOXJ1 alone. Corroborating immunoprecipitation studies demonstrated an interaction between FOXJ1 and RFX3. Conclusion FOXJ1 is an important regulator of cilia gene expression during ciliated cell differentiation, with RFX3 as a transcriptional co-activator to FOXJ1, helping to induce the expression of cilia genes in the process of ciliated cell differentiation of basal/progenitor cells.
Collapse
Affiliation(s)
- Lukas Didon
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Wang L, Fu C, Fan H, Du T, Dong M, Chen Y, Jin Y, Zhou Y, Deng M, Gu A, Jing Q, Liu T, Zhou Y. miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development 2013; 140:2755-64. [PMID: 23698347 DOI: 10.1242/dev.092825] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiciliated cells (MCCs) possess multiple motile cilia and are distributed throughout the vertebrate body, performing important physiological functions by regulating fluid movement in the intercellular space. Neither their function during organ development nor the molecular mechanisms underlying multiciliogenesis are well understood. Although dysregulation of members of the miR-34 family plays a key role in the progression of various cancers, the physiological function of miR-34b, especially in regulating organ formation, is largely unknown. Here, we demonstrate that miR-34b expression is enriched in kidney MCCs and the olfactory placode in zebrafish. Inhibiting miR-34b function using morpholino antisense oligonucleotides disrupted kidney proximal tubule convolution and the proper distribution of distal transporting cells and MCCs. Microarray analysis of gene expression, cilia immunostaining and a fluid flow assay revealed that miR-34b is functionally required for the multiciliogenesis of MCCs in the kidney and olfactory placode. We hypothesize that miR-34b regulates kidney morphogenesis by controlling the movement and distribution of kidney MCCs and fluid flow. We found that cmyb was genetically downstream of miR-34b and acted as a key regulator of multiciliogenesis. Elevated expression of cmyb blocked membrane docking of centrioles, whereas loss of cmyb impaired centriole multiplication, both of which resulted in defects in the formation of ciliary bundles. Thus, miR-34b serves as a guardian to maintain the proper level of cmyb expression. In summary, our studies have uncovered an essential role for miR-34b-Cmyb signaling during multiciliogenesis and kidney morphogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Stem Cell Biology and State Key Laboratory of Medical Genomics and Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. Dev Biol 2013; 380:243-58. [PMID: 23685253 DOI: 10.1016/j.ydbio.2013.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022]
Abstract
Nucleotide binding protein 1 (Nubp1) is a highly conserved phosphate loop (P-loop) ATPase involved in diverse processes including iron-sulfur protein assembly, centrosome duplication and lung development. Here, we report the cloning, expression and functional characterization of Xenopus laevis Nubp1. We show that xNubp1 is expressed maternally, displays elevated expression in neural tissues and is required for convergent extension movements and neural tube closure. In addition, xNubp1knockdown leads to defective ciliogenesis of the multi-ciliated cells of the epidermis as well as the monociliated cells of the gastrocoel roof plate. Specifically, xNubp1 is required for basal body migration, spacing and docking in multi-ciliated cells and basal body positioning and axoneme elongation in monociliated gastrocoel roof plate cells. Live imaging of the different pools of actin and basal body migration during the process of ciliated cell intercalation revealed that two independent pools of actin are present from the onset of cell intercalation; an internal network surrounding the basal bodies, anchoring them to the cell cortex and an apical pool of punctate actin which eventually matures into the characteristic apical actin network. We show that xNubp1 colocalizes with the apical actin network of multiciliated cells and that problems in basal body transport in xNubp1 morphants are associated with defects of the internal network of actin, while spacing and polarity issues are due to a failure of the apical and sub-apical actin pools to mature into a network. Effects of xNubp1 knockdown on the actin cytoskeleton are independent of RhoA localization and activation, suggesting that xNubp1 may have a direct role in the regulation of the actin cytoskeleton.
Collapse
|
82
|
Abstract
Cilia are prevalent biological structures that are important for cell signaling and for generating fluid flow (or motility). Cilia are found throughout biology from single-celled organisms to vertebrates, and many model systems have been employed for their analysis. Here, we describe the use of Xenopus larval skin as a system for the study of ciliogenesis and ciliary function. In particular, we describe basic molecular and embryological manipulations and imaging techniques that have proven particularly useful for understanding the polarized beating of cilia and the generation of directed fluid flow (Werner & Mitchell, 2012). However, these same tools have the potential to benefit a large number of cilia-related biological questions.
Collapse
Affiliation(s)
- Michael E. Werner
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brian J. Mitchell
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
83
|
Jerber J, Thomas J, Durand B. [Transcriptional control of ciliogenesis in animal development]. Biol Aujourdhui 2012; 206:205-18. [PMID: 23171843 DOI: 10.1051/jbio/2012023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Cilia and flagella are eukaryotic organelles with a conserved structure and function from unicellular organisms to human. In animals, different types of cilia can be found and cilia assembly during development is a highly dynamic process. Ciliary defects in human lead to a wide spectrum of diseases called ciliopathies. Understanding the molecular mechanisms that govern dynamic cilia assembly during development and in different tissues in metazoans is an important biological challenge. The FOXJ1 (Forkhead Box J1) and RFX (Regulatory Factor X) family of transcription factors have been shown to be important factors in ciliogenesis control. FOXJ1 proteins are required for motile ciliogenesis in vertebrates. By contrast, RFX proteins are essential to assemble both primary and motile cilia through the regulation of specific sets of genes such as those encoding intraflagellar transport components. Recently, new actors with more specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation, allowing for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
Affiliation(s)
- Julie Jerber
- Centre de Genetique et de Physiologie Moleculare et Cellulaire, Universite Lyon, Villeurbanne, Lyon, France
| | | | | |
Collapse
|
84
|
Bisgrove BW, Makova S, Yost HJ, Brueckner M. RFX2 is essential in the ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells sufficient for fluid flow. Dev Biol 2011; 363:166-78. [PMID: 22233545 DOI: 10.1016/j.ydbio.2011.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022]
Abstract
Motile cilia create asymmetric fluid flow in the evolutionarily conserved ciliated organ of asymmetry (COA) and play a fundamental role in establishing the left-right (LR) axis in vertebrate embryos. The transcriptional control of the large group of genes that encode proteins that contribute to ciliary structure and function remains poorly understood. In this study we find that the winged helix transcription factor Rfx2 is expressed in motile cilia in mouse and zebrafish embryos. Morpholino knockdown of Rfx2 function in the whole embryo or specifically in cells of the zebrafish COA (Kupffer's Vesicle, KV) leads to reduced KV cilia length and perturbations in LR asymmetry. LR patterning defects include randomization of the early asymmetric Nodal signaling pathway genes southpaw, lefty1 and lefty2 and subsequent reversals in the organ primordia of the heart and gut. Rfx2 is also required for ciliogenesis in zebrafish pronephric duct. We further show that by restoring Left-Right dynein (LRD) expression and motility specifically in a subset of ciliated cells of the mouse COA (posterior notochord, PNC), we can restore fluid flow, asymmetric expression of Pitx2 and partially rescue situs defects.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, USA
| | | | | | | |
Collapse
|