51
|
Juhas M, Reuß DR, Zhu B, Commichau FM. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology (Reading) 2014; 160:2341-2351. [DOI: 10.1099/mic.0.079376-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell ‘chassis’. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Daniel R. Reuß
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
52
|
Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbiol Biotechnol 2014; 99:885-96. [DOI: 10.1007/s00253-014-6131-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/23/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
53
|
Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 2014; 13:104. [PMID: 25027702 PMCID: PMC4223517 DOI: 10.1186/s12934-014-0104-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. RESULTS The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. CONCLUSIONS The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production strains in shake flask culture. This work collectively demonstrates that E. coli has a potential to be a microbial cell factory for riboflavin bioproduction.
Collapse
Affiliation(s)
- Zhenquan Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhibo Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yifan Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xueming Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
54
|
Shi T, Wang Y, Wang Z, Wang G, Liu D, Fu J, Chen T, Zhao X. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact 2014; 13:101. [PMID: 25023436 PMCID: PMC4223553 DOI: 10.1186/s12934-014-0101-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/06/2014] [Indexed: 11/15/2022] Open
Abstract
Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production. Based on the deregulation of purine pathway at transcription and metabolic levels, an extended application is recommended for the yield of products, like inosine, guanosine, adenosine and folate which are directly stemming from purine pathway in B. subtilis.
Collapse
|
55
|
Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microbiol 2014; 80:5542-50. [PMID: 24973076 DOI: 10.1128/aem.00712-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
Collapse
|
56
|
Commichau FM, Alzinger A, Sande R, Bretzel W, Meyer FM, Chevreux B, Wyss M, Hohmann HP, Prágai Z. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng 2014; 25:38-49. [PMID: 24972371 DOI: 10.1016/j.ymben.2014.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.
Collapse
Affiliation(s)
- Fabian M Commichau
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland; Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Ariane Alzinger
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Rafael Sande
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Bretzel
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Frederik M Meyer
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Bastien Chevreux
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Markus Wyss
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Hans-Peter Hohmann
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Zoltán Prágai
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland.
| |
Collapse
|
57
|
Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol 2014; 30:1893-900. [DOI: 10.1007/s11274-014-1611-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
|
58
|
Birkenmeier M, Neumann S, Röder T. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions. Biotechnol Lett 2014; 36:919-28. [PMID: 24442413 DOI: 10.1007/s10529-013-1435-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/12/2013] [Indexed: 11/29/2022]
Abstract
To study the network dynamics of the riboflavin biosynthesis pathway and to identify potential bottlenecks in the system, an ordinary differential equation-based model was constructed using available literature data for production strains. The results confirmed that the RibA protein is rate limiting in the pathway. Under the conditions investigated, we determined a potential limiting order of the remaining enzymes under increased RibA concentration (>0.102 mM) and therefore higher riboflavin production (>0.045 mmol g(CDW)(-1) h(-1) and 0.0035 mM s(-1), respectively). The reductase activity of RibG and lumazine synthase (RibH) might be the next most limiting steps. The computational minimization of the enzyme concentrations of the pathway suggested the need for a greater RibH concentration (0.251 mM) compared with the other enzymes (RibG: 0.188 mM, RibB: 0.023 mM).
Collapse
Affiliation(s)
- Markus Birkenmeier
- Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany,
| | | | | |
Collapse
|
59
|
Ledesma-Amaro R, Kerkhoven EJ, Revuelta JL, Nielsen J. Genome scale metabolic modeling of the riboflavin overproducerAshbya gossypii. Biotechnol Bioeng 2013; 111:1191-9. [DOI: 10.1002/bit.25167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Departamento de Microbiología y Genética; Metabolic Engineering Group; Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca Spain
| | - Eduard J. Kerkhoven
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - José Luis Revuelta
- Departamento de Microbiología y Genética; Metabolic Engineering Group; Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca Spain
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| |
Collapse
|
60
|
Dmytruk K, Lyzak O, Yatsyshyn V, Kluz M, Sibirny V, Puchalski C, Sibirny A. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol 2013; 172:11-7. [PMID: 24361297 DOI: 10.1016/j.jbiotec.2013.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022]
Abstract
Riboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation. Three genes SEF1, RIB1 and RIB7 coding for a putative transcription factor, GTP cyclohydrolase II and riboflavin synthase, respectively were simultaneously overexpressed in the background of a non-reverting riboflavin producing mutant AF-4, obtained earlier in our laboratory using methods of classical selection (Dmytruk et al. (2011), Metabolic Engineering 13, 82-88). Cultivation conditions of the constructed strain were optimized for shake-flasks and bioreactor cultivations. The constructed strain accumulated up to 16.4g/L of riboflavin in optimized medium in a 7L laboratory bioreactor during fed-batch fermentation.
