51
|
Reiter RJ, Rosales-Corral S, Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 2020; 65:394-402. [PMID: 32763813 DOI: 10.1016/j.advms.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
The aim of this report is to summarize the data documenting the vital nature of well-regulated cellular and organismal circadian rhythms, which are also reflected in a stable melatonin cycle, in supporting optimal health. Cellular fluctuations in physiology exist in most cells of multicellular organisms with their stability relying on the prevailing light:dark cycle, since it regulates, via specialized intrinsically-photoreceptive retinal ganglion cells (ipRGC) and the retinohypothalamic tract, the master circadian oscillator, i.e., the suprachiasmatic nuclei (SCN). The output message of the SCN, as determined by the light:dark cycle, is transferred to peripheral oscillators, so-called slave cellular oscillators, directly via the autonomic nervous system with its limited distribution. and indirectly via the pineal-derived circulating melatonin rhythm, which contacts every cell. Via its regulatory effects on the neuroendocrine system, particularly the hypothalamo-pituitary-adrenal axis, the SCN also has a major influence on the adrenal glucocorticoid rhythm which impacts neurological diseases and psychological behaviors. Moreover, the SCN regulates the circadian production and secretion of melatonin. When the central circadian oscillator is disturbed, such as by light at night, it passes misinformation to all organs in the body. When this occurs the physiology of cells becomes altered and normal cellular functions are compromised. This physiological upheaval is a precursor to pathologies. The deterioration of the SCN/pineal network is often a normal consequence of aging and its related diseases, but in today's societies where manufactured light is becoming progressively more common worldwide, the associated pathologies may also be occurring at an earlier age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
52
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
53
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
54
|
Pavkovic IM, Kothare SV. Migraine and Sleep in Children: A Bidirectional Relationship. Pediatr Neurol 2020; 109:20-27. [PMID: 32165029 DOI: 10.1016/j.pediatrneurol.2019.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/05/2019] [Accepted: 12/24/2019] [Indexed: 01/03/2023]
Abstract
Migraine and sleep disorders in children exhibit a bidirectional relationship. This relationship is based on shared pathophysiology. Migraine involves activation of the trigeminal vascular system. Nociceptive neurons that innervate the dura release various vasoactive peptides. Calcitonin gene-related peptide is the most active of these peptides. Neural pathways that are involved in sleep generation are divided into those responsible for circadian rhythm, wake promotion, non-rapid eye movement, and rapid eye movement sleep activation. Sleep state switches are a critical component of these systems. The cerebral structures, networks, and neurochemical systems that are involved in migraine align closely with those responsible for the regulation of sleep. Neurochemical systems that are involved with both the pathogenesis of migraine and regulation of sleep include adenosine, melatonin, orexin, and calcitonin gene-related peptide. Sleep disorders represent the most common comorbidity with migraine in childhood. The prevalence of parasomnias, obstructive sleep apnea, and sleep-related movement disorders is significantly greater in children migraineurs. Infantile colic is a precursor of childhood migraine. Treatment of comorbid sleep disorders is important for the appropriate management of children with migraine. Sleep-based behavioral interventions can be of substantial benefit. These interventions are particularly important in children due to limited evidence for effective migraine pharmacotherapy.
Collapse
Affiliation(s)
- Ivan M Pavkovic
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, Lake Success, New York; Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Sanjeev V Kothare
- Divison of Pediatric Neurology, Department of Pediatircs, Cohen Children's Medical Center, Lake Success, New York; Pediatric Sleep Program (Neurology), Department of Pediatircs, Cohen Children's Medical Center, Lake Success, New York; Pediatric Neurology Service Line for Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; Pediatrics & Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.
