51
|
Iyinikkel J, Murray F. GPCRs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 2018; 175:3063-3079. [PMID: 29468655 PMCID: PMC6031878 DOI: 10.1111/bph.14172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease.
Collapse
Affiliation(s)
- Jean Iyinikkel
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Fiona Murray
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
52
|
Plasma miR-451 with echocardiography serves as a diagnostic reference for pulmonary hypertension. Acta Pharmacol Sin 2018; 39:1208-1216. [PMID: 29795360 DOI: 10.1038/aps.2018.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Due to the lack of typical clinical symptoms, the average delay time for diagnosis of pulmonary hypertension (PH) is longer than 2 years. It is urgent to find biomarkers for PH diagnosis. In this study we investigated whether plasma microRNAs (miRNAs) can be used as biomarkers for PH diagnosis. We used microarray to identify dynamic miRNAs between PH and non-PH patients. The candidate miRNAs were verified using qRT-PCR in a mouse model of PH, which was induced by monocrotaline (MCT) injection. We observed that miR-21, miR-126, miR-145, miR-191 and miR-150 had no differences between control mice and MCT-treated mice; but plasma miR-451 was significantly decreased in the 2wk-MCT group, with no further decrease in the 4wk-MCT group. Plasma miR-451 was also markedly decreased in PH patients, whereas miR-21, miR-126, miR-150 and miR-320 did not show differences between 53 PH patients and 54 non-PH patients. Receiver operating characteristic curves (ROCs) were constructed from the patient data to assess the clinical diagnostic values of circulating miR-451 and Doppler echocardiography (D-ECHO). The areas under the curve (AUCs) of ROCs for miR-451 and D-ECHO were 0.710 and 0.766, respectively. Combination of miR-451 and D-ECHO with AUC of 0.825 was superior to the use of either miR-451 or D-ECHO alone for PH diagnosis. In conclusion, plasma miR-451 has a moderate diagnostic value in PH comparable to that of D-ECHO, and the combination of miR-451 with D-ECHO has better diagnostic value than either method alone, which may have implications for PH diagnosis.
Collapse
|
53
|
Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 2018; 38:1332-1403. [PMID: 29315692 PMCID: PMC6033155 DOI: 10.1002/med.21476] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social StudiesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biomedical Research CentreUniversity HospitalHradec KraloveCzech Republic
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Fernando Remiao
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Aleš Mladěnka
- Oncogynaecologic Center, Department of Gynecology and ObstetricsUniversity HospitalOstravaCzech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Luděk Jahodář
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Kurt J. Varner
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | | |
Collapse
|
54
|
Delaney C, Sherlock L, Fisher S, Maltzahn J, Wright C, Nozik-Grayck E. Serotonin 2A receptor inhibition protects against the development of pulmonary hypertension and pulmonary vascular remodeling in neonatal mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L871-L881. [PMID: 29345193 PMCID: PMC6008134 DOI: 10.1152/ajplung.00215.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pulmonary hypertension (PH) complicating bronchopulmonary dysplasia (BPD) worsens clinical outcomes in former preterm infants. Increased serotonin (5-hydroxytryptamine, 5-HT) signaling plays a prominent role in PH pathogenesis and progression in adults. We hypothesized that increased 5-HT signaling contributes to the pathogenesis of neonatal PH, complicating BPD and neonatal lung injury. Thus, we investigated 5-HT signaling in neonatal mice exposed to bleomycin, previously demonstrated to induce PH and alveolar simplification. Newborn wild-type mice received intraperitoneal PBS, ketanserin (1 mg/kg), bleomycin (3 U/kg) or bleomycin (3 U/kg) plus ketanserin (1 mg/kg) three times weekly for 3 wk. Following treatment with bleomycin, pulmonary expression of the rate-limiting enzyme of 5-HT synthesis, tryptophan hydroxylase-1 (Tph1), was significantly increased. Bleomycin did not affect pulmonary 5-HT 2A receptor (R) expression, but did increase pulmonary gene expression of the 5-HT 2BR and serotonin transporter. Treatment with ketanserin attenuated bleomycin-induced PH (increased RVSP and RVH) and pulmonary vascular remodeling (decreased vessel density and increased muscularization of small vessels). In addition, we found that treatment with ketanserin activated pulmonary MAPK and Akt signaling in mice exposed to bleomycin. We conclude that 5-HT signaling is increased in a murine model of neonatal PH and pharmacological inhibition of the 5-HT 2AR protects against the development of PH in neonatal lung injury. We speculate this occurs through restoration of MAPK signaling and increased Akt signaling.
Collapse
Affiliation(s)
- Cassidy Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Laurie Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Susan Fisher
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Joanne Maltzahn
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Clyde Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| |
Collapse
|
55
|
Suzuki YJ, Shults NV. Redox Signaling in the Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:315-323. [PMID: 29047095 DOI: 10.1007/978-3-319-63245-2_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Pulmonary hypertension is a devastating disease without cure. The major cause of death among patients with pulmonary hypertension is right heart failure; however, biology of the right heart is not well understood. This lack of knowledge interferes with developing effective therapeutic strategies to treat these patients. In this chapter, we summarize studies performed in our laboratory that investigated the role of redox signaling in the regulation of the right ventricle (RV), using rat models of experimental pulmonary hypertension and right heart failure. Specifically, this chapter covers the topics of (a) redox regulation of serotonin signaling in the RV, (b) the carbonylation-degradation pathway of signal transduction in RV hypertrophy and (c) oxidative modifications in the RV of the SU5416/ovalbumin model of pulmonary arterial hypertension. These studies revealed that redox regulation in the RV is complex and simply giving lots of antioxidants to patients will unlikely benefit them. Deeper understanding of specific and selective redox mechanisms should shed light on how we can develop therapeutic strategies by modulating redox reactions.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC, 20057, USA.
