51
|
Krivoshein AV. α-Substituted Lactams and Acetamides: Ion Channel Modulators that Show Promise in Treating Drug-resistant Epilepsy. Cent Nerv Syst Agents Med Chem 2020; 20:79-87. [PMID: 32386500 DOI: 10.2174/1871524920666200510005458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
The two main problems in the pharmacotherapy of epilepsy are resistance to currently available first-line medications (which occurs in about one third of patients) and the high incidence of side effects. To address these two challenges, extensive efforts are being undertaken to design new, structurally distinct antiepileptic drugs with a broad spectrum of anticonvulsant activity. Tests in animal models of epilepsy indicate that α-substituted lactams and acetamides show a broad spectrum of anticonvulsant activity (including very promising activity in drug-resistant models) as well as an excellent safety profile. Limited clinical results confirm these preclinical findings. In the first part of this review, pharmacology and toxicology of α-substituted lactams and acetamides and their putative protein targets in the brain have been discussed. This is followed by a discussion of structure-activity relationships among α-alkyl-, α-aryl-, and α-aryl-α-alkyl-substituted derivatives. The most promising structures seem to be those related to 3-ethyl-3-phenylpyrrolidin-2-one, 2-phenylbutyramide, and 2- sec-butylvaleramide. The information presented in this review is expected to facilitate rational drug design and development efforts for α-substituted lactams and acetamides.
Collapse
Affiliation(s)
- Arcadius V Krivoshein
- Chemistry Program, University of Houston-Clear Lake, Houston, TX 77058, United States
| |
Collapse
|
52
|
Yan Z, Zhou Z, Wu Q, Chen ZB, Koo EH, Zhong S. Presymptomatic Increase of an Extracellular RNA in Blood Plasma Associates with the Development of Alzheimer’s Disease. Curr Biol 2020; 30:1771-1782.e3. [DOI: 10.1016/j.cub.2020.02.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
53
|
Decreased Glucose Utilization Contributes to Memory Impairment in Patients with Glufosinate Ammonium Intoxication. J Clin Med 2020; 9:jcm9041213. [PMID: 32340163 PMCID: PMC7231126 DOI: 10.3390/jcm9041213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023] Open
Abstract
The symptoms of glufosinate ammonium (GLA) intoxication include gastrointestinal and neurologic symptoms, respiratory failure, and cardiovascular instability. Among these, neurologic symptoms including loss of consciousness, memory impairment, and seizure are characteristic of GLA poisoning. However, the mechanism of brain injury by GLA poisoning is still poorly understood. We investigated nine patients who had performed an F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scan because of memory impairment caused by GLA ingestion. FDG-PET images of patients with GLA intoxication were compared with 24 age- and sex-matched healthy controls to evaluate whether the patients had abnormal patterns of glucose metabolism in the brain. Decreased glucose metabolism was observed in the inferior frontal and temporal lobes of these patients with GLA intoxication when compared with 24 age- and sex-matched healthy controls. Three patients performed follow-up FDG-PET scans. However, it was shown that the results of the follow-up FDG-PET scans were determined to be inconclusive. Our study showed that memory impairment induced by GLA intoxication was associated with glucose hypometabolism in the inferior frontal and temporal lobes in the brain.
Collapse
|
54
|
Escande-Beillard N, Loh A, Saleem SN, Kanata K, Hashimoto Y, Altunoglu U, Metoska A, Grandjean J, Ng FM, Pomp O, Baburajendran N, Wong J, Hill J, Beillard E, Cozzone P, Zaki M, Kayserili H, Hamada H, Shiratori H, Reversade B. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron 2020; 107:82-94.e6. [PMID: 32330411 DOI: 10.1016/j.neuron.2020.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
Collapse
Affiliation(s)
- Nathalie Escande-Beillard
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey.
| | - Abigail Loh
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sahar N Saleem
- Radiology Department, Kasr Al Ainy Faculty of Medicine - Cairo University, El Manial, Cairo 11956, Egypt
| | - Kohei Kanata
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Hashimoto
- Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Artina Metoska
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Oz Pomp
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | | | - Joyner Wong
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | | | - Patrick Cozzone
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Maha Zaki
- Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey; Department of Paediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
55
|
Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors. Neurobiol Dis 2020; 140:104850. [PMID: 32247039 DOI: 10.1016/j.nbd.2020.104850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/19/2020] [Accepted: 03/29/2020] [Indexed: 01/19/2023] Open
Abstract
Mutations in synaptic NMDA receptors (NMDARs) are associated with epilepsy and neurodevelopmental disorders. The effects of several such mutations have been investigated in recombinantly-expressed NMDARs under conditions of steady-state activation. Such experiments provide only limited insight into how mutations affect NMDAR-mediated excitatory synaptic currents (EPSCs). The present study aimed to characterize the effects of the GluN2AN615K, GluN2BN615I and GluN2BV618G gain-of-function mutations on EPSCs mediated by diheteromeric GluN1/2A and GluN1/2B receptors and triheteromeric GluN1/2A/2B receptors, as these are the most abundant synaptic NMDARs in vivo. Subunit composition was controlled by studying 'artificial' synapses formed between cultured neurons (which provide presynaptic terminals) and HEK293 cells that express the NMDAR subunits of interest plus the synapse-promoting molecule, neuroligin-1B. When incorporated into diheteromeric receptors, all three mutations ablated voltage-dependent Mg2+ block of EPSCs, as previously shown. In addition, we were surprised to find that increasing external Mg2+ from 0 to 1 mM strongly enhanced the magnitude of EPSCs mediated by mutant diheteromers. In contrast, triheteromeric receptors exhibited normal voltage-dependent Mg2+ block. The GluN2AN615K mutation also slowed the decay of GluN1/2A/2B- but not GluN1/2A-mediated EPSCs. The GluN2BN615I mutation enhanced the magnitude of both GluN1/2B- and GluN1/2A/2B-mediated EPSCs. The GluN2BV618G mutation enhanced the magnitude of both GluN1/2B- and GluN1/2A/2B-mediated EPSCs, although these effects were partly compensated by a faster EPSC decay rate. The mutations also diminished the potency of the anti-epileptic pore-blocker, memantine, thus explaining the lack of memantine efficacy in patients with GluN2BN615I or GluN2BV618G mutations. Given these effects, the three mutations would be expected to enhance the cation influx rate and thereby contribute to epilepsy phenotypes.
Collapse
|
56
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
57
|
Auvin S, Dozières-Puyravel B, Avbersek A, Sciberras D, Collier J, Leclercq K, Mares P, Kaminski RM, Muglia P. Radiprodil, a NR2B negative allosteric modulator, from bench to bedside in infantile spasm syndrome. Ann Clin Transl Neurol 2020; 7:343-352. [PMID: 32106360 PMCID: PMC7085998 DOI: 10.1002/acn3.50998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/24/2022] Open
Abstract
Objective Infantile spasm syndrome (ISS) is an epileptic encephalopathy without established treatment after the failure to standard of care based on steroids and vigabatrin. Converging lines of evidence indicating a role of NR2B subunits of the N‐methyl‐D‐aspartate (NMDA) receptor on the onset of spams in ISS patients, prompted us to test radiprodil, a negative allosteric NR2B modulator in preclinical seizure models and in infants with ISS. Methods Radiprodil has been tested in three models, including pentylenetetrazole‐induced seizures in rats across different postnatal (PN) ages. Three infants with ISS have been included in a phase 1b escalating repeated dose study. Results Radiprodil showed the largest protective seizure effects in juvenile rats (maximum at PN12, corresponding to late infancy in humans). Three infants resistant to a combination of vigabatrin and prednisolone received individually titrated doses of radiprodil for up to 34 days. Radiprodil was safe and well tolerated in all three infants, and showed the expected pharmacokinetic profile. One infant became spasm‐free and two showed clinical improvement without reaching spasm‐freedom. After radiprodil withdrawal, the one infant continued to be spasm‐free, while the two others experienced seizure worsening requiring the use of the ketogenic diet and other antiepileptic drugs. Interpretation Radiprodil showed prominent anti‐seizure effect in juvenile animals, consistent with the prevalent expression of NR2B subunit of the NMDA receptor at this age in both rodents and humans. The clinical testing, although preliminary, showed that radiprodil is associated with a good safety and pharmacokinetic profile, and with the potential to control epileptic spasms.