| |
Collapse
|
55
|
Videnovic A, Ju YES, Arnulf I, Cochen-De Cock V, Högl B, Kunz D, Provini F, Ratti PL, Schiess MC, Schenck CH, Trenkwalder C. Clinical trials in REM sleep behavioural disorder: challenges and opportunities. J Neurol Neurosurg Psychiatry 2020; 91:740-749. [PMID: 32404379 PMCID: PMC7735522 DOI: 10.1136/jnnp-2020-322875] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023]
Abstract
The rapid eye movement sleep behavioural disorder (RBD) population is an ideal study population for testing disease-modifying treatments for synucleinopathies, since RBD represents an early prodromal stage of synucleinopathy when neuropathology may be more responsive to treatment. While clonazepam and melatonin are most commonly used as symptomatic treatments for RBD, clinical trials of symptomatic treatments are also needed to identify evidence-based treatments. A comprehensive framework for both disease-modifying and symptomatic treatment trials in RBD is described, including potential treatments in the pipeline, cost-effective participant recruitment and selection, study design, outcomes and dissemination of results. For disease-modifying treatment clinical trials, the recommended primary outcome is phenoconversion to an overt synucleinopathy, and stratification features should be used to select a study population at high risk of phenoconversion, to enable more rapid clinical trials. For symptomatic treatment clinical trials, objective polysomnogram-based measurement of RBD-related movements and vocalisations should be the primary outcome measure, rather than subjective scales or diaries. Mobile technology to enable objective measurement of RBD episodes in the ambulatory setting, and advances in imaging, biofluid, tissue, and neurophysiological biomarkers of synucleinopathies, will enable more efficient clinical trials but are still in development. Increasing awareness of RBD among the general public and medical community coupled with timely diagnosis of these diseases will facilitate progress in the development of therapeutics for RBD and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yo-El S Ju
- Department of Neurology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Isabelle Arnulf
- Assistance Publique Hôpitaux de Paris, Service des pathologies du Sommeil, Hôpital Pitié-Salpêtrière, Paris, France.,UMR S 1127, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC University Paris, Paris, France
| | - Valérie Cochen-De Cock
- Neurologie et sommeil, Clinique Beau Soleil, Montpellier, France.,Laboratoire Movement to Health (M2H), EuroMov, Université Montpellier, Montpellier, France
| | - Birgit Högl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dieter Kunz
- Clinic for Sleep and Chronomedicine, Berlin, Germany
| | - Federica Provini
- IRCCS Institute of Neurological Sciences of Bologna, University of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Mya C Schiess
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Carlos H Schenck
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Regional Sleep Disorders Center, Minneapolis, Minnesota, USA
| | - Claudia Trenkwalder
- Paracelsus Elena Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
56
|
Epelbaum J, Terrien J. Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109854. [PMID: 31891735 DOI: 10.1016/j.pnpbp.2019.109854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
The neuroendocrine system (NES) plays a crucial role in synchronizing the physiology and behavior of the whole organism in response to environmental constraints. The NES consists of a hypothalamic-pituitary-target organ axis that acts in coordination to regulate growth, reproduction, stress and basal metabolism. The growth (or somatotropic), hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes are therefore finely tuned by the hypothalamus through the successive release of hypothalamic and pituitary hormones to control the downstream physiological functions. These functions rely on a complex set of mechanisms requiring tight synchronization between peripheral organs and the hypothalamic-pituitary complex, whose functionality can be altered during aging. Here, we review the results of research on the effects of aging on the NES of nonhuman primate (NHP) species in wild and captive conditions. A focus on the age-related dysregulation of the master circadian pacemaker, which, in turn, alters the synchronization of the NES with the organism environment, is proposed. Finally, practical and ethical considerations of using NHP models to test the effects of nutrition-based or hormonal treatments to combat the deterioration of the NES are discussed.
Collapse
Affiliation(s)
- Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France; Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| |
Collapse
|
57
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181:1307-1328.e15. [PMID: 32502393 DOI: 10.1016/j.cell.2020.04.049] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yosef Kaplan Dor
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keishi Nambara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Clemenzi MN, Martchenko A, Loganathan N, Tse EK, Brubaker PL, Belsham DD. Analysis of Western diet, palmitate and BMAL1 regulation of neuropeptide Y expression in the murine hypothalamus and BMAL1 knockout cell models. Mol Cell Endocrinol 2020; 507:110773. [PMID: 32114021 DOI: 10.1016/j.mce.2020.110773] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Western diets that are high in saturated fat and sugar disrupt circadian rhythms, induce weight gain, and lead to metabolic diseases including obesity. However, the mechanistic link between altered circadian rhythms and energy homeostasis remains poorly understood. In C57BL/6J mice, consuming a Western diet for 16 weeks significantly reduced food intake (at zeitgeber 12-16), in association with decreases in hypothalamic expression of the orexigenic neuropeptides, neuropeptide Y (Npy) and agouti-related peptide (AgRP). To examine the acute effects of the most prevalent saturated fatty acid in a Western diet, palmitate, and the role of the core clock gene, Bmal1, in the regulation of hypothalamic feeding neuropeptides, we used heterogeneous and clonal BMAL1 knockout (KO) immortalized hypothalamic cell lines, expressing specific neuropeptides, derived from male (M) and female (F) mice. Both mHypoA-BMAL1-KO/F and mHypoA-BMAL1-KO/M cells demonstrated a loss of circadian rhythmicity in expression of the clock gene, Per2, as compared to wild-type (control) cultures. Loss of BMAL1 also altered the time-dependent expression of Npy and proopiomelanocortin, and disrupted AgRP rhythmicity. Furthermore, palmitate increased BMAL1 binding to the Npy promotor region, and palmitate treatment (50 μM for 24 h) stimulated Npy expression in a BMAL1-dependent manner in both heterogeneous and clonal NPY-expressing female-derived cell models. The results of this study demonstrate that circadian expression of Bmal1 serves as a mechanistic link between Western diet- and palmitate-induced disruptions of the normal rhythmic patterns in hypothalamic feeding-related neuropeptides.