| | - Nataliia V Shults
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC, 20057, USA
| |
Collapse
|
56
|
Matthes S, Bader M. Peripheral Serotonin Synthesis as a New Drug Target. Trends Pharmacol Sci 2018; 39:560-572. [PMID: 29628275 DOI: 10.1016/j.tips.2018.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
The first step in serotonin (5-HT) biosynthesis is catalyzed by tryptophan hydroxylase (TPH). There are two independent sources of the monoamine that have distinct functions: first, the TPH1-expressing enterochromaffin cells (ECs) of the gut; second, TPH2-expressing serotonergic neurons. TPH1-deficient mice revealed that peripheral 5-HT plays important roles in platelet function and in inflammatory and fibrotic diseases of gut, pancreas, lung, and liver. Therefore, TPH inhibitors were developed which cannot pass the blood-brain barrier to specifically block peripheral 5-HT synthesis. They showed therapeutic efficacy in several rodent disease models, and telotristat ethyl is the first TPH inhibitor to be approved for the treatment of carcinoid syndrome. We review this development and discuss further therapeutic options for these compounds.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
57
|
McGee M, Whitehead N, Martin J, Collins N. Drug-associated pulmonary arterial hypertension. Clin Toxicol (Phila) 2018; 56:801-809. [PMID: 29508628 DOI: 10.1080/15563650.2018.1447119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION While pulmonary arterial hypertension remains an uncommon diagnosis, various therapeutic agents are recognized as important associations. These agents are typically categorized into "definite", "likely", "possible", or "unlikely" to cause pulmonary arterial hypertension, based on the strength of evidence. OBJECTIVE This review will focus on those therapeutic agents where there is sufficient literature to adequately comment on the role of the agent in the pathogenesis of pulmonary arterial hypertension. METHODS A systematic search was conducted using PubMed covering the period September 1970- 2017. The search term utilized was "drug induced pulmonary hypertension". This resulted in the identification of 853 peer-reviewed articles including case reports. Each paper was then reviewed by the authors for its relevance. The majority of these papers (599) were excluded as they related to systemic hypertension, chronic obstructive pulmonary disease, human immunodeficiency virus, pulmonary fibrosis, alternate differential diagnosis, treatment, basic science, adverse effects of treatment, and pulmonary hypertension secondary to pulmonary embolism. Agents affecting serotonin metabolism (and related anorexigens): Anorexigens, such as aminorex, fenfluramine, benfluorex, phenylpropanolamine, and dexfenfluramine were the first class of medications recognized to cause pulmonary arterial hypertension. Although most of these medications have now been withdrawn worldwide, they remain important not only from a historical perspective, but because their impact on serotonin metabolism remains relevant. Selective serotonin reuptake inhibitors, tryptophan, and lithium, which affect serotonin metabolism, have also been implicated in the development of pulmonary arterial hypertension. Interferon and related medications: Interferon alfa and sofosbuvir have been linked to the development of pulmonary arterial hypertension in patients with other risk factors, such as human immunodeficiency virus co-infection. Antiviral therapies: Sofosbuvir has been associated with two cases of pulmonary artery hypertension in patients with multiple risk factors for its development. Its role in pathogenesis remains unclear. Small molecule tyrosine kinase inhibitors: Small molecule tyrosine kinase inhibitors represent a relatively new class of medications. Of these dasatinib has the strongest evidence in drug-induced pulmonary arterial hypertension, considered a recognized cause. Nilotinib, ponatinib, carfilzomib, and ruxolitinib are newer agents, which paradoxically have been linked to both cause and treatment for pulmonary arterial hypertension. Monoclonal antibodies and immune regulating medications: Several case reports have linked some monoclonal antibodies and immune modulating therapies to pulmonary arterial hypertension. There are no large series documenting an increased prevalence of pulmonary arterial hypertension complicating these agents; nonetheless, trastuzumab emtansine, rituximab, bevacizumab, cyclosporine, and leflunomide have all been implicated in case reports. Opioids and substances of abuse: Buprenorphine and cocaine have been identified as potential causes of pulmonary arterial hypertension. The mechanism by which this occurs is unclear. Tramadol has been demonstrated to cause severe, transient, and reversible pulmonary hypertension. Chemotherapeutic agents: Alkylating and alkylating-like agents, such as bleomycin, cyclophosphamide, and mitomycin have increased the risk of pulmonary veno-occlusive disease, which may be clinically indistinct from pulmonary arterial hypertension. Thalidomide and paclitaxel have also been implicated as potential causes. Miscellaneous medications: Protamine appears to be able to cause acute, reversible pulmonary hypertension when bound to heparin. Amiodarone is also capable of causing pulmonary hypertension by way of recognized side effects. CONCLUSIONS Pulmonary arterial hypertension remains a rare diagnosis, with drug-induced causes even more uncommon, accounting for only 10.5% of cases in large registry series. Despite several agents being implicated in the development of PAH, the supportive evidence is typically limited, based on case series and observational data. Furthermore, even in the drugs with relatively strong associations, factors that predispose an individual to PAH have yet to be elucidated.
Collapse
Affiliation(s)
- Michael McGee
- a Cardiovascular Department , John Hunter Hospital , Newcastle , Australia
| | - Nicholas Whitehead
- a Cardiovascular Department , John Hunter Hospital , Newcastle , Australia
| | - Jennifer Martin
- b Clinical Pharmacology, School of Medicine and Public Health , University of Newcastle , Newcastle , Australia
| | - Nicholas Collins
- a Cardiovascular Department , John Hunter Hospital , Newcastle , Australia
| |
Collapse
|
58
|
MacLean MMR. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018759125. [PMID: 29468941 PMCID: PMC5826007 DOI: 10.1177/2045894018759125] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased synthesis of serotonin and/or activity of serotonin in pulmonary arteries has been implicated in the pathobiology of pulmonary arterial hypertension (PAH). The incidence of PAH associated with diet pills such as aminorex, fenfluramine, and chlorphentermine initially led to the “serotonin hypothesis of pulmonary hypertension.” Over the last couple of decades there has been an accumulation of convincing evidence that targeting serotonin synthesis or signaling is a novel and promising approach to the development of novel therapies for PAH. Pulmonary endothelial serotonin synthesis via tryptophan hydroxlase 1 (TPH1) is increased in patients with PAH and serotonin can act in a paracrine fashion on underlying pulmonary arterial smooth muscle cells (PASMCs), In humans, serotonin can enter PASMCs via the serotonin transporter (SERT) or activate the 5-HT1B receptor; 5-HT1B activation and SERT activity cooperate to induce PASMC contraction and proliferation via activation of downstream proliferative and contractile signaling pathways. Here we will review the current status of the serotonin hypothesis and discuss potential and novel therapeutic targets.