Collapse
Affiliation(s)
- Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France.,Université de Paris, INSERM U1141, F-75019, Paris, France
| | - Blandine Dozières-Puyravel
- Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France.,Université de Paris, INSERM U1141, F-75019, Paris, France
| | | | | | | | | | - Pavel Mares
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | | | |
Collapse
|
58
|
Sharma N, Zameer S, Akhtar M, Vohora D. Effect of lacosamide on ethanol induced conditioned place preference and withdrawal associated behavior in mice: Possible contribution of hippocampal CRMP-2. Pharmacol Rep 2019; 71:804-810. [PMID: 31377562 DOI: 10.1016/j.pharep.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2018] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive consumption of ethanol is known to activate the mTORC1 pathway and to enhance the Collapsin Response Mediator Protein-2 (CRMP-2) levels in the limbic region of brain. The latter helps in forming microtubule assembly that is linked to drug taking or addiction-like behavior in rodents. Therefore, in this study, we investigated the effect of lacosamide, an antiepileptic drug and a known CRMP-2 inhibitor, which binds to CRMP-2 and inhibits the formation of microtubule assembly, on ethanol-induced conditioned place preference (CPP) in mice. METHODS The behavior of mice following ethanol addiction and withdrawal was assessed by performing different behavioral paradigms. Mice underwent ethanol-induced CPP training with alternate dose of ethanol (2 g/kg, po) and saline (10 ml/kg, po). The effect of lacosamide on the expression of ethanol-induced CPP and on ethanol withdrawal associated anxiety and depression-like behavior was evaluated. The effect of drug on locomotor activity was also assessed and hippocampal CRMP-2 levels were measured. RESULTS Ethanol-induced CPP was associated with enhanced CRMP-2 levels in the hippocampus. Lacosamide significantly reduced the expression of ethanol-induced CPP and alleviated the levels of hippocampal CRMP-2 but aggravated withdrawal-associated anxiety and depression in mice. CONCLUSION The present study demonstrated the beneficial effect of lacosamide in attenuation of expression of ethanol induced conditioned place preference via reduction of hippocampal CRMP-2 level. These findings suggest that lacosamide may be investigated further for ethanol addiction but not for managing withdrawal.
Collapse
Affiliation(s)
- Nidhi Sharma
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Zameer
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
59
|
XiangWei W, Kannan V, Xu Y, Kosobucki GJ, Schulien AJ, Kusumoto H, Moufawad El Achkar C, Bhattacharya S, Lesca G, Nguyen S, Helbig KL, Cuisset JM, Fenger CD, Marjanovic D, Schuler E, Wu Y, Bao X, Zhang Y, Dirkx N, Schoonjans AS, Syrbe S, Myers SJ, Poduri A, Aizenman E, Traynelis SF, Lemke JR, Yuan H, Jiang Y. Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain 2019; 142:3009-3027. [PMID: 31504254 PMCID: PMC6763743 DOI: 10.1093/brain/awz232] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.
Collapse
Affiliation(s)
- Wenshu XiangWei
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gabrielle J Kosobucki
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Anthony J Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gaetan Lesca
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France; INSERM U1028, CNRS UMR5292, Paris, France
- Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France; Claude Bernard Lyon I University, Lyon, France
| | - Sylvie Nguyen
- Department of Pediatric Neurology, University Hospital of Lille, and Lille Reference Centre for Rare Epileptic Disorders, Lille, France
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Marie Cuisset
- Department of Pediatric Neurology, University Hospital of Lille, and Lille Reference Centre for Rare Epileptic Disorders, Lille, France
| | | | | | - Elisabeth Schuler
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ye Wu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Nina Dirkx
- Neurogenetics Group, University of Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Child Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Steffen Syrbe
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh PA, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, USA
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
60
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
61
|
Role of astrocytes-derived d-serine in PFOS-induced neurotoxicity through NMDARs in the rat primary hippocampal neurons. Toxicology 2019; 422:14-24. [PMID: 31004706 DOI: 10.1016/j.tox.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the perfluorinated compounds (PFCs), and has been used in industrial and consumer products. It has already been shown that PFOS could be detected in the environmental media and biological species including humans, due to its resistance to environmental degradation. PFOS is known to induce a series of adverse impacts on human health, e.g., as a potential neurotoxic substance. Recent studies suggest that astrocytes act as the mediator in PFOS-induced neurotoxicity; however, the underlying molecular mechanism needs further investigation. Under the physiological condition, astrocytes play an important role in maintaining brain functions through releasing and up-taking of neurotransmitters between astrocytes and neurons. In the present study, astrocytes-derived d-serine was shown to be involved in PFOS-induced apoptosis and death in the rat primary hippocampal neurons. Significant alterations in d-serine were found in astrocytes, mediated by the molecules in d-serine synthesis (serine racemase), metabolism (d-amino acid oxidase) and delivery (calcium, vacuolar type H+-ATPase, alanine-serine-cysteine transporter and connexin 43 hemichannels). Meanwhile, the N-methyl-d-aspartate receptor (NMDAR) subunits (NR1, NR2 A and NR2B) gene and protein expressions were significantly increased in the hippocampal neurons exposed to the PFOS-activated astrocytes-conditional medium (ACM). Further, the adverse effects of PFOS could be attenuated by the fluorocitrate (an inhibitor for d-serine up-taken by the glial cells) application. Our data indicated that astrocytes-derived d-serine was involved in PFOS-induced neurotoxicity through the NMDARs in the rat primary hippocampal neurons.
Collapse
|
62
|
Alinaghipour A, Mazoochi T, Ardjmand A. Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol Res 2019; 41:624-632. [PMID: 30967097 DOI: 10.1080/01616412.2019.1602322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: The present study aimed to evaluate the ameliorative effect of low-dose ethanol (Eth) on amnesia induced by a brief seizure model and the role of N-methyl D-aspartate (NMDA) signaling in this event. Materials and Methods: Four groups of rats (total number = 36; n = 9, each group) were used: control, Eth (0.5 g/kg/i.p.), pentylenetetrazole (PTZ) (60 mg/kg/i.p.), and Eth+PTZ. Eth was administered for 6 days before the single injection of PTZ, at minute dose that cannot induce memory impairment. The consequences of Eth pretreatment, coadministered with PTZ, were studied in an inhibitory avoidance (IA) memory model. The PTZ was injected 30 min prior to the IA memory test. Thereafter, locomotion, liver enzymes, and the Real-time PCR for NR1 subunit of NMDA receptor were studied. The statistical analyses were performed using the parametric/nonparametric ANOVA and the post-hoc tests. Results: Our findings revealed that Eth pretreatment significantly improved the IA memory impairment induced by PTZ (P < 0.001), and indicated no change in locomotion and serum ALT, but significantly differed for AST between the PTZ and PTZ groups (P = < 0.05). The Real-time PCR results indicate the decreased NR1 mRNA expression in Eth and PTZ groups and the increased NR1 mRNA expression in Eth+PTZ group, compared to the control group (P < 0.001); however, the NR1 mRNA expression was increased in the Eth+PTZ group, compared to PTZ group (P < 0.001). Conclusion: The present study provides evidence that the low-dose Eth can improve the amnesia induced by a brief seizure model presumably via NMDA signaling in a rat.