Collapse
Affiliation(s)
| | | | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
59
|
Thermal stability analyses of human PERIOD-2 C-terminal domain using dynamic light scattering and circular dichroism. PLoS One 2020; 15:e0221180. [PMID: 32320392 PMCID: PMC7176140 DOI: 10.1371/journal.pone.0221180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/18/2020] [Indexed: 11/23/2022] Open
Abstract
At the molecular level, the circadian clock is regulated by a time delayed transcriptional-translational feedback loop in which the core proteins interact with each other rhythmically to drive daily biological rhythms. The C-terminal domain of a key clock protein PER2 (PER2c) plays a critically important role in the loop, not only for its interaction with the binding partner CRY proteins but also for the CRY/PER complex’s translocation from the cytosol to the nucleus. Previous circular dichroism (CD) spectroscopic studies have shown that mouse PER2c (mPER2c) is less structured in solution by itself but folded into stable secondary structures upon interaction with mouse CRYs. To understand the stability and folding of human PER2c (hPER2c), we expressed and purified hPER2c. Three oligomerization forms of recombinant hPER2c were identified and thoroughly characterized through a combination of biochemical and biophysical techniques. Different to mPER2c, both thermal unfolding DLS and CD analyses suggested that all forms of hPER2c have very stable secondary structures in solution by themselves with melting temperatures higher than the physiological body temperature, indicating that hPER2c does not require CRY to fold. Furthermore, we examined the effects of EDTA, salt concentration, and a reducing agent on hPER2c folding and oligomerization. The ability of hPER2c forming oligomers reflects the potential role of hPER2c in the assembly of circadian rhythm core protein complexes.
Collapse
|
60
|
Lumsden SC, Clarkson AN, Cakmak YO. Neuromodulation of the Pineal Gland via Electrical Stimulation of Its Sympathetic Innervation Pathway. Front Neurosci 2020; 14:264. [PMID: 32300290 PMCID: PMC7145358 DOI: 10.3389/fnins.2020.00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Stimulation of the pineal gland via its sympathetic innervation pathway results in the production of N-acetylserotonin and melatonin. Melatonin has many therapeutic roles and is heavily implicated in the regulation of the sleep-wake cycle. In addition, N-acetylserotonin has recently been reported to promote neurogenesis in the brain. Upregulation of these indoleamines is possible via neuromodulation of the pineal gland. This is achieved by electrical stimulation of structures or fibres in the pineal gland sympathetic innervation pathway. Many studies have performed such pineal neuromodulation using both invasive and non-invasive methods. However, the effects of various experimental variables and stimulation paradigms has not yet been reviewed and evaluated. This review summarises these studies and presents the optimal experimental protocols and stimulation parameters necessary for maximal upregulation of melatonin metabolic output.
Collapse
Affiliation(s)
- Susannah C. Lumsden
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Yusuf Ozgur Cakmak
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
- Centre for Health Systems and Technology, Dunedin, New Zealand
| |
Collapse
|
61
|
Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. J Pineal Res 2020; 68:e12630. [PMID: 31876313 PMCID: PMC7027535 DOI: 10.1111/jpi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/β-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jingshan Ren
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James Hillier
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Margaret Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Weixian Lu
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
62
|
Ferreira MDF, Mellanby RJ, Gow AG. Serum melatonin in dogs with congenital portosystemic shunting, with and without hepatic encephalopathy. Vet Rec 2020; 187:e23. [PMID: 31974269 DOI: 10.1136/vr.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 10/16/2019] [Accepted: 12/31/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Melatonin is a hormone produced and secreted primarily by the pineal gland and mainly metabolised in the liver. Increased melatonin concentrations have been reported in human cirrhosis and hepatic encephalopathy (HE), a syndrome of neurological dysfunction. The pathogenesis of canine HE is incompletely understood. Melatonin has been hypothesised as a contributor to the development of HE. The aim of this study was to investigate whether serum melatonin concentrations are increased in canine congenital portosystemic shunting (cPSS), with and without HE. METHODS Medical records were retrospectively reviewed, for which archived (-80°C) serum samples were available. A canine competitive ELISA was used to measure melatonin in two cohorts: dogs with a final diagnosis of cPSS (n=23) with and without clinical signs of HE, and healthy dogs (n=15). RESULTS Melatonin concentrations were not significantly different (P=0.81) between healthy controls (median 27.2 pg/mL, range 19.8-161.5 pg/mL) and dogs with cPSS (median 25.7 pg/mL, range 18.5-244.9 pg/mL). Serum melatonin did not differ between cPSS patients with and without clinical signs of HE (P>0.99). No correlation was found between serum melatonin and blood ammonia (Spearman rank correlation coefficient, rs =-0.41, P=0.08). CONCLUSION Serum melatonin is not increased in canine cPSS with and without HE. We found no evidence that altered melatonin metabolism plays a role in the pathogenesis of cPSS-associated HE.
