51
|
Fernandino JI, Hattori RS, Moreno Acosta OD, Strüssmann CA, Somoza GM. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen Comp Endocrinol 2013; 192:36-44. [PMID: 23770022 DOI: 10.1016/j.ygcen.2013.05.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023]
Abstract
This review deals with the gonadal masculinization induced by thermal stress in fish with focus on the action of 11β-hydroxysteroid dehydrogenase (11β-HSD) as this mechanism key transducer. High temperatures have been reported to produce male-skewed sex ratios in several species with TSD (temperature-dependent sex determination), and in some of them, this process was reported to be associated with high levels of cortisol, the hormone-related stress in vertebrates, during early gonad development. In addition, in pejerrey larvae reared at high-masculinizing temperatures, 11-ketotestosterone (11-KT), the main and most potent androgen in fish, was also detected at high levels. In testicular explants, cortisol induced the synthesis of 11-KT, suggesting that its synthesis could be under the control of the stress axis at the time of gonadal fate determination. 11β-HSD is one of the enzymes shared by the glucocorticoid and androgen pathways; this enzyme converts cortisol to cortisone and also participates in the finals steps of the synthesis of the 11-oxigenated androgens. Based on these data and literature information, here we propose that the masculinization induced by thermal stress can be considered as a consequence of cortisol inactivation and the concomitant synthesis of 11-KT and discussing this as a possible mechanism of masculinization induced by different types of environmental stressors.
Collapse
Affiliation(s)
- Juan I Fernandino
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
| | | | | | | | | |
Collapse
|
52
|
Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn 2013; 242:360-70. [PMID: 23335256 DOI: 10.1002/dvdy.23924] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023] Open
Abstract
Epigenetics is commonly defined as the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. The three major epigenetic mechanisms for gene expression regulation include DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms provide organisms with the ability to integrate genomic and environmental information to modify the activity of their genes for generating a particular phenotype. During development, cells differentiate, acquire, and maintain identity through changes in gene expression. This is crucial for sex determination and differentiation, which are among the most important developmental processes for the proper functioning and perpetuation of species. This review summarizes studies showing how epigenetic regulatory mechanisms contribute to sex determination and reproductive organ formation in plants, invertebrates, and vertebrates. Further progress will be made by integrating several approaches, including genomics and Next Generation Sequencing to create epigenetic maps related to different aspects of sex determination and gonadogenesis. Epigenetics will also contribute to understand the etiology of several disorders of sexual development. It also might play a significant role in the control of reproduction in animal farm production and will aid in recognizing the environmental versus genetic influences on sex determination of sensitive species in a global change scenario.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
53
|
Nagarajan G, Aruna A, Chang CF. Increase in estrogen signaling in the early brain of orange-spotted grouper Epinephelus coioides: a mini-review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:95-101. [PMID: 22692774 DOI: 10.1007/s10695-012-9667-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Despite neurosteroidogenic enzymes are playing important roles in the regulation of brain development and function, the potential link between brain and gonad by the action of steroid hormones during gonadal sex differentiation is still not clear in teleosts. In this mini-review, we summarized our understanding on the early brain development related to the synthesis of neurosteroids and receptor signaling during gonadal sex differentiation in protogynous orange-spotted grouper, Epinephelus coioides (functional females for the first 6 years of life and start to sex change around the age of 7 years) and protandrous black porgy (functional males for the first 2 years of life but begin to change sex during the third year). We found a similar profile in the increased expression of brain aromatase gene (aromatatse B or cyp19a1b), aromatase activity, estradiol (E(2)), and estrogen signaling in the brain of both grouper and black porgy fish during gonadal sex differentiation. In contrast to mammals, teleost fish Cyp19a1b expressed in a unique cell type, a radial glial cell, which is acted as progenitors in the brain of developing and adult fish. In agreement with these pioneer studies, we demonstrated that the grouper cyp19a1b/Cyp19a1b was expressed in radial glial cells. Further, in vivo data in the grouper brain showed that exogenous E(2) upregulated Cyp19a1b immunoreactivity (ir) in radial glial cells. These data suggest the possible roles of Cyp19a1b and E(2) in early brain development which is presumably related to gonadal sex differentiation.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | | | | |
Collapse
|
54
|
Nagarajan G, Aruna A, Chang CF. Neurosteroidogenic enzymes and their regulation in the early brain of the protogynous grouper Epinephelus coioides during gonadal sex differentiation. Gen Comp Endocrinol 2013; 181:271-87. [PMID: 23168084 DOI: 10.1016/j.ygcen.2012.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