Collapse
Affiliation(s)
- Margaret Mandy R MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
59
|
Orcholski ME, Yuan K, Rajasingh C, Tsai H, Shamskhou EA, Dhillon NK, Voelkel NF, Zamanian RT, de Jesus Perez VA. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol 2018; 314:L967-L983. [PMID: 29417823 DOI: 10.1152/ajplung.00553.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Halley Tsai
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| |
Collapse
|
60
|
Benavides-Luna HM. Fisiopatología de la hipertensión arterial pulmonar. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
61
|
|
62
|
Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension - progress in understanding the disease and prioritizing strategies for drug development. J Intern Med 2017; 282:129-141. [PMID: 28524624 DOI: 10.1111/joim.12623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH), at one time a largely overlooked disease, is now the subject of intense study in many academic and biotech groups. The availability of new treatments has increased awareness of the condition. This in turn has driven a change in the demographics of PAH, with an increase in the mean age at diagnosis. The diagnosis of PAH in more elderly patients has highlighted the need for careful phenotyping of patients and for further studies to understand how best to manage pulmonary hypertension associated with, for example, left heart disease. The breadth and depth of expertise focused on unravelling the molecular pathology of PAH has yielded novel insights, including the role of growth factors, inflammation and metabolic remodelling. The description of the genetic architecture of PAH is accelerating in parallel, with novel variants, such as those reported in potassium two-pore domain channel subfamily K member 3 (KCNK3), adding to the list of more established mutations in genes associated with bone morphogenetic protein receptor type 2 (BMPR2) signalling. These insights have supported a paradigm shift in treatment strategies away from simply addressing the imbalance of vasoactive mediators observed in PAH towards tackling more directly the structural remodelling of the pulmonary vasculature. Here, we summarize the changing clinical and molecular landscape of PAH. We highlight novel drug therapies that are in various stages of clinical development, targeting for example cell proliferation, metabolic, inflammatory/immune and BMPR2 dysfunction, and the challenges around developing these treatments. We argue that advances in the treatment of PAH will come through deep molecular phenotyping with the integration of clinical, genomic, transcriptomic, proteomic and metabolomic information in large populations of patients through international collaboration. This approach provides the best opportunity for identifying key signalling pathways, both as potential drug targets and as biomarkers for patient selection. The expectation is that together these will enable the prioritization of potential therapies in development and the evolution of personalized medicine for PAH.
Collapse
Affiliation(s)
- P Ghataorhe
- Department of Medicine, Imperial College London, London, UK
| | - C J Rhodes
- Department of Medicine, Imperial College London, London, UK
| | - L Harbaum
- Department of Medicine, Imperial College London, London, UK
| | - M Attard
- Department of Medicine, Imperial College London, London, UK
| | - J Wharton
- Department of Medicine, Imperial College London, London, UK
| | - M R Wilkins
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
63
|
Abstract
Cirrhosis, the twelfth leading cause of death, accounts for 1.1% of all deaths in the United States. Although there are multiple pulmonary complications associated with liver disease, the most important complications that cause significant morbidity and mortality are hepatopulmonary syndrome, hepatic hydrothorax, and portopulmonary hypertension. Patients with cirrhosis who complain of dyspnea should be evaluated for these complications. This article reviews these complications.
Collapse
Affiliation(s)
- Vijaya S Ramalingam
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | - Sikandar Ansari
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Micah Fisher
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Emory Clinic 'A', 1365 Clifton Road, Northeast 4th Floor, Atlanta, GA 30322, USA
| |
Collapse
|
64
|
Green JB, Hart B, Cornett EM, Kaye AD, Salehi A, Fox CJ. Pulmonary Vasodilators and Anesthesia Considerations. Anesthesiol Clin 2017; 35:221-232. [PMID: 28526144 DOI: 10.1016/j.anclin.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pulmonary hypertension (PH) is a complex disease process of the pulmonary vasculature system characterized by elevated pulmonary arterial pressures. Patients with PH are at increased risk for morbidity and mortality, including intraoperatively and postoperatively. Appreciation by the clinical anesthesiologist of the pathophysiology of PH is warranted. Careful and meticulous strategy using appropriate anesthetic medications, pulmonary vasodilator and inotropic agents, and careful fluid management all increase the likelihood of the best possible outcome in this challenging patient population.
Collapse
Affiliation(s)
- Jeremy B Green
- Department of Anesthesiology, Louisiana State University Health Science Center-New Orleans, New Orleans, LA, USA
| | - Brendon Hart
- Department of Anesthesiology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Science Center-New Orleans, 1542 Tulane Avenue, New Orleans, LA 70112, USA.
| | - Ali Salehi
- Department of Anesthesiology, Ronald Regan UCLA Medical Center, Los Angeles, CA, USA
| | - Charles J Fox
- Department of Anesthesiology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|
65
|
Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: Implications for systemic sclerosis. Semin Arthritis Rheum 2017; 47:409-417. [PMID: 28602360 DOI: 10.1016/j.semarthrit.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, autoimmunity, and widespread dermal and visceral fibrosis. This article summarizes the current knowledge about the potential contribution of platelets in the disease process and the rationale of targeting platelets as an adjunct treatment for SSc. METHODS We performed an electronic search (Medline) using the keywords platelets, systemic sclerosis, autoimmunity, fibrosis, Raynaud, and pulmonary arterial hypertension. RESULTS The link that connects vasculopathy, autoimmunity, and fibrosis in SSc remains obscure. Experimental data suggest that platelets are not solely cell fragments regulating hemostasis but they have a pleiotropic role in several biologic processes including immune regulation, vasculopathy, fibrosis, and all key features of SSc. Platelets interplay with the impaired endothelium, can interact with immune cells, and they are storages of bioactive molecules involved in tissue injury and remodeling. The potential role of platelets in the pathogenesis of SSc is further supported by experimental data in animal models of SSc. Platelet-derived serotonin represents a novel target in SSc and serotonin blockade is currently being tested in clinical trials. CONCLUSION Platelets may be actively involved in the pathogenesis of SSc by activating immune responses and facilitating the fibrotic process. However, definite conclusions cannot be drawn until more data from both basic and clinical research are available.