Collapse
Affiliation(s)
- Azam Alinaghipour
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Tahereh Mazoochi
- b Anatomical Science Research Center , Kashan University of Medical sciences , Kashan , Iran
| | - Abolfazl Ardjmand
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,c Department of Physiology , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
63
|
Servaes S, Kara F, Glorie D, Stroobants S, Van Der Linden A, Staelens S. In Vivo Preclinical Molecular Imaging of Repeated Exposure to an N-methyl-d-aspartate Antagonist and a Glutaminase Inhibitor as Potential Glutamatergic Modulators. J Pharmacol Exp Ther 2018; 368:382-390. [PMID: 30552293 DOI: 10.1124/jpet.118.252635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the brain and is at the base of a wide variety of neuropathologies, including epilepsy, autism, Fragile X, and obsessive compulsive disorder. Glutamate has also become the target for novel drugs in treatment and in fundamental research settings. However, much remains unknown on the working mechanisms of these drugs and the effects of chronic administration on the glutamatergic system. This study investigated the chronic effects of two glutamate-modulating drugs with imaging techniques to further clarify their working mechanisms for future research opportunities. Animals were exposed to saline (1 ml/kg), (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) (0.3 mg/kg), or ebselen (10 mg/kg) for 7 consecutive days. At the sixth injection, animals underwent a positron emission tomography (PET)/computed tomography (CT) with (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime) (ABP-688) to visualize the metabotropic G protein-coupled glutamate receptor 5 (mGluR5). After the seventh injection, animals underwent a magnetic resonance spectroscopy (MRS) scan to visualize glutamate and glutamine content. Afterward, results were verified by mGluR5 immunohistochemistry (IHC). PET/CT analysis revealed that animals receiving chronic MK-801 or ebselen had a significant (P < 0.05) higher binding potential (2.90 ± 0.47 and 2.87 ± 0.46, respectively) when compared with saline (1.97 ± 0.39) in the caudate putamen. This was confirmed by mGluR5 IHC, with 60.83% ± 6.30% of the area being highlighted for ebselen and 57.14% ± 9.23% for MK-801 versus 50.21% ± 5.71% for the saline group. MRS displayed significant changes on the glutamine level when comparing chronic ebselen (2.20 ± 0.40 µmol/g) to control (2.72 ± 0.34 µmol/g). Therefore, although no direct effects on glutamate were visualized, the changes in glutamine suggest changes in the total glutamate-glutamine pool. This highlights the potential of both drugs to modulate glutamatergic pathologies.
Collapse
Affiliation(s)
- Stijn Servaes
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| | - Firat Kara
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| | - Dorien Glorie
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| | - Annemie Van Der Linden
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| | - Steven Staelens
- Molecular Imaging Center Antwerp (Sti.S., D.G., Si.S., Ste.S.) and Bio-Imaging Laboratory (F.K., A.V.D.L.), University of Antwerp, Wilrijk, Antwerp, Belgium; and Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium (Si.S.)
| |
Collapse
|
64
|
Yang Y, Tian X, Xu D, Zheng F, Lu X, Zhang Y, Ma Y, Li Y, Xu X, Zhu B, Wang X. GPR40 modulates epileptic seizure and NMDA receptor function. SCIENCE ADVANCES 2018; 4:eaau2357. [PMID: 30345361 PMCID: PMC6192686 DOI: 10.1126/sciadv.aau2357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
Epilepsy is a common neurological disease, and approximately 30% of patients do not respond adequately to antiepileptic drug treatment. Recent studies suggest that G protein-coupled receptor 40 (GPR40) is expressed in the central nervous system and is involved in the regulation of neurological function. However, the impact of GPR40 on epileptic seizures remains unclear. In this study, we first reported that GPR40 expression was increased in epileptic brains. In the kainic acid-induced epilepsy model, GPR40 activation after status epilepticus alleviated epileptic activity, whereas GPR40 inhibition showed the opposite effect. In the pentylenetetrazole-induced kindling model, susceptibility to epilepsy was reduced with GPR40 activation and increased with GPR40 inhibition. Whole-cell patch-clamp recordings demonstrated that GPR40 affected N-methyl-d-aspartate (NMDA) receptor-mediated synaptic transmission. Moreover, GPR40 regulated NR2A and NR2B expression on the surface of neurons. In addition, endocytosis of NMDA receptors and binding of GPR40 with NR2A and NR2B can be regulated by GPR40. Together, our findings indicate that GPR40 modulates epileptic seizures, providing a novel antiepileptic target.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangshuo Zheng
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xi Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanke Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yun Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Binglin Zhu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Corresponding author. (B.Z.); (X.W.)
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100101, China
- Corresponding author. (B.Z.); (X.W.)
| |
Collapse
|
65
|
Liu JT, Wu SX, Zhang H, Kuang F. Inhibition of MyD88 Signaling Skews Microglia/Macrophage Polarization and Attenuates Neuronal Apoptosis in the Hippocampus After Status Epilepticus in Mice. Neurotherapeutics 2018; 15:1093-1111. [PMID: 30112701 PMCID: PMC6277303 DOI: 10.1007/s13311-018-0653-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is implicated in epileptogenesis. Activated microglia and macrophages (MG/MΦ) are found in the brains of patients with epilepsy-related diseases and animal models of epilepsy. It is not yet known how the MG/MΦ activation phenotype affects pathological changes in the brain after a single seizure. In this study, we had 2 main purposes: first, to characterize post-status epilepticus (SE) inflammation by tracking MG/MΦ polarization, and, second, to explore the role of an innate immune receptor adaptor protein, namely, myeloid differentiation primary response gene 88 (MyD88), in the induction of SE in a mouse model. A lithium-pilocarpine model of seizure conditions was generated in C57BL/6 mice. The intensity and distribution of MG/MΦ polarization were tracked by fluorescent immunohistochemistry and Western blotting for the polarization markers inducible nitrogen oxygenized synthase, arginase-1, CD163, and mannose receptor. We observed steadily increasing M1 MG/MΦ along with MyD88 signal upregulation after SE in the hippocampi of mice, whereas the M2 marker arginase-1 was localized mainly in astrocytes rather than in MG/MΦ. Inhibition or gene knockout of MyD88 reduced M1 MG/MΦ and gliosis although increasing M2 MG/MΦ in the hippocampi of SE mice. MyD88 inhibition also augmented glutamate transporter 1 expression and reduced N-methyl-D-aspartate receptor NR1 subunit expression in the hippocampus to protect pyramidal neurons from apoptosis. These data suggest that MG/MΦ polarization after SE impacts the pathological outcome of the hippocampus via MyD88 signaling and point to MyD88 as a potential neuroprotective target for epilepsy therapy.