Collapse
Affiliation(s)
- Kostyantyn Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Oleksy Lyzak
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Valentyna Yatsyshyn
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Maciej Kluz
- University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland
| | | | | | - Andriy Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine; University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.
| |
Collapse
|
61
|
Chen T, Liu WX, Fu J, Zhang B, Tang YJ. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J Biotechnol 2013; 168:499-505. [DOI: 10.1016/j.jbiotec.2013.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 12/18/2022]
|
62
|
Li Y, Gu Q, Lin Z, Wang Z, Chen T, Zhao X. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences. ACS Synth Biol 2013; 2:651-61. [PMID: 24041030 DOI: 10.1021/sb400051t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA mediated λ Red recombineering for the introduction of mutations, allowing it to target several sites simultaneously and generate libraries of up to 10(7) sequences in one reaction. We also describe "restriction digestion mediated co-selection (RD CoS)", which enables MIPE to produce enhanced recombineering efficiencies with greatly simplified coselection procedures. To demonstrate this approach, we applied MIPE to fine-tune gene expression level in the 5-gene riboflavin biosynthetic pathway and successfully isolated a clone with 2.67-fold improved production in less than a week. We further demonstrated the ability of MIPE for highly multiplexed diversification of protein coding sequence by simultaneously targeting 23 codons scattered along the 750 bp sequence. We anticipate this method to benefit the optimization of diverse biological systems in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Qun Gu
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhenquan Lin
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiwen Wang
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xueming Zhao
- Key Laboratory of Systems
Bioengineering,
Ministry of Education, and Department of Biochemical Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
63
|
Liu Y, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab Eng 2013; 19:107-15. [DOI: 10.1016/j.ymben.2013.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/08/2013] [Accepted: 07/11/2013] [Indexed: 01/11/2023]
|
64
|
Abstract
Transcriptome profiling allows massively parallel analysis of the dynamic expression of all genes and captures the cell physiology and regulatory mechanism in a holistic manner. Compared to other "omic" techniques, transcriptome is more tractable and sensitive. Transcriptomics has profoundly promoted development and applications of metabolic engineering by analysis of cell metabolism at a system level. Our recent effort was performed on a comparative transcriptome profiling between a riboflavin-producing Bacillus subtilis strain RH33 and the wild-type strain B. subtilis 168 to rationally identify new targets for improving riboflavin production. This transcriptome analysis-guided method improved the riboflavin titer by 32 ± 3 %. Herein, we describe the detailed experimental protocols for predicting new engineering targets using comparative transcriptome analysis.