Collapse
Affiliation(s)
- Konstantinos Ntelis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, Patras, Greece
| | - Lazaros Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece.
| |
Collapse
|
66
|
Plasma Serotonin in Heart Failure: Possible Marker and Potential Treatment Target. Heart Lung Circ 2017; 26:442-449. [DOI: 10.1016/j.hlc.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022]
|
67
|
Plasma Proteomic Study in Pulmonary Arterial Hypertension Associated with Congenital Heart Diseases. Sci Rep 2016; 6:36541. [PMID: 27886187 PMCID: PMC5122864 DOI: 10.1038/srep36541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) has serious consequence and plasma protein profiles in CHD-PAH are unknown. We aimed to reveal the differential plasma proteins in 272 CHD patients with or without PAH. Various types of CHD-PAH were studied. Differential plasma proteins were first detected by iTRAQ proteomic technology and those with significant clinical relevance were selected for further ELISA validation in new cohort of patients. Among the 190 differential plasma proteins detected by iTRAQ, carbamoyl-phosphate synthetase I (CPSI, related to urea cycle and endogenous nitric oxide production) and complement factor H-related protein 2 (CFHR2, related to complement system and coagulant mechanism) were selected for further ELISA validation in new cohort of 152 patients. Both CPSI and CFHR2 were down-regulated with decreased plasma levels (p < 0.01). Thus, we for the first time in CHD-PAH patients identified a large number of differential plasma proteins. The decreased CPSI expression in CHD-PAH patients may reveal a mechanism related to endogenous nitric oxide and the decrease of CFHR2 protein may demonstrate the deficiency of the immune system and coagulation mechanism. The findings may open a new direction for translational medicine in CHD-PAH with regard to the diagnosis and progress of the disease.
Collapse
|
68
|
Ayme-Dietrich E, Banas SM, Monassier L, Maroteaux L. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin]. Biol Aujourdhui 2016; 210:79-88. [PMID: 27687599 DOI: 10.1051/jbio/2016012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/31/2023]
Abstract
Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow.
Collapse
Affiliation(s)
- Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire EA7296, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Sophie M Banas
- INSERM UMR-S 839, Université Pierre et Marie Curie, 75005 Paris, France - Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire EA7296, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Luc Maroteaux
- INSERM UMR-S 839, Université Pierre et Marie Curie, 75005 Paris, France - Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
69
|
Santos-Ribeiro D, Mendes-Ferreira P, Maia-Rocha C, Adão R, Leite-Moreira AF, Brás-Silva C. Pulmonary arterial hypertension: Basic knowledge for clinicians. Arch Cardiovasc Dis 2016; 109:550-561. [PMID: 27595464 DOI: 10.1016/j.acvd.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Pulmonary arterial hypertension is a progressive syndrome based on diverse aetiologies, which is characterized by a persistent increase in pulmonary vascular resistance and overload of the right ventricle, leading to heart failure and death. Currently, none of the available treatments is able to cure pulmonary arterial hypertension; additional research is therefore needed to unravel the associated pathophysiological mechanisms. This review summarizes current knowledge related to this disorder, and the several experimental animal models that can mimic pulmonary arterial hypertension and are available for translational research.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Adão
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
70
|
Maeda NY, Bydlowski SP, Lopes AA. Increased Tyrosine Phosphorylation of Platelet Proteins Including pp125FAK Suggests Endogenous Activation and Aggregation in Pulmonary Hypertension. Clin Appl Thromb Hemost 2016; 11:411-5. [PMID: 16244766 DOI: 10.1177/107602960501100407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite of several lines of evidence indicating a pathophysiologic role of platelets in pulmonary hypertension, the occurrence of chronic endogenous platelet activation has been a matter of debate. It was hypothesized that the pattern of tyrosine phosphorylation of platelet proteins examined ex vivo could provide information on the state of platelet activation. This was examined in 10 patients with pulmonary arterial hypertension aged 18 to 53 years. Phosphotyrosine density and the amounts of specific proteins were analyzed in resting platelets after reaction with anti-phosphotyrosine, anti-pp60c-src, anti-pp125FAK, and anti-αIIbβ3 antibodies. There was a 79% increase in protein-associated phosphotyrosine in patients in comparison to levels in controls (p<0.05). In particular, phosphorylation on tyrosine residues of pp120 and pp125FAK increased 24% and 57%, respectively (p<0.05). Although pp60c-src-associated phosphotyrosine was not altered in the patient group as a whole, it was clearly decreased in three subjects. Platelet content of β3 integrin, pp60c-src, and pp125FAK, was not altered. This pattern of phosphorylation suggests an ongoing process of platelet activation. Because phosphorylation of pp125FAK is a late, integrin-dependent event, results suggest that platelet activation and aggregation occur in vivo in these patients.
Collapse
Affiliation(s)
- Nair Y Maeda
- Pró-Sangue Foundation, Heart Institute, School of Medicine, University of São Paulo, Brazil.
| | | | | |
Collapse
|
71
|
Lewis GD, Ngo D, Hemnes AR, Farrell L, Domos C, Pappagianopoulos PP, Dhakal BP, Souza A, Shi X, Pugh ME, Beloiartsev A, Sinha S, Clish CB, Gerszten RE. Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension. J Am Coll Cardiol 2016; 67:174-189. [PMID: 26791065 DOI: 10.1016/j.jacc.2015.10.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. OBJECTIVES This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. METHODS We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). RESULTS In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. CONCLUSIONS Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization.
Collapse
Affiliation(s)
- Gregory D Lewis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Debby Ngo
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna R Hemnes
- Vanderbilt University Pulmonary Unit, Nashville, Tennessee
| | - Laurie Farrell
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carly Domos
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul P Pappagianopoulos
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bishnu P Dhakal
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Souza
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Xu Shi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Arkadi Beloiartsev
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sumita Sinha
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert E Gerszten
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
72
|
Tabeling C, Noe E, Naujoks J, Doehn JM, Hippenstiel S, Opitz B, Suttorp N, Klopfleisch R, Witzenrath M. PKCα Deficiency in Mice Is Associated with Pulmonary Vascular Hyperresponsiveness to Thromboxane A2 and Increased Thromboxane Receptor Expression. J Vasc Res 2016; 52:279-88. [PMID: 26890419 DOI: 10.1159/000443402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Pulmonary vascular hyperresponsiveness is a main characteristic of pulmonary arterial hypertension (PAH). In PAH patients, elevated levels of the vasoconstrictors thromboxane A2 (TXA2), endothelin (ET)-1 and serotonin further contribute to pulmonary hypertension. Protein kinase C (PKC) isozyme alpha (PKCα) is a known modulator of smooth muscle cell contraction. However, the effects of PKCα deficiency on pulmonary vasoconstriction have not yet been investigated. Thus, the role of PKCα in pulmonary vascular responsiveness to the TXA2 analog U46619, ET-1, serotonin and acute hypoxia was investigated in isolated lungs of PKCα-/- mice and corresponding wild-type mice, with or without prior administration of the PKC inhibitor bisindolylmaleimide I or Gö6976. mRNA was quantified from microdissected intrapulmonary arteries. We found that broad-spectrum PKC inhibition reduced pulmonary vascular responsiveness to ET-1 and acute hypoxia and, by trend, to U46619. Analogously, selective inhibition of conventional PKC isozymes or PKCα deficiency reduced ET-1-evoked pulmonary vasoconstriction. The pulmonary vasopressor response to serotonin was unaffected by either broad PKC inhibition or PKCα deficiency. Surprisingly, PKCα-/- mice showed pulmonary vascular hyperresponsiveness to U46619 and increased TXA2 receptor (TP receptor) expression in the intrapulmonary arteries. To conclude, PKCα regulates ET-1-induced pulmonary vasoconstriction. However, PKCα deficiency leads to pulmonary vascular hyperresponsiveness to TXA2, possibly via increased pulmonary arterial TP receptor expression.