Collapse
Affiliation(s)
- Marisa da Fonseca Ferreira
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian, UK
| | - Richard John Mellanby
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian, UK
| | - Adam George Gow
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
63
|
|
64
|
Yang Y, Dong F, Liu X, Xu J, Wu X, Zheng Y. Dysregulation of circadian rhythm in zebrafish (Danio rerio) by thifluzamide: Involvement of positive and negative regulators. CHEMOSPHERE 2019; 235:280-287. [PMID: 31260868 DOI: 10.1016/j.chemosphere.2019.06.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Thifluzamide as a fungicide is toxic to brain of zebrafish embryos. Brain can regulate biological rhythms. To clarify whether thifluzamide would influence circadian rhythms, zebrafish embryos were treated with thifluzamide (0, 0.19, 1.90 and 2.85 mg/L) for 4 days. Exposure to thifluzamide induced pronounced changes in embryo brain and melatonin levels. The mRNA levels of genes related to circadian rhythms were apparently altered. Among these, the transcripts of cry1ba and clock1 were extremely correlated with exposure concentrations. Importantly, the content of cry1 showed no apparent changes, but the clock level was dramatically increased. Moreover, consistent with the inhibition of development and behavior, the levels of GH and DA were significantly inhibited. In addition, the expression levels of genes related to development, behavior and reproduction were significantly changed by thifluzamide. Therefore, we speculated that circadian disruption due to thifluzamide exposure were primarily attributed to increases in expression of clock1a and contents of clock, which might be at least in part responsible for abnormal development and behavior of zebrafish. In addition, our research will provide important insights into the grouped assessment of SDHI pesticides in future.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
65
|
Ma Q, Reiter RJ, Chen Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis 2019; 23:91-104. [PMID: 31650428 DOI: 10.1007/s10456-019-09689-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis depends on proangiogenic and anti-angiogenic molecules that regulate endothelial cell proliferation and migration. Well-regulated angiogenesis plays a pivotal role in many physiological conditions such as reproduction and embryonic development, while abnormal angiogenesis is also the basis of a variety of pathological processes including tumor metastasis and atherosclerotic plaque formation. Melatonin has a variety of biological effects, including inhibition of tumor metastasis, stabilizing atherosclerotic plaques, and the regulation of seasonal reproductive rhythms, etc. During certain pathophysiological processes, melatonin exerts different functions depending on its ability to regulate angiogenesis. This review reveals that melatonin has different effects on neovascularization under different physiological and pathological conditions. In tumors, in age-related ocular diseases, and in a hypoxic environment, melatonin inhibits neovascularization in tissues, while in gastric ulcers, skin lesions, and some physiologic processes, it promotes angiogenesis. We also speculate that melatonin may inhibit the neovascularization in atherosclerotic plaques, thus preventing the initiation and development of atherosclerosis. Most studies suggest that these effects are related to the role of melatonin in regulating of vascular endothelial growth factor and its receptors, but the specific regulatory mechanisms remain disparate, which may lead to the differential effects of melatonin on angiogenesis under different conditions. In this review, we thus summarize some seemingly contradictory mechanisms by which melatonin controls angiogenesis under different pathological and physiological conditions, and urge that the regulatory mechanisms be further studied.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA.
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
66
|
Metzger J, Wicht H, Korf HW, Pfeffer M. Seasonal Variations of Locomotor Activity Rhythms in Melatonin-Proficient and -Deficient Mice under Seminatural Outdoor Conditions. J Biol Rhythms 2019; 35:58-71. [PMID: 31625428 DOI: 10.1177/0748730419881922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter's duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.
Collapse
Affiliation(s)
- Joshua Metzger
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institut für Anatomie I, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| | - Martina Pfeffer
- Institut für Anatomie II, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
67
|
Farias TDSMD, Paixao RID, Cruz MM, de Sa RDCDC, Simão JDJ, Antraco VJ, Alonso-Vale MIC. Melatonin Supplementation Attenuates the Pro-Inflammatory Adipokines Expression in Visceral Fat from Obese Mice Induced by A High-Fat Diet. Cells 2019; 8:E1041. [PMID: 31489938 PMCID: PMC6770101 DOI: 10.3390/cells8091041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is defined as a condition of abnormal or excessive fat accumulation in white adipose tissue that results from the exacerbated consumption of calories associated with low energy expenditure. Fat accumulation in both adipose tissue and other organs contributes to a systemic inflammation leading to the development of metabolic disorders such as type 2 diabetes, hypertension, and dyslipidemia. Melatonin is a potent antioxidant and improves inflammatory processes and energy metabolism. Using male mice fed a high-fat diet (HFD-59% fat from lard and soybean oil; 9:1) as an obesity model, we investigated the effects of melatonin supplementation on the prevention of obesity-associated complications through an analysis of plasma biochemical profile, body and fat depots mass, adipocytes size and inflammatory cytokines expression in epididymal (EPI) adipose depot. Melatonin prevented a gain of body weight and fat depot mass as well as adipocyte hypertrophy. Melatonin also reversed the increase of total cholesterol, triglycerides and LDL-cholesterol. In addition, this neurohormone was effective in completely decreasing the inflammatory cytokines leptin and resistin in plasma. In the EPI depot, melatonin reversed the increase of leptin, Il-6, Mcp-1 and Tnf-α triggered by obesity. These data allow us to infer that melatonin presents an anti-obesity effect since it acts to prevent the progression of pro-inflammatory markers in the epididymal adipose tissue together with a reduction in adiposity.
