51
|
Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. J Invest Dermatol 2020; 140:284-290. [DOI: 10.1016/j.jid.2019.06.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
|
52
|
Modulating Tumor Cell Functions by Tunable Nanopatterned Ligand Presentation. NANOMATERIALS 2020; 10:nano10020212. [PMID: 31991896 PMCID: PMC7074906 DOI: 10.3390/nano10020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Cancer comprises a large group of complex diseases which arise from the misrouted interplay of mutated cells with other cells and the extracellular matrix. The extracellular matrix is a highly dynamic structure providing biochemical and biophysical cues that regulate tumor cell behavior. While the relevance of biochemical signals has been appreciated, the complex input of biophysical properties like the variation of ligand density and distribution is a relatively new field in cancer research. Nanotechnology has become a very promising tool to mimic the physiological dimension of biophysical signals and their positive (i.e., growth-promoting) and negative (i.e., anti-tumoral or cytotoxic) effects on cellular functions. Here, we review tumor-associated cellular functions such as proliferation, epithelial-mesenchymal transition (EMT), invasion, and phenotype switch that are regulated by biophysical parameters such as ligand density or substrate elasticity. We also address the question of how such factors exert inhibitory or even toxic effects upon tumor cells. We describe three principles of nanostructured model systems based on block copolymer nanolithography, electron beam lithography, and DNA origami that have contributed to our understanding of how biophysical signals direct cancer cell fate.
Collapse
|
53
|
Schulte C. Cluster-assembled nanostructured materials for cell biology. CLUSTER BEAM DEPOSITION OF FUNCTIONAL NANOMATERIALS AND DEVICES 2020. [DOI: 10.1016/b978-0-08-102515-4.00010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
54
|
Ma Z, Holle AW, Melde K, Qiu T, Poeppel K, Kadiri VM, Fischer P. Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904181. [PMID: 31782570 DOI: 10.1002/adma.201904181] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Indexed: 05/21/2023]
Abstract
Acoustophoresis is promising as a rapid, biocompatible, noncontact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, nonsymmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. It is shown that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. It is shown that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicate that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for noncontact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.
Collapse
Affiliation(s)
- Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, 69120, Germany
| | - Kai Melde
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Tian Qiu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Korbinian Poeppel
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Vincent Mauricio Kadiri
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
55
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
56
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
57
|
Sasikumar S, Chameettachal S, Cromer B, Pati F, Kingshott P. Decellularized extracellular matrix hydrogels—cell behavior as a function of matrix stiffness. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Hippler M, Lemma ED, Bertels S, Blasco E, Barner-Kowollik C, Wegener M, Bastmeyer M. 3D Scaffolds to Study Basic Cell Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808110. [PMID: 30793374 DOI: 10.1002/adma.201808110] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Mimicking the properties of the extracellular matrix is crucial for developing in vitro models of the physiological microenvironment of living cells. Among other techniques, 3D direct laser writing (DLW) has emerged as a promising technology for realizing tailored 3D scaffolds for cell biology studies. Here, results based on DLW addressing basic biological issues, e.g., cell-force measurements and selective 3D cell spreading on functionalized structures are reviewed. Continuous future progress in DLW materials engineering and innovative approaches for scaffold fabrication will enable further applications of DLW in applied biomedical research and tissue engineering.
Collapse
Affiliation(s)
- Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Bertels
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Eva Blasco
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
59
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small intestinal submucosa (SIS) has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha 410083
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University and Collaborative Innovation Center of Biotherapy
- Chengdu 610041
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
60
|
Lemma ED, Spagnolo B, De Vittorio M, Pisanello F. Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach. Trends Biotechnol 2018; 37:358-372. [PMID: 30343948 DOI: 10.1016/j.tibtech.2018.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Two-photon lithography is a laser writing technique that can produce 3D microstructures with resolutions below the diffraction limit. This review focuses on its applications to study mechanical properties of cells, an emerging field known as mechanobiology. We review 3D structural designs and materials in the context of new experimental designs, including estimating forces exerted by single cells, studying selective adhesion on substrates, and creating 3D networks of cells. We then focus on emerging applications, including structures for assessing cancer cell invasiveness, whose migration properties depend on the cell mechanical response to the environment, and 3D architectures and materials to study stem cell differentiation, as 3D structure shape and patterning play a key role in defining cell fates.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; Current address: Karlsruher Institut für Technologie, Zoologisches Institut, Zell- und Neurobiologie, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; These authors equally contributed to this work
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; These authors equally contributed to this work.