Collapse
Affiliation(s)
- Christoph Tabeling
- Department of Infectious Diseases and Pulmonary Medicine, Charitx00E9; - Universitx00E4;tsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Archer SL. Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:29-53. [PMID: 27343087 DOI: 10.1007/978-1-4899-7678-9_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH PASMC and therapy with the SOD mimetic, MnTBAP, regresses experimental PAH. In conclusion, cancer and PAH share acquired mitochondrial abnormalities that increase proliferation and inhibit apoptosis, suggesting new therapeutic targets.
Collapse
Affiliation(s)
- Stephen L Archer
- Head Department of Medicine, Queen's University Program Medical Director KGH, HD, SMOL Etherington Hall, Room 3041 94 Stuart St., Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
74
|
Distler O, Cozzio A. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy. Semin Immunopathol 2015; 38:87-95. [PMID: 26577237 DOI: 10.1007/s00281-015-0551-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.
Collapse
Affiliation(s)
- Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Gloriastr. 25, 8091, Zurich, Switzerland.
| | - Antonio Cozzio
- Division of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
75
|
Sardana M, Moll M, Farber HW. Novel investigational therapies for treating pulmonary arterial hypertension. Expert Opin Investig Drugs 2015; 24:1571-96. [DOI: 10.1517/13543784.2015.1098616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
76
|
de Raaf MA, Kroeze Y, Middelman A, de Man FS, de Jong H, Vonk-Noordegraaf A, de Korte C, Voelkel NF, Homberg J, Bogaard HJ. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1164-73. [PMID: 26386116 DOI: 10.1152/ajplung.00127.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is required for the development of experimental pulmonary hypertension in rodents exposed to hypoxia or monocrotaline. While these animal models resemble human PAH only with respect to vascular media remodeling, we hypothesized that SERT is likewise required for the presence of lumen-obliterating intima remodeling, a hallmark of human PAH reproduced in the Sugen hypoxia (SuHx) rat model of severe angioproliferative pulmonary hypertension. Therefore, SERT wild-type (WT) and knockout (KO) rats were exposed to the SuHx protocol. SERT KO rats, while completely lacking SERT, were hemodynamically indistinguishable from WT rats. After exposure to SuHx, similar degrees of severe angioproliferative pulmonary hypertension and right ventricular hypertrophy developed in WT and KO rats (right ventricular systolic pressure 60 vs. 55 mmHg, intima thickness 38 vs. 30%, respectively). In conclusion, despite its implicated importance in PAH, SERT does not play an essential role in the pathogenesis of severe angioobliterative pulmonary hypertension in rats exposed to SuHx.
Collapse
Affiliation(s)
| | - Yvet Kroeze
- Department of Cognitive Neuroscience, Donders Institute for Brain, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anthonieke Middelman
- Department of Cognitive Neuroscience, Donders Institute for Brain, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frances S de Man
- Departments of Pulmonology and Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Helma de Jong
- Department of Laboratory of Chemistry and metabolic diseases, University Medical Centre, Groningen, The Netherlands
| | | | - Chris de Korte
- Department of Radiology, Medical UltraSound Imaging Center; Radboud University Medical Centre, Nijmegen, The Netherlands; and
| | - Norbert F Voelkel
- Pulmonary and Critical Care Medicine Division, Virginia Commonwealth University, Richmond, Virginia
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
77
|
Boucherat O, Chabot S, Antigny F, Perros F, Provencher S, Bonnet S. Potassium channels in pulmonary arterial hypertension. Eur Respir J 2015; 46:1167-77. [PMID: 26341985 DOI: 10.1183/13993003.00798-2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potassium channels dysfunction in pulmonary artery smooth muscle cells is a hallmark of PAH. Besides regulating many physiological functions, reduced potassium channels expression and/or activity have significant effects on PAH establishment and progression. This review describes the molecular mechanisms and physiological consequences of potassium channel modulation. Special emphasis is placed on KCNA5 (Kv1.5) and KCNK3 (TASK1), which are considered to play a central role in determining pulmonary vascular tone and may represent attractive therapeutic targets in the treatment of PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sophie Chabot
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Fabrice Antigny
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Frédéric Perros
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
78
|
Han X, Chen C, Cheng G, Liang L, Yao X, Yang G, You P, Shou X. Peroxisome proliferator-activated receptor γ attenuates serotonin-induced pulmonary artery smooth muscle cell proliferation and apoptosis inhibition involving ERK1/2 pathway. Microvasc Res 2015; 100:17-24. [DOI: 10.1016/j.mvr.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
|
79
|
Carroll-Turpin M, Hebert V, Chotibut T, Wensler H, Krentzel D, Varner KJ, Burn BR, Chen YF, Abreo F, Dugas TR. 4,4'-Methylenedianiline Alters Serotonergic Transport in a Novel, Sex-Specific Model of Pulmonary Arterial Hypertension in Rats. Toxicol Sci 2015; 147:235-45. [PMID: 26116029 DOI: 10.1093/toxsci/kfv126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiovascular disorder characterized by elevated pulmonary artery pressure as a result of arterial wall thickening. Patients are 3-4 times more likely to be women than men. This gender discrepancy demonstrates a need for an animal model with similar sex differences. 4,4'-Methylenedianiline (DAPM) is an aromatic amine used industrially in the synthesis of polyurethanes. Chronic, intermittent treatment of male and female rats with DAPM resulted in medial hyperplasia of pulmonary arterioles, exclusively in females, coupled to increases in pulmonary arterial pressures. Significant increases in plasma levels of endothelin-1 (ET-1) and serotonin, but decreases in nitrite [Formula: see text], were observed in females treated with DAPM. A decrease was observed in the serum ratio of the estrogen metabolites 2-hydroxyestradiol (2-OHE1)/16α-hydroxyestrogen (16α-OHE1). In females, ET-1,[Formula: see text] , and 2-OHE1/16α-OHE1 were significantly correlated with peak pressure gradient, an indirect measure of pulmonary arterial pressure. Expression of the serotonin transport protein (SERT) was significantly higher in the arteries of DAPM-treated females. In vitro, DAPM induced human pulmonary vascular smooth muscle cell proliferation and serotonin uptake, both of which were inhibited by treatment with the estrogen receptor antagonist ICI 182,780 or the selective serotonin reuptake inhibitor fluoxetine. DAPM also induced the release of serotonin from human pulmonary endothelial cells in culture, which is blocked by ICI 182,780. Taken together, this suggests that DAPM-mediated dysregulation of serotonin transport is estrogen-receptor dependent. Thus, DAPM-induced PAH pathology may be a new tool to clarify the sex selectivity of PAH disease pathogenesis.