Collapse
Affiliation(s)
- Jin-Tao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
- Department of Orthopedics, The 413th Hospital of the Chinese People's Liberation Army, Zhoushan, 316000, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| | - Fang Kuang
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
66
|
Zubareva OE, Kovalenko AA, Karyakin VB, Kalemenev SV, Lavrent’eva VV, Magazanik LG, Zaitsev AV. Changes in the Expression of Genes of the Glutamate Transporter and Subunits of the NMDA and AMPA Receptors in the Rat Amygdala in the Lithium–Pilocarpine Model of Epilepsy. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Zhand A, Sayad A, Ghafouri-Fard S, Arsang-Jang S, Mazdeh M, Taheri M. Expression analysis of GRIN2B, BDNF, and IL-1β genes in the whole blood of epileptic patients. Neurol Sci 2018; 39:1945-1953. [PMID: 30140987 DOI: 10.1007/s10072-018-3533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Epilepsy is a brain disorder with a global prevalence of 1%. It has been attributed to genetics and environmental factors. Despite efforts to identify the molecular pathology of epilepsy, the underlying mechanism is not understood yet. This study was carried out to compare GRIN2B, BDNF, and IL-1β gene expressions in 50 patients suffering from generalized epilepsy with tonic-colonic seizures and 50 age- and sex-matched healthy subjects using TaqMan Real-time PCR. Our results demonstrated significant upregulation of these genes in people with epilepsy compared with healthy subjects. We also found a positive correlation between GRIN2B and BDNF expression (r2=0.4619, p < 0.0001), BDNF and IL-1β expression (r2 = 0.515, p < 0.0001), and GRIN2B and IL-1β gene expressions (r2 = 0.666, p < 0.0001) which implies the possibility to estimate the expression level of these genes by assessment of expression of one of them. Considering the results of the previous animal studies which showed upregulation of these genes in brain tissues of epileptic animals, the expression levels of GRIN2B, BDNF, and IL-1β in blood samples might be related to their expression in brain samples. Future studies are needed to assess the role of these genes in the pathogenesis of epilepsy and evaluate whether altered expression of these genes along with imaging methods can facilitate subtyping the epilepsy.
Collapse
Affiliation(s)
- Anoushe Zhand
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran. .,Urogenital Stem Cell Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
68
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
69
|
Inhibition of Acid Sensing Ion Channel 3 Aggravates Seizures by Regulating NMDAR Function. Neurochem Res 2018; 43:1227-1241. [DOI: 10.1007/s11064-018-2540-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
70
|
Wang YJ, Hsieh CP, Chan MH, Chan TY, Chen L, Chen HH. Distinct effects of resveratrol on seizures and hyperexcitability induced by NMDA and 4-aminopyridine. Nutr Neurosci 2018; 22:867-876. [DOI: 10.1080/1028415x.2018.1461458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ya-Jean Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Nursing, Hsin Sheng College of Medical Care and Management, Longtan Township, Taoyuan County, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei City, Taiwan
| | - Tzu-Yi Chan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
| |
Collapse
|
71
|
Heischmann S, Gano LB, Quinn K, Liang LP, Klepacki J, Christians U, Reisdorph N, Patel M. Regulation of kynurenine metabolism by a ketogenic diet. J Lipid Res 2018; 59:958-966. [PMID: 29605816 PMCID: PMC5983405 DOI: 10.1194/jlr.m079251] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Ketogenic diets (KDs) are increasingly utilized as treatments for epilepsy, other neurological diseases, and cancer. Despite their long history in suppressing seizures, the distinct molecular mechanisms of action of KDs are still largely unknown. The goal of this study was to identify key metabolites and pathways altered in the hippocampus and plasma of rats fed a KD versus control diet (CD) either ad libitum or calorically restricted to 90% of the recommended intake. This was accomplished using a combination of targeted methods and untargeted MS-based metabolomics analyses. Various metabolites of and related to the tryptophan (TRP) degradation pathway, such as kynurenine (KYN), kynurenic acid as well as enzyme cofactors, showed significant changes between groups fed different diets and/or calorie amounts in plasma and/or the hippocampus. KYN was significantly downregulated in both matrices in animals of the CD-calorically restricted, KD-ad libitum, and KD-calorically restricted groups compared with the CD-ad libitum group. Our data suggest that the TRP degradation pathway is a key target of the KD.
Collapse
Affiliation(s)
- Svenja Heischmann
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045
| | - Lindsey B Gano
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045
| | - Jacek Klepacki
- iC42 Clinical Research and Development, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045
| | - Uwe Christians
- iC42 Clinical Research and Development, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy University of Colorado Denver, Aurora, CO 80045.
| |
Collapse
|
72
|
Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat Commun 2018; 9:957. [PMID: 29511171 PMCID: PMC5840332 DOI: 10.1038/s41467-018-02927-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg2+ block. In addition, we provide new views on Mg2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2BV618G unusually allowed Mg2+ permeation, whereas nearby N615I reduced Ca2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.
Collapse
Affiliation(s)
- Laura Fedele
- Department of Pharmacology, UCL School of Pharmacy Brunswick Square, London, WC1N 1AX, UK
- Department of Neuroscience, Physiology & Pharmacology UCL, Gower Street, London, WC1E 6BT, UK
| | - Joseph Newcombe
- Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Maya Topf
- Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology & Pharmacology UCL, Gower Street, London, WC1E 6BT, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia.
- Sunshine Coast Health Institute, 6 Doherty Street, Birtinya, QLD 4575, Australia.
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology UCL, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
73
|
Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget 2018; 7:55840-55862. [PMID: 27323834 PMCID: PMC5342457 DOI: 10.18632/oncotarget.10095] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023] Open
Abstract
Glutamate is probably the most important excitatory neurotransmitter in the brain. The glutamate N-methyl-D-aspartate receptor (NMDAR) is a calcium-gated channel that coordinates with G protein-coupled receptors (GPCRs) to establish the efficiency of the synaptic transmission. Cross-regulation between these receptors requires the concerted activity of the histidine triad nucleotide-binding protein 1 (HINT1) and of the sigma receptor type 1 (σ1R). Essential brain functions like learning, memory formation and consolidation, mood and behavioral responses to exogenous stimuli depend on the activity of NMDARs. In this biological context, endocannabinoids are released to retain NMDAR activity within physiological limits. The efficacy of such control depends on HINT1/σ1R assisting in the physical coupling between cannabinoid type 1 receptors (CB1Rs) and NMDARs to dampen their activity. Subsequently, the calcium-regulated HINT1/σ1R protein tandem uncouples CB1Rs to prevent NMDAR hypofunction. Thus, early recruitment or a disproportionate cannabinoid induced response can bring about excess dampening of NMDAR activity, impeding its adequate integration with GPCR signaling. Alternatively, this control circuit can apparently be overridden in situations where bursts of NMDAR overactivity provoke convulsive syndromes. In this review we will discuss the possible relevance of the HINT1/σ1R tandem and its use by endocannabinoids to diminish NMDAR activity and their implications in psychosis/schizophrenia, as well as in NMDAR-mediated convulsive episodes.
Collapse
|
74
|
Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, Kanthasamy AG, Thippeswamy T. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis 2018; 110:102-121. [PMID: 29197620 PMCID: PMC5753797 DOI: 10.1016/j.nbd.2017.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn-/- and fyn+/+ mice (wildtype control for the fyn-/- mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn-/- mice when compared to fyn+/+ mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn-/- mice as compared to fyn+/+ mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn-/- mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1β, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91phox, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn+/+ mice in contrast to fyn-/- mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn+/+ mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
Collapse
Affiliation(s)
- Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Steven Carlson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames 50011, USA
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.