Collapse
|
65
|
Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol 2013; 97:6149-58. [DOI: 10.1007/s00253-013-4995-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
|
66
|
Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 2013; 97:6113-27. [DOI: 10.1007/s00253-013-4960-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/29/2023]
|
67
|
Affiliation(s)
- Benjamin M. Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| | - Steven Edgar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| |
Collapse
|
68
|
Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, Tang B, Chen T, Zhao X. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. MOLECULAR BIOSYSTEMS 2013; 9:2034-44. [DOI: 10.1039/c3mb25568a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
69
|
Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 2012; 94:637-49. [PMID: 22406858 DOI: 10.1007/s00253-011-3773-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/18/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
Abstract
In silico metabolic network models are valuable tools for strain improvement with desired properties. In this work, based on the comparisons of each pathway flux under two different objective functions for the reconstructed metabolic network of Streptomyces roseosporus, three potential targets of zwf2 (code for glucose-6-phosphate hydrogenase), dptI (code for α-ketoglutarate methyltransferase), and dptJ (code for tryptophan oxygenase) were identified and selected for the genetic modifications. Overexpression of zwf2, dptI, and dptJ genes increased the daptomycin concentration up to 473.2, 452.5, and 489.1 mg/L, respectively. Furthermore, co-overexpression of three genes in series resulted in a 34.4% higher daptomycin concentration compared with the parental strain, which ascribed to the synergistic effect of the enzymes responsible for daptomycin biosynthesis. Finally, the engineered strain enhanced the yield of daptomycin up to 581.5 mg/L in the fed-batch culture, which was approximately 43.2% higher than that of the parental strain. These results demonstrated that the metabolic network based on in silico prediction would be accurate, reasonable, and practical for target gene identification and strain improvement.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
70
|
Gu P, Yang F, Kang J, Wang Q, Qi Q. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microb Cell Fact 2012; 11:30. [PMID: 22380540 PMCID: PMC3311589 DOI: 10.1186/1475-2859-11-30] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-tryptophan is an aromatic amino acid widely used in the food, chemical and pharmaceutical industries. In Escherichia coli, L-tryptophan is synthesized from phosphoenolpyruvate and erythrose 4-phosphate by enzymes in the shikimate pathway and L-tryptophan branch pathway, while L-serine and phosphoribosylpyrophosphate are also involved in L-tryptophan synthesis. In order to construct a microbial strain for efficient L-tryptophan production from glucose, we developed a one step tryptophan attenuator inactivation and promoter swapping strategy for metabolic flux optimization after a base strain was obtained by overexpressing the tktA, mutated trpE and aroG genes and inactivating a series of competitive steps. RESULTS The engineered E. coli GPT1002 with tryptophan attenuator inactivation and tryptophan operon promoter substitution exhibited 1.67 ~ 9.29 times higher transcription of tryptophan operon genes than the control GPT1001. In addition, this strain accumulated 1.70 g l(-1) L-tryptophan after 36 h batch cultivation in 300-mL shake flask. Bioreactor fermentation experiments showed that GPT1002 could produce 10.15 g l(-1) L-tryptophan in 48 h. CONCLUSIONS The one step inactivating and promoter swapping is an efficient method for metabolic engineering. This method can also be applied in other bacteria.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
71
|
Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characterization, and application to increase purine nucleoside production. Appl Microbiol Biotechnol 2011; 93:2023-33. [PMID: 22083279 DOI: 10.1007/s00253-011-3687-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Bacillus strains are used for the industrial production of the purine nucleosides inosine and guanosine, which are raw materials for the synthesis of the flavor enhancers disodium inosinate and disodium guanylate. An important precursor of purine nucleosides is 5-phospho-α-D: -ribosyl-1-pyrophosphate, which is synthesized by phosphoribosyl pyrophosphate synthetase (PRS, EC 2.7.6.1). Class I PRSs are widespread in bacteria and mammals, are highly conserved among different organisms, and are negatively regulated by two end products of purine biosynthesis, adenosine 5'-diphosphate (ADP) and guanosine 5'-diphosphate (GDP). The D52H, N114S, and L129I mutations in the human PRS isozyme I (PRS1) have been reported to cause uric acid overproduction and gout due to allosteric deregulation and enzyme superactivity. In this study, to find feedback-resistant Bacillus amyloliquefaciens PRS, the influence of the D58H, N120S, and L135I mutations (corresponding to the D52H, N114S, and L129I mutations in PRS1, respectively) on PRS enzymatic properties has been studied. Recombinant histidine-tagged wild-type PRS and three mutant PRSs were expressed in Escherichia coli, purified, and characterized. The N120S and L135I mutations were found to release the enzyme from ADP and GDP inhibition and significantly increase its sensitivity to inorganic phosphate (P(i)) activation. In contrast, PRS with the D58H mutation exhibited nearly identical sensitivity to ADP and GDP as the wild-type protein and had a notably greater P(i) requirement for activation. The N120S and L135I mutations improved B. amyloliquefaciens and Bacillus subtilis purine nucleoside-producing strains.
Collapse
|
72
|
Pei L, Schmidt M, Wei W. Synthetic biology: an emerging research field in China. Biotechnol Adv 2011; 29:804-14. [PMID: 21729747 PMCID: PMC3197886 DOI: 10.1016/j.biotechadv.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/20/2011] [Accepted: 06/11/2011] [Indexed: 12/27/2022]
Abstract
Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy.