The regulatory role of neurosteroids in the early brain during gonadal sex differentiation is unclear. The aim of this study was to investigate the expression and cellular localization of key steroidogenic enzymes in the early brain of the protogynous orange-spotted grouper Epinephelus coioides and the temporal expressions has been correlated with gonadal sex differentiation. In this study, we showed that peak neurosteroidogenesis occurs in the early brain during gonadal sex differentiation. The temporal expressions of key enzymes, cyp11a1 (cytochrome P450 side chain cleavage), hsd3b1 (3β-hydroxysteroid dehydrogenase) and cyp17a1 (cytochrome P450c17) were studied at different developmental ages (from 90- to 150-dah: days after hatching) using quantitative real-time PCR (q-PCR). q-PCR analysis indicated that the transcript expressions of cyp11a1, hsd3b1 and cyp17a1 were increased in the brain around the period of gonadal sex differentiation. Further, in situ hybridization (ISH) analysis showed that cyp11a1, hsd3b1 and cyp17a1 transcripts were widely expressed in several discrete brain regions, especially the intense expression in the forebrain, with an overall similar expression pattern. High density in the cyp19a1b/Cyp19a1b expression was detected in radial glial cells. Thus, the expression of grouper cyp19a1b/Cyp19a1b is restricted to radial glial cells, suggesting estrogens can modulate their activity. Next, by combining Cyp19a1b immunohistochemistry (IHC) with florescence ISH (FISH) of cyp11a1, hsd3b1 and cyp17a1, we showed that sub-cellular localization of cyp11a1, hsd3b1 and cyp17a1 transcripts, in partial, appeared to be in Cyp19a1b radial glial cell soma. Further, exogenous estradiol (E(2)) increased the expression of cyp17a1 and cyp19a1b/Cyp19a1b in the brain of grouper. Consequently, our results illustrated that the locally synthesized E(2) upregulated neurosteroidogenic enzymes in the early brain and suggest a role for these enzymes in the neurogenic process during gonadal sex differentiation.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | |
Collapse
|
55
|
Wu GC, Chang CF. Oocytes Survive in the Testis by Altering the Soma Fate from Male to Female in the Protandrous Black Porgy, Acanthopagrus schlegeli1. Biol Reprod 2013. [DOI: 10.1095/biolreprod.112.104398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
56
|
Athauda S, Anderson T, de Nys R. Effect of rearing water temperature on protandrous sex inversion in cultured Asian Seabass (Lates calcarifer). Gen Comp Endocrinol 2012; 175:416-23. [PMID: 22155035 DOI: 10.1016/j.ygcen.2011.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 11/20/2022]
Abstract
Asian Seabass, Lates calcarifer (Bloch, 1790), is a protandrous species cultured for Aquaculture. The cultured Asian Seabass in Australia exhibits precocious sex inversion before 2years of age. This phenomenon highly affects on maintaining a proper broodstock in a hatchery. The effect of temperature on sex inversion inducement in Asian Seabass was thus investigated at five different temperature regimes experienced in Australia. Asian Seabass (14months) grown in fresh water under natural temperature in a commercial farm in Queensland were transported to the research facility at James Cook University, Australia and held in fresh water at 28°C until acclimatized to the experimental conditions. Fish were acclimated to the experimental conditions (30ppt salinity) over the first and final week (22°C, 25°C, 28°C, 31°C and 34°C) of one month acclimatizing period. Fish were fed daily with a commercial pellet (50% protein, 18MJkg(-1)) to satiety. Blood, brain and gonad collected before transfer to the experimental temperature regime in the final week of acclimatization and at the end of the experiment were analysed. Plasma sex steroids level and aromatase activity of brain and gonad were also measured. There was an increase in plasma estradiol levels with increasing temperature from 25°C while no significant difference was observed among all treatment temperatures except at 25°C. However, fish held at 22°C showed higher estradiol level than at 25°C and 28°C. Significantly higher (p<0.05) plasma testosterone levels were detected in fish held at 31°C and 34°C while a reducing trend was observed towards lower temperature regimes. Fish held at 22°C had significantly lower plasma testosterone than all others as well those sampled at the beginning. The plasma 11-ketoTestosterone was at non-detectable levels in all experimental temperatures as shown at the beginning. The average aromatase activity in brain was highest at 28°C among all temperatures, but no significant differences (p>0.05) observed. The Average aromatase activity in gonad was highest at 31°C followed by at 34°C and 28°C. No or very low level of gonad aromatase activity recorded in fish sacrificed prior to treatment. The aromatase activity was greater in brain than in gonad suggesting that the aromatase produced in the brain yet to transfer to the gonad or brain is the first place to response for culture environmental temperature. It is concluded that plasma sex steroids levels and aromatase activity in Asian Seabass have positive response to increasing temperature in culture facilities.
Collapse
Affiliation(s)
- Saman Athauda
- School of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia.
| | | | | |
Collapse
|
57
|
Auguste A, Chassot AA, Grégoire EP, Renault L, Pannetier M, Treier M, Pailhoux E, Chaboissier MC. Loss of R-spondin1 and Foxl2 amplifies female-to-male sex reversal in XX mice. Sex Dev 2011; 5:304-17. [PMID: 22116255 DOI: 10.1159/000334517] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2011] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, 2 main genetic pathways have been shown to regulate ovarian development. Indeed, a loss of function mutations in Rspo1 and Foxl2 promote partial female-to-male sex reversal. In mice, it has been shown that the secreted protein RSPO1 is involved in ovarian differentiation and the transcription factor FOXL2 is required for follicular formation. Here, we analysed the potential interactions between these 2 genetic pathways and have shown that while Rspo1 expression seems to be independent of Foxl2 up-regulation, Foxl2 expression partly depends of Rspo1 signalisation. This suggests that different Foxl2-positive somatic cell lineages exist within the ovaries. In addition, a combination of both mutated genes in XX Foxl2(-/-)/Rspo1(-/-) gonads promotes sex reversal, detectable at earlier stages than in XX Rspo1(-/-) mutants. Ectopic development of the steroidogenic lineage is more pronounced in XX Foxl2(-/-)/Rspo1(-/-) gonads than in XX Rspo1(-/-) embryos, suggesting that Foxl2 is involved in preventing ectopic steroidogenesis in foetal ovaries.