Collapse
Affiliation(s)
- Talita da Silva Mendes de Farias
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| | - Regislane Ino da Paixao
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| | - Maysa Mariana Cruz
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| | | | - Jussara de Jesus Simão
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| | - Vitor Jaco Antraco
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| | - Maria Isabel Cardoso Alonso-Vale
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-130, Brazil.
| |
Collapse
|
68
|
Kim LB, Putyatina AN, Russkikh GS, Tsypysheva OB. Correlation between the Melatonin Level and Indicators of Aging and Fibrosis in Men in the European Part of the Arctic Zone of the Russian Federation. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Saha S, Singh KM, Gupta BBP. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences. Gen Comp Endocrinol 2019; 279:27-34. [PMID: 30026020 DOI: 10.1016/j.ygcen.2018.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) - the rate-limiting enzyme in melatonin synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased expression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the fish pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. However, the information available on clock genes, aanat genes and melatonin synthesis in photoreceptive pineal organ of teleosts is fragmentary and not well documented. Therefore, we have reviewed published information on rhythmic expression of clock genes, aanat genes as well as synthesis of melatonin, and their regulation by photoperiod and temperature in teleostean pineal organ as compared to mammalian pineal gland. A critical analysis of the literature suggests that in contrast to the mammalian pineal gland, the pineal organ of teleosts (except salmonids) possesses a well developed indigenous clock composed of clock genes for regulation of rhythmic expression of aanat2 gene and melatonin synthesis. Further, the fish pineal organ also possesses essential molecular components for responding to light and temperature directly. The fish pineal organ seems to act as a potential master biological clock in most of the teleosts.
Collapse
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
70
|
Yang Y, Dong F, Liu X, Xu J, Wu X, Zheng Y. Flutolanil affects circadian rhythm in zebrafish (Danio rerio) by disrupting the positive regulators. CHEMOSPHERE 2019; 228:649-655. [PMID: 31063912 DOI: 10.1016/j.chemosphere.2019.04.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Circadian rhythms are fundamental to behavior and physiology of organisms. Flutolanil as a fungicide is toxic to zebrafish embryos. The aims of this study were to determine whether flutolanil would influence circadian rhythms of zebrafish and the mechanism involved. Zebrafish embryos were exposed to flutolanil (0, 0.125, 0.5 and 2 mg/L) for 4 days. Here we report that flutolanil increased the melatonin levels of zebrafish. The mRNA levels of genes related to circadian rhythms were significantly altered. The clock level was significantly increased, but the content of cry1 showed no apparent changes. Moreover, our findings that the level of GH was significantly decreased were consistent with the abnormal development of zebrafish embryos. The expression levels of genes related to development, behavior and reproduction were significantly altered by flutolanil. These results indicate that flutolanil disturbed circadian rhythms of zebrafish primarily by affecting the positive elements, which were at least in partial responsible for abnormal development and behavior of zebrafish. And we speculate that flutolanil is toxic to zebrafish embryos at least in part via dysregulation of circadian rhythms involving clock.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
71
|
Gheban BA, Rosca IA, Crisan M. The morphological and functional characteristics of the pineal gland. Med Pharm Rep 2019; 92:226-234. [PMID: 31460502 PMCID: PMC6709953 DOI: 10.15386/mpr-1235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/20/2019] [Accepted: 02/03/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The pineal gland is a photo-neuro-endocrine organ situated inside the brain, that secretes serotonin, melatonin and N,N-dymethyltriptamine. This narrative review will address the latest information gathered on this function of the gland as well as the unknown roles it may have. The different histological and pathological findings of the pineal gland have demonstrated a role in clinical manifestations of numerous endocrine, neurological and psychiatric pathologies. Materials For this narrative review we used the NCBI website database PubMed. The search terms were “Pineal Gland” AND/OR “histology, melatonin, DMT, pathology”. Total number of articles included were 86. Results We have reviewed physiological information of melatonin and DMT, anatomical, histological and histopathological information on the pineal gland and its role in endocrine, neurological and psychiatric pathology. Conclusion The role of melatonin in immunity and its potential therapeutic effects show promising potential for further research. DMT seems to have a role in psychiatric pathology and potential therapeutic effects. Proper tumoral screening and diagnostic protocol are required.
Collapse
Affiliation(s)
- Bogdan Alexandru Gheban
- Morphological Sciences Department, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ioana Andreea Rosca
- Radiotherapy Department, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Maria Crisan
- Histology and Dermatology Department, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| |
Collapse
|
72
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
73
|
Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin Oncol (R Coll Radiol) 2019; 31:326-335. [DOI: 10.1016/j.clon.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
74
|
More CE, Papp C, Harsanyi S, Gesztelyi R, Mikaczo A, Tajti G, Kardos L, Seres I, Lorincz H, Csapo K, Zsuga J. Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients. Respir Res 2019; 20:67. [PMID: 30952206 PMCID: PMC6449996 DOI: 10.1186/s12931-019-1033-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea hypopnea syndrome (OSAHS) is a sleep-related breathing disorder, characterized by excessive daytime sleepiness (EDS), paralleled by intermittent collapse of the upper airway. EDS may be the symptom of OSAHS per se but may also be due to the alteration of central circadian regulation. Irisin is a putative myokine and has been shown to induce BDNF expression in several sites of the brain. BDNF is a key factor regulating photic entrainment and consequent circadian alignment and adaptation to the environment. Therefore, we hypothesized that EDS accompanying OSAHS is reflected by alteration of irisin/BDNF axis. METHODS Case history, routine laboratory parameters, serum irisin and BDNF levels, polysomnographic measures and Epworth Sleepiness Scale questionnaire (ESS) were performed in a cohort of OSAHS patients (n = 69). Simple and then multiple linear regression was used to evaluate data. RESULTS We found that EDS reflected by the ESS is associated with higher serum irisin and BDNF levels; β: 1.53; CI: 0.35, 6.15; p = 0.012 and β: 0.014; CI: 0.0.005, 0.023; p = 0.02, respectively. Furthermore, influence of irisin and BDNF was significant even if the model accounted for their interaction (p = 0.006 for the terms serum irisin, serum BDNF and their interaction). Furthermore, a concentration-dependent effect of both serum irisin and BDNF was evidenced with respect to their influence on the ESS. CONCLUSIONS These results suggest that the irisin-BDNF axis influences subjective daytime sleepiness in OSAS patients reflected by the ESS. These results further imply the possible disruption of the circadian regulation in OSAHS. Future interventional studies are needed to confirm this observation.