| |
Collapse
|
75
|
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY, USA
| |
Collapse
|
76
|
Tao H, Zhou X, Xie Q, Ma Z, Sun F, Cui L, Cai Y, Ma G, Fu J, Liu Z, Li Y, Zhou H, Zhao J, Chen Y, Mai H, Chen Y, Chen J, Qi W, Sun C, Zhao B, Li K. SRR intronic variation inhibits expression of its neighbouring SMG6 gene and protects against temporal lobe epilepsy. J Cell Mol Med 2018; 22:1883-1893. [PMID: 29363864 PMCID: PMC5824374 DOI: 10.1111/jcmm.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023] Open
Abstract
D‐serine is a predominant N‐methyl‐D‐aspartate receptor co‐agonist with glutamate, and excessive activation of the receptor plays a substantial role in epileptic seizures. Serine racemase (SRR) is responsible for transforming L‐serine to D‐serine. In this study, we aimed to investigate the genetic roles of SRR and a neighbouring gene, nonsense‐mediated mRNA decay factor (SMG6), in temporal lobe epilepsy (TLE). Here, a total of 496 TLE patients and 528 healthy individuals were successfully genotyped for three SRR tag single nucleotide polymorphisms. The frequencies of the GG genotype at rs4523957 T > G were reduced in the TLE cases in the initial cohort (cohort 1) and were confirmed in the independent cohort (cohort 2). An analysis of all TLE cases in cohort 1 + 2 revealed that the seizure frequency and drug‐resistant incidence were significantly decreased in carriers of the GG genotype at rs4523957. Intriguingly, the activity of the SMG6 promoter with the mutant allele at rs4523957 decreased by 22% in the dual‐luciferase assay, and up‐regulated expression of SMG6 was observed in an epilepsy rat model. This study provides the first demonstration that the GG genotype is a protective marker against TLE. In particular, variation at rs4523957 likely inhibits SMG6 transcription and plays a key role against susceptibility to and severity of TLE. The significance of SMG6 hyperfunction in epileptic seizures deserves to be investigated in future studies.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Xie
- Emergency Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fuhai Sun
- Department of Neurology, the First People's Hospital of Pingdingshan, Pingdingshan, Hebei, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - You Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hui Mai
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying Chen
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Qi
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China.,Stroke Center, Neurology& Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
77
|
Deora GS, Kantham S, Chan S, Dighe SN, Veliyath SK, McColl G, Parat MO, McGeary RP, Ross BP. Multifunctional Analogs of Kynurenic Acid for the Treatment of Alzheimer's Disease: Synthesis, Pharmacology, and Molecular Modeling Studies. ACS Chem Neurosci 2017; 8:2667-2675. [PMID: 28825789 DOI: 10.1021/acschemneuro.7b00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report the synthesis and pharmacological investigation of analogs of the endogenous molecule kynurenic acid (KYNA) as multifunctional agents for the treatment of Alzheimer's disease (AD). Synthesized KYNA analogs were tested for their N-methyl-d-aspartate (NMDA) receptor binding, mGluR5 binding and function, acetylcholinesterase (AChE) inhibition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, interference with the amyloid β peptide (Aβ) fibrillation process, and protection against Aβ-induced toxicity in transgenic Caenorhabditis elegans strain GMC101 expressing full-length Aβ42. Molecular modeling studies were also performed to predict the binding modes of most active compounds with NMDAR, mGluR5, and Aβ42. Among the synthesized analogs, 3c, 5b, and 5c emerged as multifunctional compounds that act via multiple anti-AD mechanisms including AChE inhibition, free radical scavenging, NMDA receptor binding, mGluR5 binding, inhibition of Aβ42 fibril formation, and disassembly of preformed Aβ42 fibrils. Interestingly, 5c showed protection against Aβ42-induced toxicity in transgenic C. elegans strain GMC101. Moreover, 5b and 5c displayed high permeability in an MDR1-MDCKII cell-based model of the blood-brain barrier (BBB). Compound 3b emerged with specific activity as a micromolar AChE inhibitor, however it had low permeability in the BBB model. This study highlights the opportunities that exist to develop analogs of endogenous molecules from the kynurenine pathway for therapeutic uses.
Collapse
Affiliation(s)
- Girdhar Singh Deora
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Srinivas Kantham
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Stephen Chan
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Satish N. Dighe
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Suresh K. Veliyath
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Gawain McColl
- The
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marie-Odile Parat
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Ross P. McGeary
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | - Benjamin P. Ross
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| |
Collapse
|
78
|
Kovalev IG, Vasil’eva EV, Kondrakhin EA, Voronina TA, Kovalev GI. The role of glutamate and GABA receptors in the anticonvulsive effects of levetiracetam and a 4-phenylpirrolidone derivative (GIZh-290) in rats. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Mutations of N-Methyl-D-Aspartate Receptor Subunits in Epilepsy. Neurosci Bull 2017; 34:549-565. [PMID: 29124671 DOI: 10.1007/s12264-017-0191-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 01/31/2023] Open
Abstract
Epilepsy is one of the most common neurological diseases. Of all cases, 70%-80% are considered to be due to genetic factors. In recent years, a large number of genes have been identified as being involved in epilepsy. Among them, N-methyl-D-aspartate receptor (NMDAR) subunit-encoding genes represent a large proportion, suggesting an important role for NMDARs in epilepsy. In this review, we summarize and analyze the genotypes, functional alterations, and clinical aspects of NMDAR subunit mutations/variants identified from patients with epilepsy. These data will help to throw light upon the pathogenicity of these NMDAR mutations and advance our understanding of the subtle and complicated role of NMDARs in epilepsy. It will also offer new insights into precision therapy for this disorder.
Collapse
|
80
|
Khan MA, Houck DR, Gross AL, Zhang XL, Cearley C, Madsen TM, Kroes RA, Stanton PK, Burgdorf J, Moskal JR. NYX-2925 Is a Novel NMDA Receptor-Specific Spirocyclic-β-Lactam That Modulates Synaptic Plasticity Processes Associated with Learning and Memory. Int J Neuropsychopharmacol 2017; 21:242-254. [PMID: 29099938 PMCID: PMC5838819 DOI: 10.1093/ijnp/pyx096] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors are one member of a family of ionotropic glutamate receptors that play a pivotal role in synaptic plasticity processes associated with learning and have become attractive therapeutic targets for diseases such as depression, anxiety, schizophrenia, and neuropathic pain. NYX-2925 ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide) is one member of a spiro-β-lactam-based chemical platform that mimics some of the dipyrrolidine structural features of rapastinel (formerly GLYX-13: threonine-proline-proline-threonine) and is distinct from known N-methyl-D-aspartate receptor agonists or antagonists such as D-cycloserine, ketamine, MK-801, kynurenic acid, or ifenprodil. METHODS The in vitro and in vivo pharmacological properties of NYX-2925 were examined. RESULTS NYX-2925 has a low potential for "off-target" activity, as it did not exhibit any significant affinity for a large panel of neuroactive receptors, including hERG receptors. NYX-2925 increased MK-801 binding to human N-methyl-D-aspartate receptor NR2A-D subtypes expressed in HEK cells and enhanced N-methyl-D-aspartate receptor current and long-term potentiation (LTP) in rat hippocampal slices (100-500 nM). Single dose ex vivo studies showed increased metaplasticity in a hippocampal LTP paradigm and structural plasticity 24 hours after administration (1 mg/kg p.o.). Significant learning enhancement in both novel object recognition and positive emotional learning paradigms were observed (0.01-1 mg/kg p.o.), and these effects were blocked by the N-methyl-D-aspartate receptor antagonist CPP. NYX-2925 does not show any addictive or sedative/ataxic side effects and has a therapeutic index of >1000. NYX-2925 (1 mg/kg p.o.) has a cerebrospinal fluid half-life of 1.2 hours with a Cmax of 44 nM at 1 hour. CONCLUSIONS NYX-2925, like rapastinel, activates an NMDA receptor-mediated synaptic plasticity process and may have therapeutic potential for a variety of NMDA receptor-mediated central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| | | | | | - Roger A Kroes
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| | - Jeffrey Burgdorf
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Joseph R Moskal
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois,Correspondence: Joseph Moskal, PhD, Falk Center for Molecular Therapeutics, Northwestern University Department of Biomedical Engineering, 1801 Maple Ave, Suite 4300, Evanston, IL, 60201 ()
| |
Collapse
|
81
|
Wang X, Tian X, Yang Y, Lu X, Li Y, Ma Y, Zhang Y, Zheng F, Lu S, Xu D, Xu X, Wang W, Wang X. POSH participates in epileptogenesis by increasing the surface expression of the NMDA receptor: a promising therapeutic target for epilepsy. Expert Opin Ther Targets 2017; 21:1083-1094. [PMID: 29057721 DOI: 10.1080/14728222.2017.1394456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinshi Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanke Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangshuo Zheng
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
82
|
Kuzmanova R, Stefanova I. Basic Mechanisms of Action of the Antiepileptic Drugs. ACTA MEDICA BULGARICA 2017. [DOI: 10.1515/amb-2017-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Available antiepileptic drugs interact with a variety of different molecular targets. The mechanism of action of most anticonvulsants is most often complex with a number of affected regions. The combination of mechanisms of action of drugs in particular proportions can possibly determine the showcase of its antiepileptic activity. The common factor between the different supposed mechanisms for a number of drugs includes the possibility for modulating the excitatory and inhibitory neurotransmission through effects upon the voltage-gated ion channels, synaptic plasticity, heterogeneous receptors, and metabolism of neurotransmitters. There are controversial data on the extent to which a specific action can be the reason for the wholesome anticonvulsive characteristics of various medications, as well as the relation with the presence of undesired drug effects. The complexity of the action of some antiepileptic drugs creates conditions for optimal choice during therapy. In many cases, the insufficient familiarity with individual genetic differences and the disease related receptor damages can hinder defining a particular drug action. Characterizing the mechanisms of action of the present antiepileptic medications would increase the understanding for the pathophysiological mechanisms of epileptic seizures, as well as the development of new therapeutic strategies. The development of novel antiepileptic drugs and the ongoing research regarding the mechanism of action of established antiepileptic drugs, are continuously increasing the level of complexity in the spectrum of molecular targets relevant for epilepsy therapy. The current state of knowledge as well as the limitations in our understanding should guide future research aiming for a more detailed elucidation of the impact of genetics and pathophysiological mechanisms on interindividual differences in expression and function of antiepileptic drug targets.