| |
Collapse
|
61
|
Jung B, Hong S, Kim SC, Hwang C. In Vivo Observation of Endothelial Cell-Assisted Vascularization in Pancreatic Cancer Xenograft Engineering. Tissue Eng Regen Med 2018; 15:275-285. [PMID: 30603553 PMCID: PMC6171679 DOI: 10.1007/s13770-018-0113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, for better understanding of patient-derived xenograft (PDX) generation, angiogenic characteristics during PDX cancerous tissue generation was investigated with different initial cell seeding conditions in the hydrogel. We monitored the angiogenic changes during the formation of in vivo cancer cell line xenografts induced by endothelial cells. Our in vivo cancer tissue formation system was designed with the assistance of tissue engineering technology to mimic patient-derived xenograft formation. Endothelial cells and MIA PaCa-2 pancreatic carcinoma cells were encapsulated in fibrin gel at different mixing configurations and subcutaneously implanted into nude mice. To investigate the effect of the initial cancerous cell distribution in the fibrin gel, MIA PaCa-2 cells were encapsulated as a homogeneous cell distribution or as a cell aggregate, with endothelial cells homogeneously distributed in the fibrin gel. Histological observation of the explanted tissues after different implantation periods revealed three different stages: isolated vascular tubes, leaky blood vessels, and mature cancerous tissue formation. The in vivo engineered cancerous tissues had leaky blood vessels with low expression of the vascular tight junction marker CD31. Under our experimental conditions, complex cancer-like tissue formation was most successful when tumorous cells and endothelial cells were homogeneously mixed in the fibrin gel. The present study implies that tumorous xenograft tissue formation can be achieved with a low number of initial cells and that effective vascularization conditions can be attained with a limited volume of patient-derived cancer tissue. Endothelial cell-assisted vascularization can be a potent choice for the effective development of vascularized cancerous tissues for studying patient-derived xenografts, cancer angiogenesis, cancer metastasis, and anticancer drugs.
Collapse
Affiliation(s)
- Boyoung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Song Cheol Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
- University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 South Korea
| |
Collapse
|
62
|
Park JS, Kim B, Lee BT, Choi JS, Yim JH. Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization. J Mater Chem B 2018; 6:4082-4088. [PMID: 32255151 DOI: 10.1039/c8tb00311d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (∼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after ∼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.
Collapse
Affiliation(s)
- Jin Seul Park
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, South Korea.
| | | | | | | | | |
Collapse
|
63
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
64
|
Holle AW, Young JL, Van Vliet KJ, Kamm RD, Discher D, Janmey P, Spatz JP, Saif T. Cell-Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research. NANO LETTERS 2018; 18:1-8. [PMID: 29178811 PMCID: PMC5842374 DOI: 10.1021/acs.nanolett.7b04982] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.
Collapse
Affiliation(s)
- Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstraße 29, 69120 Heidelberg, Germany
- Institute of Physical Chemistry, University of Heidelberg , 69117 Heidelberg, Germany
| | - Jennifer L Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstraße 29, 69120 Heidelberg, Germany
- Institute of Physical Chemistry, University of Heidelberg , 69117 Heidelberg, Germany
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics IRG, Singapore-MIT Alliance in Research and Technology , Singapore
| | - Roger D Kamm
- BioSystems & Micromechanics IRG, Singapore-MIT Alliance in Research and Technology , Singapore
| | | | | | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstraße 29, 69120 Heidelberg, Germany
- Institute of Physical Chemistry, University of Heidelberg , 69117 Heidelberg, Germany
| | - Taher Saif
- Department of Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign , 1206 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
65
|
Sales A, Holle AW, Kemkemer R. Initial contact guidance during cell spreading is contractility-independent. SOFT MATTER 2017; 13:5158-5167. [PMID: 28664962 DOI: 10.1039/c6sm02685k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
66
|
Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep 2017; 7:3632. [PMID: 28620202 PMCID: PMC5472602 DOI: 10.1038/s41598-017-03815-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
The topographical environment, which mimics the stem cell niche, provides mechanical cues to regulate the differentiation of mesenchymal stem cells (MSC). Diverse topographical variations have been engineered to investigate cellular responses; however, the types of mechanical parameters that affect cells, and their underlying mechanisms remain largely unknown. In this study, we screened nanotopological pillars with size gradient to activate transcriptional coactivator with PDZ binding motif (TAZ), which stimulates osteogenesis of MSC. We observed that a nanotopological plate, 70 nm in diameter, significantly induces osteogenic differentiation with the activation of TAZ. TAZ activation via the nanotopological plate was mediated by actin polymerization and Rho signaling, as evidenced by the cytosolic localization of TAZ under F-actin or Rho kinase inhibitor. The FAK and MAPK pathways also play a role in TAZ activation by the nanotopological plate because the inhibitor of ERK and JNK blocked nanopattern plate induced osteogenic differentiation. Taken together, these results indicate that nanotopology regulates cell differentiation through TAZ activation.
Collapse
|
67
|
Rose JC, Cámara-Torres M, Rahimi K, Köhler J, Möller M, De Laporte L. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. NANO LETTERS 2017; 17:3782-3791. [PMID: 28326790 PMCID: PMC5537692 DOI: 10.1021/acs.nanolett.7b01123] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 05/19/2023]
Abstract
Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | | | - Khosrow Rahimi
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | - Jens Köhler
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | - Martin Möller
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH, 52062 Aachen, Germany
| | - Laura De Laporte
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
- E-mail:
| |
Collapse
|
68
|
Piao J, You K, Guo Y, Zhang Y, Li Z, Geng L. Substrate stiffness affects epithelial-mesenchymal transition of cervical cancer cells through miR-106b and its target protein DAB2. Int J Oncol 2017; 50:2033-2042. [DOI: 10.3892/ijo.2017.3978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/09/2017] [Indexed: 11/06/2022] Open
|
69
|
Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep 2017; 7:45152. [PMID: 28338091 PMCID: PMC5364536 DOI: 10.1038/srep45152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.
Collapse
|