Collapse
Affiliation(s)
- Csaba E More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilvia Harsanyi
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Laszlo Kardos
- Institute of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, Bartok Bela ut 2-26, Debrecen, 4031, Hungary
| | - Ildiko Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Hajnalka Lorincz
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Krisztina Csapo
- Department of Neurology, Faculty of Medicine, University of Debrecen, Moricz Zsigmond krt. 22, Debrecen, 4032, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
75
|
Liu K, Yu W, Wei W, Zhang X, Tian Y, Sherif M, Liu X, Dong C, Wu W, Zhang L, Chen J. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J Lipid Res 2019; 60:767-782. [PMID: 30552289 PMCID: PMC6446696 DOI: 10.1194/jlr.m087619] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/14/2018] [Indexed: 01/06/2023] Open
Abstract
In obesity and diabetes, intramuscular fat (IMF) content correlates markedly with insulin sensitivity, which makes IMF manipulation an area of therapeutic interest. Melatonin, an important circadian rhythm-regulating hormone, reportedly regulates fat deposition, but its effects on different types of adipose vary. Little is known about the role of melatonin in IMF deposition. Here, using intramuscular preadipocytes in pigs, we investigated to determine whether melatonin affects or regulates IMF deposition. We found that melatonin greatly inhibited porcine intramuscular preadipocyte proliferation. Although melatonin administration significantly upregulated the expression of adipogenic genes, smaller lipid droplets were formed in intramuscular adipocytes. Additional investigation demonstrated that melatonin promoted lipolysis of IMF by activating protein kinase A and the signaling of ERK1/2. Moreover, melatonin increased thermogenesis in intramuscular adipocytes by enhancing mitochondrial biogenesis and mitochondrial respiration. A mouse model, in which untreated controls were compared with mice that received 3 weeks of melatonin treatment, verified the effect of melatonin on IMF deposition. In conclusion, melatonin reduces IMF deposition by upregulating lipolysis and mitochondrial bioactivities. These data establish a link between melatonin signaling and lipid metabolism in mammalian models and suggest the potential for melatonin administration to treat or prevent obesity and related diseases.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Melak Sherif
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
76
|
The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. Genes (Basel) 2019; 10:genes10020121. [PMID: 30736361 PMCID: PMC6410235 DOI: 10.3390/genes10020121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin, the hormone of darkness, is a peculiar molecule found in most living organisms. Emerging as a potent broad-spectrum antioxidant, melatonin was repurposed into extra roles such as the modulation of circadian and seasonal rhythmicity, affecting numerous aspects of physiology and behaviour, including sleep entrainment and locomotor activity. Interestingly, the pineal gland—the melatonin synthesising organ in vertebrates—was suggested to be absent or rudimentary in some mammalian lineages, including Cetacea. In Cetacea, pineal regression is paralleled by their unique bio-rhythmicity, as illustrated by the unihemispheric sleeping behaviour and long-term vigilance. Here, we examined the genes responsible for melatonin synthesis (Aanat and Asmt) and signalling (Mtnr1a and Mtnr1b) in 12 toothed and baleen whale genomes. Based on an ample genomic comparison, we deduce that melatonin-related gene modules are eroded in Cetacea.
Collapse
|
77
|
Functional annotation of extensively and divergently expressed miRNAs in suprachiasmatic nucleus of Clock Δ19 mutant mice. Biosci Rep 2018; 38:BSR20180233. [PMID: 30413606 PMCID: PMC6435474 DOI: 10.1042/bsr20180233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Circadian locomotor output cycles kaput protein (CLOCK) is a core transcription factor of complex integrated feedback loops in mammalian circadian clock. More genes have been reported to be regulated by CLOCK, however little is known about the role of CLOCK-mediated miRNAs. To dissect this, we used microarray analysis to measure miRNAs expression in suprachiasmatic nuclei (SCN) of wild-type (WT) and ClockΔ19 mutant mice at two different time points. We found that miRNAs regulation in two time points was extensive (nearly 75% of the miRNAs expressed at each time point), and very little overlap, with only six miRNAs in common. Besides this, the predicted CLOCK regulated miRNAs at two time points participated in extremely diverse pathways. We validated nine miRNAs (miR-125a-3p, miR-144, miR-199a-5p, miR-199b*, miR-200a, miR-200b, miR-203, miR-449a, and miR-96), which were involved in the same signaling pathway-hippo signaling pathway. The rhythms of these miRNAs showed a broad distribution of phase, amplitude, and waveform in Clock mutation. And further analysis indicated that there may be three models of miRNA-mediated circadian rhythms and hippo signaling pathway. MiRNA, the small player, may play a hub role in connecting circadian rhythms and other pathways via its multiple target genes networks.