Collapse
Affiliation(s)
- R. Kuzmanova
- University Hospital of Neurology and Psychiatry “Sv. Naum” – Sofia , Bulgaria
- Medical University – Sofia
| | - I. Stefanova
- University Hospital of Neurology and Psychiatry “Sv. Naum” – Sofia , Bulgaria
| |
Collapse
|
83
|
Lohman AW, Weilinger NL, Santos SM, Bialecki J, Werner AC, Anderson CL, Thompson RJ. Regulation of pannexin channels in the central nervous system by Src family kinases. Neurosci Lett 2017; 695:65-70. [PMID: 28911820 DOI: 10.1016/j.neulet.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silva Mf Santos
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bialecki
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison C Werner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
84
|
Mullier B, Wolff C, Sands ZA, Ghisdal P, Muglia P, Kaminski RM, André VM. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 2017; 123:322-331. [DOI: 10.1016/j.neuropharm.2017.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
|
85
|
Ghasemi M, Phillips C, Fahimi A, McNerney MW, Salehi A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci Biobehav Rev 2017; 80:555-572. [DOI: 10.1016/j.neubiorev.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
|
86
|
Cho YJ, Kim H, Kim WJ, Chung S, Kim YH, Cho I, Lee BI, Heo K. Trafficking patterns of NMDA and GABA A receptors in a Mg 2+-free cultured hippocampal neuron model of status epilepticus. Epilepsy Res 2017; 136:143-148. [PMID: 28858777 DOI: 10.1016/j.eplepsyres.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/01/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
An altered pattern of receptor trafficking is one of the pathophysiologic mechanisms of status epilepticus (SE). The gradual internalization of GABAA receptors (GABARs) occurs in both in vitro and in vivo models of SE and is thought to be a cause of decreased GABAergic inhibition. Unlike GABARs, little is known about alterations in NMDA receptor (NMDAR) trafficking during SE, even though increased activity of NMDARs is indispensable for the induction and maintenance of SE. Therefore, we aimed to simultaneously investigate the changes in the trafficking patterns of GABARs and NMDARs in an in vitro cultured hippocampal neuron model of SE. For induction of epileptiform discharges, hippocampal neurons were exposed to external medium without Mg2+. Biotinylation assay and immunofluorescence staining for GABAR β2,3 and NMDAR NR1 subunits were performed to quantify and visualize surface GABARs and NMDARs, respectively. The frequency of spontaneous action potentials increased more than 4-fold after Mg2+-free induction. The level of surface GABARs decreased over time after Mg2+-free induction, dropping to approximately 50% of control levels an hour after Mg2+-free induction. By contrast, the trafficking of NMDARs to the surface was enhanced after a slight time lag, increasing by 30% of control levels an hour after Mg2+-free induction. Our data showed the changes of both NMDAR and GABAR trafficking during prolonged SE induced by a Mg2+-free extracellular environment and confirmed that this in vitro SE model is suitable for examining alterations in the receptor trafficking pattern by prolonged seizure activity. These results suggest that targeting of surface NMDAR could be a promising method in controlling benzodiazepine-resistant SE.
Collapse
Affiliation(s)
- Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunjeong Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Inja Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Neurology, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan 48108, Republic of Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
87
|
Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine. Int J Mol Sci 2017; 18:ijms18081617. [PMID: 28758944 PMCID: PMC5578009 DOI: 10.3390/ijms18081617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.
Collapse
|
88
|
Platzer K, Yuan H, Schütz H, Winschel A, Chen W, Hu C, Kusumoto H, Heyne HO, Helbig KL, Tang S, Willing MC, Tinkle BT, Adams DJ, Depienne C, Keren B, Mignot C, Frengen E, Strømme P, Biskup S, Döcker D, Strom TM, Mefford HC, Myers CT, Muir AM, LaCroix A, Sadleir L, Scheffer IE, Brilstra E, van Haelst MM, van der Smagt JJ, Bok LA, Møller RS, Jensen UB, Millichap JJ, Berg AT, Goldberg EM, De Bie I, Fox S, Major P, Jones JR, Zackai EH, Jamra RA, Rolfs A, Leventer RJ, Lawson JA, Roscioli T, Jansen FE, Ranza E, Korff CM, Lehesjoki AE, Courage C, Linnankivi T, Smith DR, Stanley C, Mintz M, McKnight D, Decker A, Tan WH, Tarnopolsky MA, Brady LI, Wolff M, Dondit L, Pedro HF, Parisotto SE, Jones KL, Patel AD, Franz DN, Vanzo R, Marco E, Ranells JD, Di Donato N, Dobyns WB, Laube B, Traynelis SF, Lemke JR. GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 2017; 54:460-470. [PMID: 28377535 PMCID: PMC5656050 DOI: 10.1136/jmedgenet-2016-104509] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. METHODS Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. RESULTS Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. CONCLUSIONS In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.