Collapse
Affiliation(s)
- Michelle Carroll-Turpin
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Valeria Hebert
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Tanya Chotibut
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Heather Wensler
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Dallas Krentzel
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Kurt James Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans 70112
| | - Brendan R Burn
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans 70112
| | - Yi-Fan Chen
- Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803; and
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport 71130
| | - Tammy Renee Dugas
- *Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130;
| |
Collapse
|
80
|
Abstract
Pulmonary arterial hypertension is a progressive and debilitating disorder with an associated high morbidity and mortality rate. Significant advances in our understanding of the epidemiology, pathogenesis, and pathophysiology of pulmonary hypertension have occurred over the past several decades. This has allowed the development of new therapeutic options in this disease. Today, our selection of therapeutic modalities is broader, including calcium channel blockers, prostanoids, endothelin receptor antagonists, phosphodiesterase inhibitors, and soluble guanylate cyclase stimulators, but the disease remains fatal. This underscores the need for a continued search for novel therapies. Several potential pharmacologic agents for the treatment of pulmonary arterial hypertension are under clinical development and some promising results with these treatments have been reported. These agents include rho-kinase inhibitors, long-acting nonprostanoid prostacyclin receptor agonists, tyrosine protein kinase inhibitors, endothelial nitric oxide synthase couplers, synthetically produced vasoactive intestinal peptide, antagonists of the 5-HT2 receptors, and others. This article will review several of these promising new therapies and will discuss the current evidence regarding their potential benefit in pulmonary arterial hypertension.
Collapse
|
81
|
Zhang E, Maruyama J, Yokochi A, Mitani Y, Sawada H, Nishikawa M, Ma N, Maruyama K. Sarpogrelate hydrochloride, a serotonin 5HT2A receptor antagonist, ameliorates the development of chronic hypoxic pulmonary hypertension in rats. J Anesth 2015; 29:715-23. [PMID: 25931318 DOI: 10.1007/s00540-015-2015-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/04/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE The purpose of the present study was to determine if sarpogrelate hydrochloride (SPG), a serotonin 5HT2A receptor antagonist, prevented the development of chronic hypoxia-induced pulmonary hypertension (PH) and hypertensive pulmonary vascular remodeling. METHODS Forty-one male Sprague-Dawley rats were exposed to hypobaric hypoxia (380 mmHg, 10 % oxygen) or room air and administered 50 mg/kg SPG or vehicle by gavage once daily from day -2 to day 14. The mean pulmonary artery pressure (PAP) and right ventricular hypertrophy (RVH) were measured. Hypertensive pulmonary vascular remodelings were assessed morphometrically by light microscopy. Serotonin-induced contraction was determined in isolated pulmonary artery rings from 24 rats. In another set of rats, Western blotting, real-time polymerase chain reaction and immunofluorescent staining (n = 9) for lung tissue were performed. RESULTS Chronic hypoxia induced a rise in mean PAP and RVH, increased the percentage of muscularized arteries in peripheral pulmonary arteries and medial wall thickness in small muscular arteries, and potentiated serotonin-induced contraction, each of which was significantly (p < 0.05) ameliorated by SPG. Chronic hypoxia significantly increased the expression of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) protein levels, cyclic guanosine monophosphate, and matrix metalloproteinase-13 (MMP-13) mRNA levels in whole lung tissues. SPG increased peNOS expression in the immunofluorescent staining of peripheral pulmonary arteries from chronic hypoxic rats and decreased the MMP-13 mRNA in lung tissue in chronic hypoxic rats. CONCLUSIONS The administration of SPG ameliorated the development of chronic hypoxic PH and hypertensive pulmonary vascular changes.
Collapse
Affiliation(s)
- Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Medical Engineering, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka, Mie, 510-0293, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masakatsu Nishikawa
- Department of Institute of Human Research Promotion and Drug Development, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka, Mie, 510-0293, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
82
|
Humbert M, Lau EMT, Montani D, Jaïs X, Sitbon O, Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 2015; 130:2189-208. [PMID: 25602947 DOI: 10.1161/circulationaha.114.006974] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc Humbert
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.).
| | - Edmund M T Lau
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - David Montani
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Xavier Jaïs
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Oliver Sitbon
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Gérald Simonneau
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| |
Collapse
|
83
|
Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant 2015; 34:282-305. [DOI: 10.1016/j.healun.2014.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
|
84
|
Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL. Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 2015; 93:229-42. [PMID: 25672499 DOI: 10.1007/s00109-015-1263-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an idiopathic cardiopulmonary disease characterized by obstruction of small pulmonary arteries. Vascular obstruction is the consequence of excessive proliferation and apoptosis resistance of vascular cells, as well as inflammation, thrombosis, and vasoconstriction. Vascular obstruction increases the afterload faced by the right ventricle (RV), leading to RV failure. The proliferative, obstructive vasculopathy of PAH shares several mitochondrial abnormalities with cancer, notably a shift to aerobic glycolysis and mitochondrial fragmentation. Mitochondria in the pulmonary artery smooth muscle cell (PASMC) normally serve as oxygen sensors. In PAH, acquired mitochondrial abnormalities, including epigenetic silencing of superoxide dismutase (SOD2), disrupt oxygen sensing creating a pseudo-hypoxic environment characterized by normoxic activation of hypoxia-inducible factor-1α (HIF-1α). The resulting metabolic shift to aerobic glycolysis (the Warburg phenomenon) reflects inhibition of pyruvate dehydrogenase by pyruvate dehydrogenase kinases. In addition, altered mitochondrial dynamics result in mitochondrial fragmentation. The molecular basis of this structural change includes upregulation and activation of fission mediators, notably dynamin-related protein 1 (DRP-1), and downregulation of fusion mediators, especially mitofusin-2 (MFN2). These pathogenic mitochondrial abnormalities offer new therapeutic targets. Inhibition of mitotic fission or enhancement of fusion in PAH PASMC slows cell proliferation, causes cell cycle arrest, and induces apoptosis. DRP-1 inhibition or MFN2 gene therapy can regress PAH in experimental models of PAH. This review focuses on the etiology of mitochondrial fragmentation in PAH and explores the therapeutic implications of mitochondrial dynamics in the pulmonary vasculature and RV.