Collapse
|
78
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
79
|
Silva ACPE, Santos MJD, Koike BDV, Moreira MSA, Gitai DLG, de Miranda Coelho JAP, de Andrade TG. Melatonin receptor 1B -1193T>C polymorphism is associated with diurnal preference and sleep habits. Sleep Med 2018; 53:106-114. [PMID: 30508778 DOI: 10.1016/j.sleep.2018.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/26/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Melatonin modulates the master circadian clock through the activation of G-protein-coupled receptors MT1 and MT2. It is presumed, therefore, that genetic variations in melatonin receptors can affect both sleep and circadian phase. We investigated whether the -1193T > C (rs4753426) polymorphism in the promoter of MT2 receptor gene (MTNR1B) is associated with diurnal preference and sleep habits. This polymorphism was previously associated with sunshine duration, suggesting a role in circadian entrainment. METHODS A total of 814 subjects who completed the Morningness-Eveningness and the Munich Chronotype questionnaires were genotyped for the selected polymorphism. Linear and multinomial regression were performed to test the interaction between gene variants and diurnal preference/sleep habits. RESULTS The -1193C variant was associated with the extreme morningness phenotype in a codominant model (C/C vs. T/T), recessive model (C/C + C/T vs. T/T) and alleles (C vs. T). A negative correlation was found between -1193C alleles and social jetlag scores. The frequency of -1193T allele was higher in the group that stay in bed more than 8 h/night compared to the group that stay in bed less than 8 h/night on weekends. CONCLUSION To the best of our knowledge, these data provide the first insights into the role of MTNR1B gene in the regulation of sleep, biological rhythms, and entrainment in humans.
Collapse
Affiliation(s)
| | - Maria José Dos Santos
- Laboratory of Molecular Chronobiology, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | - Bruna Del Vechio Koike
- Laboratory of Molecular Chronobiology, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | - Daniel Leite Goes Gitai
- Laboratory of Cellular and Molecular Biology, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | - Tiago Gomes de Andrade
- Laboratory of Molecular Chronobiology, Federal University of Alagoas (UFAL), Alagoas, Brazil; Faculty of Medicine, Federal University of Alagoas (UFAL), Alagoas, Brazil.
| |
Collapse
|
80
|
Zsuga J, More CE, Erdei T, Papp C, Harsanyi S, Gesztelyi R. Blind Spot for Sedentarism: Redefining the Diseasome of Physical Inactivity in View of Circadian System and the Irisin/BDNF Axis. Front Neurol 2018; 9:818. [PMID: 30333788 PMCID: PMC6176117 DOI: 10.3389/fneur.2018.00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: The term "diseasome of physical inactivity" was coined by Pedersen to explain clustering of chronic diseases linked to physical inactivity. Accordingly, physical inactivity per se contributes to the accumulation of visceral fat, which, generates chronic low-grade systemic inflammation, contributes to emergence of chronic, non-communicable diseases. Diversity of these disorders posits the possible involvement of a supraphysiological system. Methods: Hypothesis driven literature search and deductive reasoning was used to review relevant literature and formulate a novel theory. Results: We have identified the circadian system, omnipresent in virtually every cell, as a possible vehicle for brain muscle crosstalk, explaining some aspects of the diseasome of physical inactivity This system is hierarchically organized, with the suprachiasmatic nucleus (SCN) being the master clock that entrains to the dark/light cycle and synchronizes subsidiary molecular clocks in the periphery. Insufficient photic entrainment also causes chronic disease evolution. The recently identified irisin, was shown to induce brain-derived neurotrophic factor (BDNF) production in several brain areas. BDNF assumes significant role in gating light's influence in the retinohypothalamic synapse, by having a permissive effect on glutamate signal transduction underlying photic entrainment. Conclusions: Here we provide theoretical evidence to support the hypothesis that irisin may facilitate photic entrainment of the SCN, via BDNF. By this irisin opens up possible pathways for peripheral non-photic entrainment signals to exert influence on the master clock that is otherwise resistant to these. Furthermore, we suggest that intertwining processes of circadian, redox, inflammatory, and myokine systems lay underneath the diseasome of physical inactivity.