Collapse
Affiliation(s)
- Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hannah Schütz
- Department of Neurophysiology and Neurosensory Systems, Technical University Darmstadt, Darmstadt, Hessen, Germany
| | - Alexander Winschel
- Department of Neurophysiology and Neurosensory Systems, Technical University Darmstadt, Darmstadt, Hessen, Germany
| | - Wenjuan Chen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Chun Hu
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Henrike O Heyne
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katherine L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Marcia C Willing
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Brad T Tinkle
- Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Darius J Adams
- Genetics and Metabolism, Goryeb Children’s Hospital, Atlantic Health System, Morristown, New Jersey, USA
| | - Christel Depienne
- INSERM, U 1127, Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Paris, France
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, GRC UPMC “Déficiences Intellectuelles et Autisme”, Hôpital de la Pitié-Salpêtrière, Paris, France
- UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France
- Laboratoire de cytogénétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- INSERM, U 1127, Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Paris, France
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, GRC UPMC “Déficiences Intellectuelles et Autisme”, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, GRC UPMC “Déficiences Intellectuelles et Autisme”, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospitals and University of Oslo, Oslo, Norway
| | - Petter Strømme
- Department of Pediatrics, Oslo University Hospitals and University of Oslo, Oslo, Norway
| | - Saskia Biskup
- Practice for Human Genetics and CeGaT GmbH, Tübingen, Germany
| | - Dennis Döcker
- Practice for Human Genetics and CeGaT GmbH, Tübingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Candace T Myers
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Alison M Muir
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Amy LaCroix
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Health and Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Eva Brilstra
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Mieke M van Haelst
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Levinus A Bok
- Department of Paediatrics, Màxima Medical Centre, Veldhoven, The Netherlands
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Uffe B Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - John J Millichap
- Departments of Pediatrics, Epilepsy Center and Division of Neurology Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anne T Berg
- Departments of Pediatrics, Epilepsy Center and Division of Neurology Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ethan M Goldberg
- Division of Neurology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle De Bie
- Department of Medical Genetics, Montreal Children’s Hospital, McGill University Health Center, Montreal, Canada
| | - Stephanie Fox
- Department of Medical Genetics, Montreal Children’s Hospital, McGill University Health Center, Montreal, Canada
| | - Philippe Major
- Department of Neurological Sciences, Université de Montréal, CHU Ste-Justine, Montreal, Canada
| | - Julie R Jones
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Elaine H Zackai
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
- Centogene AG, Rostock, Germany
| | | | - Richard J Leventer
- Department of Neurology, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Murdoch Childrens Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children’s Hospital, Sydney, New South Wales, Australia
| | | | - Floor E Jansen
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Emmanuelle Ranza
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Christian M Korff
- Department of Child and Adolescent, Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Anna-Elina Lehesjoki
- The Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Carolina Courage
- The Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tarja Linnankivi
- Department of Pediatric Neurology, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Mark Mintz
- The Center for Neurological and Neurodevelopmental Health and the Clinical Research Center of New Jersey, Voorhees, New Jersey, USA
| | | | | | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Lauren I Brady
- Department of Pediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Markus Wolff
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tubingen, Germany
| | - Lutz Dondit
- Department of Pediatric Neurology and Center for Developmental Medicine, Olgahospital Stuttgart, Stuttgart, Germany
| | - Helio F Pedro
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | - Kelly L Jones
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anup D Patel
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David N Franz
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rena Vanzo
- Lineagen, Inc., Salt Lake City, Utah, USA
| | - Elysa Marco
- Department of Neurology, University of San Francisco School of Medicine, San Francisco, California, USA
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Nataliya Di Donato
- Institute for Clinical Genetics, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Bodo Laube
- Department of Neurophysiology and Neurosensory Systems, Technical University Darmstadt, Darmstadt, Hessen, Germany
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| |
Collapse
|
89
|
Sun MY, Chisari M, Eisenman LN, Zorumski CF, Mennerick SJ. Contributions of space-clamp errors to apparent time-dependent loss of Mg 2+ block induced by NMDA. J Neurophysiol 2017; 118:532-543. [PMID: 28356471 DOI: 10.1152/jn.00106.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) govern synaptic plasticity, development, and neuronal response to insult. Prolonged activation of NMDARs such as during an insult may activate secondary currents or modulate Mg2+ sensitivity, but the conditions under which these occur are not fully defined. We reexamined the effect of prolonged NMDAR activation in juvenile mouse hippocampal slices. NMDA (10 μM) elicited current with the expected negative-slope conductance in the presence of 1.2 mM Mg2+ However, several minutes of continued NMDA exposure elicited additional inward current at -70 mV. A higher concentration of NMDA (100 µM) elicited the current more rapidly. The additional current was not dependent on Ca2+, network activity, or metabotropic NMDAR function and did not persist on agonist removal. Voltage ramps revealed no alteration of either reversal potential or NMDA-elicited conductance between -30 mV and +50 mV. The result was a more linear NMDA current-voltage relationship. The current linearization was also induced in interneurons and in mature dentate granule neurons but not immature dentate granule cells, dissociated cultured hippocampal neurons, or nucleated patches excised from CA1 pyramidal neurons. Comparative simulations of NMDA application to a CA1 pyramidal neuron and to a cultured neuron revealed that linearization can be explained by space-clamp errors arising from gradual recruitment of distal dendritic NMDARs. We conclude that persistent secondary currents do not strongly contribute to NMDAR responses in juvenile mouse hippocampus and careful discernment is needed to exclude contributions of clamp artifacts to apparent secondary currents.NEW & NOTEWORTHY We report that upon sustained activation of NMDARs in juvenile mouse hippocampal neurons there is apparent loss of Mg2+ block at negative membrane potentials. However, the phenomenon is explained by loss of dendritic voltage clamp, leading to a linear current-voltage relationship. Our results give a specific example of how spatial voltage errors in voltage-clamp recordings can readily be misinterpreted as biological modulation.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, Missouri; and
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
90
|
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological study of the acute and chronic effects of lamotrigine in the genetic audiogenic seizure hamster (GASH:Sal). Epilepsy Behav 2017; 71:207-217. [PMID: 26876275 DOI: 10.1016/j.yebeh.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
The present study aimed to investigate the behavioral and anticonvulsant effects of lamotrigine (LTG) on the genetic audiogenic seizure hamster (GASH:Sal), an animal model of audiogenic seizure that is in the validation process. To evaluate the efficiency of acute and chronic treatments with LTG, GASH:Sals were treated with LTG either acutely via intraperitoneal injection (5-20mg/kg) or chronically via oral administration (20-25mg/kg/day). Their behavior was assessed via neuroethological analysis, and the anticonvulsant effect of LTG was evaluated based on the appearance and the severity of seizures. The results showed that acute administration of LTG exerts an anticonvulsant effect at the lowest dose tested (5mg/kg) and that chronic oral LTG treatment exerts an anticonvulsant effect at a dose of 20-25mg/kg/day. Furthermore, LTG treatment induced a low rate of secondary adverse effects. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- B Barrera-Bailón
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain
| | - J A C Oliveira
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - D E López
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - L J Muñoz
- Animal Research Service, University of Salamanca, Salamanca, Spain
| | - N Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - C Sancho
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain; Department of Physiology and Pharmacology, School of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
91
|
Turovskaya MV, Babaev AA, Zinchenko VP, Epifanova EA, Borisova EV, Tarabykin VS, Turovsky EA. Sip-1 mutations cause disturbances in the activity of NMDA- and AMPA-, but not kainate receptors of neurons in the cerebral cortex. Neurosci Lett 2017; 650:180-186. [PMID: 28455101 DOI: 10.1016/j.neulet.2017.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b), Zeb2] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome (MWS) in humans. MWS is a rare genetic autosomal dominant disease caused by a mutation in the Sip1 gene (aka Zeb2 or Zfhx1b) mapped to 2q22.3 locus. MWS affects 1 in every 50-100 newborns worldwide. It is characterized by mental retardation, small stature, typical facial abnormalities as well as disturbances in the development of the cardio-vascular and renal systems as well as some other organs. Sip1 mutations cause abnormal neurogenesis in the brain during development as well as susceptibility to epileptic seizures. In the current study we investigated the role of the Sip1 gene in the activity of NMDA-, AMPA- and KA- receptors. We showed that a particular Sip1 mutation in the mouse causes changes in the activity of both NMDA- and AMPA- receptors in the neocortical neurons in vitro. We demonstrate that neocortical neurons that have only one copy of Sip1 (heterozygous, Sip1fI/wt), are more sensitive to both NMDA- and AMPA- receptors agonists as compared to wild type neurons (Sip1wt/wt). This is reflected in higher amplitudes of agonist induced Ca2+ signals as well as a lower half maximal effective concentration (ЕC50). In contrast, neurons from homozygous Sip1 mice (Sip1fI/fI), demonstrate higher resistance to these respective receptor agonists. This is reflected in lower amplitudes of Ca2+-responses and so a higher concentration of receptor activators is required for activation.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia
| | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | | | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina V Borisova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
92
|
Brodie MJ, Besag F, Ettinger AB, Mula M, Gobbi G, Comai S, Aldenkamp AP, Steinhoff BJ. Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review. Pharmacol Rev 2017; 68:563-602. [PMID: 27255267 PMCID: PMC4931873 DOI: 10.1124/pr.115.012021] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases.