Collapse
Affiliation(s)
- John Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
85
|
5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:438403. [PMID: 25667920 PMCID: PMC4312574 DOI: 10.1155/2015/438403] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.
Collapse
|
86
|
Srihirun S, Tanjararak N, Chuncharunee S, Sritara P, Kaewvichit R, Fucharoen S, Pattanapanyasat K, Sibmooh N. Platelet hyperactivity in thalassemia patients with elevated tricuspid regurgitant velocity and the association with hemolysis. Thromb Res 2015; 135:121-6. [DOI: 10.1016/j.thromres.2014.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023]
|
87
|
Porres-Aguilar M, Mukherjee D. Portopulmonary hypertension: an update. Respirology 2014; 20:235-42. [PMID: 25523363 DOI: 10.1111/resp.12455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022]
Abstract
Portopulmonary hypertension represents a serious lung vascular disorder, defined as the presence of pulmonary arterial hypertension that is associated with portal hypertension, with or without the presence of significant liver disease. Transthoracic echocardiography represents the single best initial tool for the diagnostic evaluation in portopulmonary hypertension, and right heart catheterization remains the gold standard for definitive diagnosis. Despite the lack of randomized controlled trials in portopulmonary hypertension, some therapies have demonstrated improvements in cardiopulmonary haemodynamics and right ventricular function as described in case reports and case series. Specialists should be able to recognize indications and contraindications for liver transplantation in the setting of portopulmonary hypertension, and this review focuses on the appropriate diagnostic approach and current advances in medical therapies. Recognition of patients eligible for liver transplantation is needed to improve quality of life and survival.
Collapse
Affiliation(s)
- Mateo Porres-Aguilar
- Department of Internal Medicine, Division of Cardiovascular Diseases, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | |
Collapse
|
88
|
Abstract
Illicit stimulants, such as cocaine, amphetamine, and their derivatives (e.g., "ecstasy"), continue to exact heavy toll on health care in both developed and developing countries. The US Department of Health and Human Service reported over one million illicit drug-related emergency department visits in 2010, which was higher than any of the six previous years. Both inhaled and intravenous forms of these substances of abuse can result in a variety of acute and chronic injuries to practically every part of the respiratory tract, leading potentially to permanent morbidities as well as fatal consequences--including but not limited to nasal septum perforation, pulmonary hypertension, pneumothorax, pneumomediastinum, interstitial lung disease, alveolar hemorrhage, reactive airway disease, pulmonary edema, pulmonary granulomatosis, infections, foreign body aspiration, infections, bronchoconstriction, and thermal injuries. Stimulants are all rapidly absorbed substances that can also significantly alter the patient's systemic acid-base balance and central nervous system, thereby leading to further respiratory compromise. Mounting evidence in the past decade has demonstrated that adulterants coinhaled with these substances (e.g., levamisole) and the metabolites of these substances (e.g., cocaethylene) are associated with specific forms of systemic and respiratory complications as well. Recent studies have also demonstrated the effects of stimulants on autoimmune-mediated injuries of the respiratory tract, such as cocaine-induced midline destructive lesions. A persistent challenge to studies involving stimulant-associated respiratory toxidromes is the high prevalence of concomitant usage of various substances by drug abusers, including tobacco smoking. Now more than ever, health care providers must be familiar with the multitude of respiratory toxidromes as well as the diverse pathophysiology related to commonly abused stimulants to provide timely diagnosis and effective treatment.
Collapse
|
89
|
Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors. Mol Cell Biochem 2014; 397:267-76. [DOI: 10.1007/s11010-014-2194-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
|
90
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
91
|
Hofmann AD, Friedmacher F, Hunziker M, Takahashi H, Duess JW, Gosemann JH, Puri P. Upregulation of serotonin-receptor-2a and serotonin transporter expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2014; 49:871-4; discussion 874-5. [PMID: 24888825 DOI: 10.1016/j.jpedsurg.2014.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/27/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) is attributed to severe pulmonary hypoplasia and pulmonary hypertension (PH). PH is characterized by structural changes resulting in vascular remodeling. Serotonin, a potent vasoconstrictor, plays a central role in the development of PH. It exerts its constricting effects on the vessels via Serotonin receptor 2A (5-HT2A) and induces pulmonary smooth muscle cell proliferation via the serotonin transporter (5-HTT). This study was designed to investigate expressions of 5-HT2A and 5-HTT in the pulmonary vasculature of rats with nitrofen-induced CDH. METHODS Rats were exposed to nitrofen or vehicle on D9. Fetuses were sacrificed on D21 and divided into nitrofen and control group (n=32). Pulmonary RNA was extracted and mRNA level of 5HT2A was determined by qRT-PCR. Protein expression of 5HT2A and 5-HTT was investigated by western blotting. Confocal immunofluorescence double-staining for 5-HT2A, 5-HTT, and alpha smooth muscle actin were performed. RESULTS Pulmonary 5-HT2A gene expression levels were significantly increased in nitrofen-induced CDH compared to controls. Western blotting and confocal microscopy confirmed increased pulmonary protein expression in CDH lungs compared to controls. CONCLUSION Increased gene and protein expression of 5HT2A and 5-HTT in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that 5HT2A and 5-HTT are important mediators of PH in nitrofen-induced CDH.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Disease Models, Animal
- Female
- Gene Expression Regulation, Developmental
- Hernias, Diaphragmatic, Congenital/embryology
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Lung/abnormalities
- Lung/drug effects
- Lung/embryology
- Microscopy, Confocal
- Phenyl Ethers/toxicity
- Pregnancy
- Pregnancy, Animal
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin Plasma Membrane Transport Proteins/biosynthesis
- Serotonin Plasma Membrane Transport Proteins/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Alejandro D Hofmann
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Manuela Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Hiromizu Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Johannes W Duess
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Jan-Hendrik Gosemann
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland.