Collapse
Affiliation(s)
- A Auguste
- INRA, UMR 1198, Biologie du Développement et de la Reproduction, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Nagarajan G, Tsai YJ, Chen CY, Chang CF. Developmental expression of genes involved in neural estrogen biosynthesis and signaling in the brain of the orange-spotted grouper Epinephelus coioides during gonadal sex differentiation. J Steroid Biochem Mol Biol 2011; 127:155-66. [PMID: 21513797 DOI: 10.1016/j.jsbmb.2011.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
Abstract
In the brain, the synthesis of neurosteroids and receptor activation during gonadal sex differentiation in teleosts are poorly understood. In the present study, the protogynous orange-spotted grouper (Epinephelus coioides) was selected as a model fish, and we hypothesized that de novo synthesis of neural estrogen may play a role in the female grouper brain during gonadal sex differentiation. We investigated the temporal expression of the genes StAR, cyp19a1b and pcna and the sex steroid nuclear receptors for estrogen (ERα, ERβ1 and ERβ2), androgen (AR) and the plasma membrane-associated estrogen receptor (GPR30) in the brain during early developmental ages from 90 days after hatching (dah) to 180dah after gonadal sex differentiation. Our results revealed that mRNA for ERs and GPR30 but not AR was significantly increased at 110dah (a time close to gonadal sex differentiation) in the forebrain and midbrain and for cyp19a1b at 110dah in the forebrain. Brain aromatase activity and estradiol (E2) levels, but not testosterone (T), were increased in the forebrain at 110 and 120dah, respectively. Furthermore, exogenous E2 stimulated cyp19a1b transcripts in the forebrain and hypothalamus and immunoreactive (ir)Cyp19a1b (aromatase enzyme) in the forebrain. irCyp19a1b localized in the glial cells of the forebrain regions. Therefore, we identified a peak of functional aromatase activity and estrogen signaling in the early grouper brain during gonadal sex differentiation. Moreover, pcna transcripts (a marker for cell proliferation activity) were higher in the early brain at 110-150dah. Thus, a peak time of development in the brain is suggested to occur during gonadal sex differentiation in the grouper.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | |
Collapse
|
59
|
Rhee JS, Kim BM, Lee CJ, Yoon YD, Lee YM, Lee JS. Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:218-229. [PMID: 21632026 DOI: 10.1016/j.aquatox.2011.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/21/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been a major concern in the normal reproduction and development of aquatic organisms. In the teleost, steroid hormones are synthesized via the steroidogenesis pathway, and play a key physiological role in the regulation of gonadal sex differentiation. The protogynous hermaphroditic fish, Kryptolebias marmoratus is the only vertebrate capable of reproducing through internal self-fertilization. To uncover the effect of bisphenol A (BPA) on sex differentiation genes on transcription, we investigated the expression patterns of several sex differentiation-related genes such as dax1, dmrt1, mis, sf1, figlα, StAR and wt1 after BPA exposure with controls (E2 and TMX). In response to 17β-estradiol (E2) exposure, a testis-specific gene, dmrt1 mRNA was down-regulated in the gonad of the secondary male but the expression of the female-specific gene, dax1 mRNA was significantly elevated in the brain and gonad. A high level of StAR mRNA was detected in the brain and gonad of both hermaphrodite and secondary males, suggesting that the elevated expression of dax1 and StAR genes would be involved in E2 exposure. As expected, upon BPA exposure, the dmrt1 and MIS mRNA level decreased in both hermaphrodite and secondary males, while the female-specific gene, figlα mRNA level increased in the gonad of both genders. BPA showed an opposite mode of action on the expression of dax1 (induction, P>0.05) and sf1 mRNA (inhibition, P>0.05) in the brain and gonad against both genders. The sensitivity of dax1 to BPA on expression was relatively high in the secondary male. The wt1 mRNA was up-regulated in most tissues except in the liver of BPA-exposed secondary males. Regarding the time course study, the figlα mRNA level increased at 6 h after BPA exposure. In addition, BPA elevated the expression of StAR, dax1, and wt1 mRNA but repressed sf1 mRNA. In this paper, we demonstrated that BPA may modulate the expression of sex differentiation and steroidogenesis pathway genes, and this finding would provide a better understanding on the modulation of transcription upon BPA exposure in steroidogenesis and sex differentiation in the hermaphroditic fish, K. marmoratus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|