Collapse
Affiliation(s)
- Judit Zsuga
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Csaba E. More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Papp
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Szilvia Harsanyi
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
81
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
82
|
Mendoza-Vargas L, Guarneros-Bañuelos E, Báez-Saldaña A, Galicia-Mendoza F, Flores-Soto E, Fuentes-Pardo B, Alvarado R, Valdés-Tovar M, Sommer B, Benítez-King G, Solís-Chagoyán H. Involvement of Melatonin in the Regulation of the Circadian System in Crayfish. Int J Mol Sci 2018; 19:ijms19072147. [PMID: 30041485 PMCID: PMC6073447 DOI: 10.3390/ijms19072147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Elizabeth Guarneros-Bañuelos
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Armida Báez-Saldaña
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Fabiola Galicia-Mendoza
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Ciudad de México, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| |
Collapse
|
83
|
Tapia M, Wulff-Zottele C, De Gregorio N, Lang M, Varela H, Josefa Serón-Ferré M, Vivaldi EA, Araneda OF, Silva-Urra J, Gunga HC, Behn C. Melatonin Relations With Respiratory Quotient Weaken on Acute Exposure to High Altitude. Front Physiol 2018; 9:798. [PMID: 30008674 PMCID: PMC6034204 DOI: 10.3389/fphys.2018.00798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
High altitude (HA) exposure may affect human health and performance by involving the body timing system. Daily variations of melatonin may disrupt by HA exposure, thereby possibly affecting its relations with a metabolic parameter like the respiratory quotient (RQ). Sea level (SL) volunteers (7 women and 7 men, 21.0 ± 2.04 y) were examined for daily changes in salivary melatonin concentration (SMC). Sampling was successively done at SL (Antofagasta, Chile) and, on acute HA exposure, at nearby Caspana (3,270 m asl). Saliva was collected in special vials (Salimetrics Oral Swab, United Kingdom) at sunny noon (SMCD) and in the absence of blue light at midnight (SMCN). The samples were obtained after rinsing the mouth with tap water and were analyzed for SMC by immunoassay (ELISA kit; IBL International, Germany). RQ measurements (n = 12) were realized with a portable breath to breath metabolic system (OxiconTM Mobile, Germany), between 8:00 PM and 10:00 PM, once at either location. At SL, SMCD, and SMCN values (mean ± SD) were, respectively, 2.14 ± 1.30 and 11.6 ± 13.9 pg/ml (p < 0.05). Corresponding values at HA were 8.83 ± 12.6 and 13.7 ± 16.7 pg/ml (n.s.). RQ was 0.78 ± 0.07 and 0.89 ± 0.08, respectively, at SL and HA (p < 0.05). Differences between SMCN and SMCD (SMCN-SMCD) strongly correlate with the corresponding RQ values at SL (r = -0.74) and less tight at HA (r = -0.37). Similarly, mean daily SMC values (SMC) tightly correlate with RQ at SL (r = -0.79) and weaker at HA (r = -0.31). SMCN-SMCD, as well as, SMC values at SL, on the other hand, respectively, correlate with the corresponding values at HA (r = 0.71 and r = 0.85). Acute exposure to HA appears to loosen relations of SMC with RQ. A personal profile in daily SMC variation, on the other hand, tends to be conserved at HA.
Collapse
Affiliation(s)
- Marcelo Tapia
- Owl Capacitaciones y Asesorías SpA, Antofagasta, Chile
| | | | - Nicole De Gregorio
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Morin Lang
- Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Héctor Varela
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Ennio A Vivaldi
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Oscar F Araneda
- Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Juan Silva-Urra
- Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hanns-Christian Gunga
- Center for Space Medicine and Extreme Environments, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus Behn
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
84
|
Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal Interactions of Mitochondria and the Neuroimmunoendocrine System in Neurodegenerative Disorders: An Important Role for Melatonin Regulation. Front Physiol 2018; 9:199. [PMID: 29593561 PMCID: PMC5857592 DOI: 10.3389/fphys.2018.00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Structural and functional alterations of mitochondria are intimately linked to a wide array of medical conditions. Many factors are involved in the regulation of mitochondrial function, including cytokines, chaperones, chemokines, neurosteroids, and ubiquitins. The role of diffusely located cells of the neuroendocrine system, including biogenic amines and peptide hormones, in the management of mitochondrial function, as well as the role of altered mitochondrial function in the regulation of these cells and system, is an area of intense investigation. The current article looks at the interactions among the cells of the neuronal-glia, immune and endocrine systems, namely the diffuse neuroimmunoendocrine system (DNIES), and how DNIES interacts with mitochondrial function. Whilst changes in DNIES can impact on mitochondrial function, local, and systemic alterations in mitochondrial function can alter the component systems of DNIES and their interactions. This has etiological, course, and treatment implications for a wide range of medical conditions, including neurodegenerative disorders. Available data on the role of melatonin in these interactions, at cellular and system levels, are reviewed, with directions for future research indicated.
Collapse
Affiliation(s)
- Victoria O Polyakova
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor M Kvetnoy
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - George Anderson
- CRC Scotland and London Clinical Research, London, United Kingdom
| | - Jessica Rosati
- Cell Reprogramming Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Natalya S Linkova
- Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
85
|
Holland PR, Barloese M, Fahrenkrug J. PACAP in hypothalamic regulation of sleep and circadian rhythm: importance for headache. J Headache Pain 2018; 19:20. [PMID: 29508090 PMCID: PMC5838029 DOI: 10.1186/s10194-018-0844-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP.
Collapse
Affiliation(s)
- Philip R Holland
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Mads Barloese
- Department of Clinical Physiology, Nuclear Medicine and PET, 70590 Rigshospitalet, Copenhagen, Denmark.
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health and Medical Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|