Collapse
Affiliation(s)
- Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Frank Besag
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Alan B Ettinger
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Marco Mula
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Gabriella Gobbi
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Stefano Comai
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Albert P Aldenkamp
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Bernhard J Steinhoff
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| |
Collapse
|
93
|
NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci Rep 2017; 7:45540. [PMID: 28358047 PMCID: PMC5371989 DOI: 10.1038/srep45540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
Collapse
|
94
|
Gao K, Tankovic A, Zhang Y, Kusumoto H, Zhang J, Chen W, XiangWei W, Shaulsky GH, Hu C, Traynelis SF, Yuan H, Jiang Y. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS One 2017; 12:e0170818. [PMID: 28182669 PMCID: PMC5300259 DOI: 10.1371/journal.pone.0170818] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE N-methyl-D-aspartate receptors (NMDAR) subunit GRIN2A/GluN2A mutations have been identified in patients with various neurological diseases, such as epilepsy and intellectual disability / developmental delay (ID/DD). In this study, we investigated the phenotype and underlying molecular mechanism of a GRIN2A missense mutation identified by next generation sequencing on idiopathic focal epilepsy using in vitro electrophysiology. METHODS Genomic DNA of patients with epilepsy and ID/DD were sequenced by targeted next-generation sequencing within 300 genes related to epilepsy and ID/DD. The effects of one missense GRIN2A mutation on NMDAR function were evaluated by two-electrode voltage clamp current recordings and whole cell voltage clamp current recordings. RESULTS We identified one de novo missense GRIN2A mutation (Asp731Asn, GluN2A(D731N)) in a child with unexplained epilepsy and DD. The D731N mutation is located in a portion of the agonist-binding domain (ABD) in the GluN2A subunit, which is the binding pocket for agonist glutamate. This residue in the ABD is conserved among vertebrate species and all other NMDAR subunits, suggesting an important role in receptor function. The proband shows developmental delay as well as EEG-confirmed seizure activity. Functional analyses reveal that the GluN2A(D731N) mutation decreases glutamate potency by over 3,000-fold, reduces amplitude of current response, shortens synaptic-like response time course, and decreases channel open probability, while enhancing sensitivity to negative allosteric modulators, including extracellular proton and zinc inhibition. The combined effects reduce NMDAR function. SIGNIFICANCE We identified a de novo missense mutation in the GRIN2A gene in a patient with childhood focal epilepsy and acquired epileptic aphasia. The mutant decreases NMDAR activation suggesting NMDAR hypofunction may contribute to the epilepsy pathogenesis.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Anel Tankovic
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yujia Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hirofumi Kusumoto
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jin Zhang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Wenjuan Chen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Gil H. Shaulsky
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Chun Hu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
95
|
Amakhin DV, Ergina JL, Chizhov AV, Zaitsev AV. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex. Front Cell Neurosci 2016; 10:233. [PMID: 27790093 PMCID: PMC5061778 DOI: 10.3389/fncel.2016.00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia; Computational Physics Laboratory, Division of Plasma Physics, Atomic Physics and Astrophysics, Ioffe InstituteSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| |
Collapse
|
96
|
Li D, Yuan H, Ortiz-Gonzalez XR, Marsh ED, Tian L, McCormick EM, Kosobucki GJ, Chen W, Schulien AJ, Chiavacci R, Tankovic A, Naase C, Brueckner F, von Stülpnagel-Steinbeis C, Hu C, Kusumoto H, Hedrich UBS, Elsen G, Hörtnagel K, Aizenman E, Lemke JR, Hakonarson H, Traynelis SF, Falk MJ. GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet 2016; 99:802-816. [PMID: 27616483 DOI: 10.1016/j.ajhg.2016.07.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Death
- Child
- DNA Mutational Analysis
- Dendrites/pathology
- Electroencephalography
- Exome/genetics
- Female
- Genes, Dominant/genetics
- Glutamic Acid/metabolism
- Humans
- Infant
- Infant, Newborn
- Ketamine/therapeutic use
- Magnesium/therapeutic use
- Memantine/administration & dosage
- Memantine/therapeutic use
- Models, Molecular
- Mutation
- Precision Medicine
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Seizures/drug therapy
- Seizures/genetics
- Seizures/metabolism
- Spasms, Infantile/drug therapy
- Spasms, Infantile/genetics
- Spasms, Infantile/metabolism
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongjie Yuan
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Xilma R Ortiz-Gonzalez
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lifeng Tian
- Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth M McCormick
- Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle J Kosobucki
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wenjuan Chen
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Anthony J Schulien
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rosetta Chiavacci
- Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anel Tankovic
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Claudia Naase
- Children's Hospital Bayreuth, 95445 Bayreuth, Germany
| | - Frieder Brueckner
- Institute for Neuropediatrics and Social Pediatrics Hamburg East, 22111 Hamburg, Germany
| | - Celina von Stülpnagel-Steinbeis
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, 83569 Vogtareuth, Germany; Institute for Transition, Rehabilitation and Palliation in Children and Adolescents, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Chun Hu
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Gina Elsen
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Elias Aizenman
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Marni J Falk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
97
|
Anticonvulsant activity of the antidepressant drug, tianeptine, against pentylenetetrazole-induced seizures mitigates cognitive impairment in rats. Behav Pharmacol 2016; 27:623-32. [DOI: 10.1097/fbp.0000000000000257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 2016; 26:199-223. [PMID: 25565544 DOI: 10.1515/revneuro-2014-0044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) may play a key role in the pathophysiology of some neurological diseases such as epilepsy. Based on genetic studies in patients with epileptic disorders worldwide and animal models of seizure, it has been demonstrated that nAChR activity is altered in some specific types of epilepsy, including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and juvenile myoclonic epilepsy (JME). Neuronal nAChR antagonists also have antiepileptic effects in pre-clinical studies. There is some evidence that conventional antiepileptic drugs may affect neuronal nAChR function. In this review, we re-examine the evidence for the involvement of nAChRs in the pathophysiology of some epileptic disorders, especially ADNFLE and JME, and provide an overview of nAChR antagonists that have been evaluated in animal models of seizure.
Collapse
|
99
|
Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One 2016; 11:e0159745. [PMID: 27505431 PMCID: PMC4978505 DOI: 10.1371/journal.pone.0159745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the hippocampi of pediatric and adult epileptic patients. Additionally, we have also found that despite of its transient nature, the histone modification H3S10ph is strongly and gradually accumulated during epileptogenesis in the cell nuclei and in the proximal Mmp-9 gene promoter in the hippocampus, which suggests that H3S10ph can be involved in DNA demethylation in mammals, and not only in Neurospora. The study identifies MMP-9 as the first protein coding gene which expression is regulated by DNA methylation in human epilepsy. We present a detailed epigenetic model of the epileptogenesis-evoked upregulation of MMP-9 expression in the hippocampus. To our knowledge, it is the most complex and most detailed mechanism of epigenetic regulation of gene expression ever revealed for a particular gene in epileptogenesis. Our results also suggest for the first time that dysregulation of DNA methylation found in epilepsy is a cause rather than a consequence of this condition.
Collapse
|
100
|
Kumar G, Patnaik R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Med Hypotheses 2016; 92:35-43. [PMID: 27241252 DOI: 10.1016/j.mehy.2016.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|