Collapse
Affiliation(s)
- Lei Pei
- Organisation for International Dialogue and Conflict Management, Vienna, Austria.
| | | | | |
Collapse
|
73
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
74
|
Zhang XZ, Sathitsuksanoh N, Zhu Z, Percival Zhang YH. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab Eng 2011; 13:364-72. [PMID: 21549854 DOI: 10.1016/j.ymben.2011.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/09/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Although intensive efforts have been made to create recombinant cellulolytic microorganisms, real recombinant cellulose-utilizing microorganisms that can produce sufficient secretory active cellulase, hydrolyze cellulose, and utilize released soluble sugars for supporting both cell growth and cellulase synthesis without any other organic nutrient (e.g., yeast extract, peptone, amino acids), are not available. Here we demonstrated that over-expression of Bacillus subtilis endoglucanase BsCel5 enabled B. subtilis to grow on solid cellulosic materials as the sole carbon source for the first time. Furthermore, two-round directed evolution was conducted to increase specific activity of BsCel5 on regenerated amorphous cellulose (RAC) and enhance its expression/secretion level in B. subtilis. To increase lactate yield, the alpha-acetolactate synthase gene (alsS) in the 2,3-butanediol pathway was knocked out. In the chemically defined minimal M9/RAC medium, B. subtilis XZ7(pBscel5-MT2C) strain (ΔalsS), which expressed a BsCel5 mutant MT2C, was able to hydrolyze RAC with cellulose digestibility of 74% and produced about 3.1g/L lactate with a yield of 60% of the theoretical maximum. When 0.1% (w/v) yeast extract was added in the M9/RAC medium, cellulose digestibility and lactate yield were enhanced to 92% and 63% of the theoretical maximum, respectively. The recombinant industrially safe cellulolytic B. subtilis would be a promising consolidated bioprocessing platform for low-cost production of biocommodities from cellulosic materials.
Collapse
Affiliation(s)
- Xiao-Zhou Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
75
|
Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2011; 102:3934-40. [PMID: 21194928 DOI: 10.1016/j.biortech.2010.11.120] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 05/03/2023]
Abstract
Zwf (code for glucose-6-phosphate dehydrogenase) and gnd (code for 6-phosphogluconate dehydrogenase) genes from Corynebacterium glutamicum were firstly cloned, and then site-directed mutagenesis was successfully introduced to remove allosteric inhibition by intracellular metabolites. Expression of the mutant zwf and gnd in Bacillus subtilis RH33 resulted in significant enhancement of riboflavin productivity, while the specific growth rate decreased slightly and the specific glucose uptake rate was unchanged. Introduction of the mutant zwf and gnd led to approximately 18% and 22% increased riboflavin production, respectively. An improvement by 31% and 39% of the riboflavin production was obtained by co-expression of the mutated dehydrogenases in shaker flask and fed-batch cultivation. Intracellular metabolites analysis indicated that metabolites detected in pentose phosphate pathway or riboflavin synthesis pathway of engineered strains showed higher concentration, while TCA cycle and glycolysis metabolites detected were lower abundance than that of parent strain.
Collapse
Affiliation(s)
- Zhiwen Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
76
|
Control of α-amylase production by Bacillus subtilis. Bioprocess Biosyst Eng 2010; 34:367-74. [PMID: 21069387 DOI: 10.1007/s00449-010-0479-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
This study proposes two adaptive control algorithms for the fed-batch production of α-amylase. The first one uses online information from hardware measuring glucose. Online information of both biomass and glucose concentrations measured with different frequency is used in the second algorithm. Hardware measuring variables are inputs for software sensors of glucose concentration and (specific) glucose consumption rate. Either of the algorithms do not require any kinetic coefficients. This is a benefit, because the kinetic coefficients can vary during cultivation and between cultivations, leading to low process reproducibility and the non-stationary state of the bioprocess. The results of simulation investigations show good performance of the proposed control schemes.
Collapse
|
77
|
Dmytruk KV, Yatsyshyn VY, Sybirna NO, Fedorovych DV, Sibirny AA. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab Eng 2010; 13:82-8. [PMID: 21040798 DOI: 10.1016/j.ymben.2010.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 02/08/2023]
Abstract
Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.
Collapse
Affiliation(s)
- Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005, Ukraine
| | | | | | | | | |
Collapse
|
78
|
Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 2009; 85:1907-14. [DOI: 10.1007/s00253-009-2247-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 11/27/2022]
|