| |
Collapse
|
92
|
Nogueira-Ferreira R, Ferreira R, Henriques-Coelho T. Cellular interplay in pulmonary arterial hypertension: Implications for new therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:885-93. [DOI: 10.1016/j.bbamcr.2014.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022]
|
93
|
Medarov BI, Chopra A, Judson MA. Clinical aspects of portopulmonary hypertension. Respir Med 2014; 108:943-54. [PMID: 24816204 DOI: 10.1016/j.rmed.2014.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 04/07/2014] [Indexed: 12/28/2022]
Abstract
Portopulmonary hypertension (PoPH) is an often neglected form of pulmonary hypertension where pulmonary hypertension occurs in the presence of portal hypertension. PoPH is important to diagnose and treat as it may improve the patient's quality of life and improve the outcome after liver transplantation. In this review, we discuss the clinical aspects of PoPH including its pathophysiology, diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Boris I Medarov
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, MC-91, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, MC-91, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, MC-91, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
94
|
Lannan KL, Phipps RP, White RJ. Thrombosis, platelets, microparticles and PAH: more than a clot. Drug Discov Today 2014; 19:1230-5. [PMID: 24747560 DOI: 10.1016/j.drudis.2014.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that involves pathological remodeling, vasoconstriction and thrombosis. Alterations in hemostasis, coagulation and platelet activation are consistently observed in PAH patients. Microparticles derived from platelets, inflammatory cells and the endothelium are an increasingly well-recognized signal in a variety of cardiovascular diseases, including PAH. This review will focus on the roles of coagulation, thrombosis, platelet activation and microparticles in the pathology and progression of PAH.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - R James White
- Aab Cardiovascular Research Institute and Division of Pulmonary and Critical Care Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA.
| |
Collapse
|
95
|
Yubero-Lahoz S, Rodríguez J, Faura A, Pascual J, Oliveras A, Cao H, Farré M, de la Torre R. Determination of free serotonin and its metabolite 5-HIAA in blood human samples with consideration to pre-analytical factors. Biomed Chromatogr 2014; 28:1641-6. [DOI: 10.1002/bmc.3192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/20/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Samanta Yubero-Lahoz
- Universitat Pompeu Fabra (CEXS-UPF); Barcelona Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Joan Rodríguez
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Anna Faura
- Department of Nephrology, Nephropathies Research Group; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Julio Pascual
- Department of Nephrology, Nephropathies Research Group; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Anna Oliveras
- Department of Nephrology, Nephropathies Research Group; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Higini Cao
- Department of Nephrology, Nephropathies Research Group; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
- Universitat Autònoma; (UDIMAS-UAB); 08193 Bellaterra Barcelona Spain
| | - Rafael de la Torre
- Universitat Pompeu Fabra (CEXS-UPF); Barcelona Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program; IMIM-Hospital del Mar Medical Research Institute; Barcelona Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Santiago de Compostela Spain
| |
Collapse
|
96
|
Bauer EM, Chanthaphavong RS, Sodhi CP, Hackam DJ, Billiar TR, Bauer PM. Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. Circ Res 2014; 114:1596-600. [PMID: 24637196 DOI: 10.1161/circresaha.114.303662] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Recent studies demonstrate a role for toll-like receptor 4 (TLR4) in the pathogenesis of pulmonary hypertension (PH); however, the cell types involved in mediating the effects of TLR4 remain unknown. OBJECTIVES The objective of this study was to determine the contribution of TLR4 expressed on nonparenchymal cells to the pathogenesis of PH. METHODS AND RESULTS TLR4 bone marrow chimeric mice revealed an equal contribution of TLR4 on nonparenchymal and parenchymal cells in the pathogenesis of PH as determined by measuring right ventricular (RV) systolic pressure and RV hypertrophy. However, the deletion of TLR4 from myeloid lineage cells had no effect on the development of PH because we found no difference in RV systolic pressure or RV hypertrophy in wild-type versus LysM-TLR4(-/-) mice. To explore the potential role of platelet TLR4 in the pathogenesis of PH, platelet-specific TLR4(-/-) mice were generated (PF4-TLR4(-/-) mice). TLR4(-/-) platelets from either global TLR4(-/-) or PF4-TLR4(-/-) mice were functional but failed to respond to lipopolysaccharide, demonstrating a lack of TLR4. PF4-TLR4(-/-) mice demonstrated significant protection from hypoxia-induced PH, including attenuated increases in RV systolic pressure and RV hypertrophy, decreased platelet activation, and less pulmonary vascular remodeling. The deletion of TLR4 from platelets attenuated serotonin release after chronic hypoxia, and lipopolysaccharide-stimulated platelets released serotonin and promoted pulmonary artery smooth muscle cell proliferation in a serotonin-dependent manner. CONCLUSIONS Our data demonstrate that TLR4 on platelets contributes to the pathogenesis of PH and further highlights the role of platelets in PH.
Collapse
Affiliation(s)
- Eileen M Bauer
- From the Department of Surgery (E.M.B., R.S.C., C.P.S., D.J.H., T.R.B., P.M.B.), University of Pittsburgh Cancer Institute (E.M.B.), Division of Pediatric Surgery, Children's Hospital Pittsburgh (C.P.S., D.J.H.), Department of Pharmacology and Chemical Biology (P.M.B.), and Vascular Medicine Institute (P.M.B.), University of Pittsburgh School of Medicine, PA
| | | | | | | | | | | |
Collapse
|
97
|
O'Connell C, O'Callaghan DS, Humbert M. Novel medical therapies for pulmonary arterial hypertension. Clin Chest Med 2014; 34:867-80. [PMID: 24267310 DOI: 10.1016/j.ccm.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Available targeted therapies for pulmonary arterial hypertension are capable only of slowing progression of the disease and a cure remains elusive. However with the improved understanding of the pulmonary vascular remodeling that characterizes the disease, there is optimism that the disconnect between preclinical and clinical studies may be bridged with some of the newer therapies that are now at different stages of clinical evaluation. This article examines the evidence behind these new candidate treatments that may become part of the arsenal available for clinicians managing this devastating disease.
Collapse
Affiliation(s)
- Caroline O'Connell
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, 56 Eccles Street, Dublin 7, Ireland.
| | | | | |
Collapse
|
98
|
Zeinali F, Hauso Ø, Wiseth R, Moufack M, Waldum HL. Venous plasma serotonin is not a proper biomarker for pulmonary arterial hypertension. SCAND CARDIOVASC J 2014; 48:106-10. [PMID: 24446683 DOI: 10.3109/14017431.2014.886335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Serotonin (5-HT) most likely plays an important role in the pathogenesis of pulmonary arterial hypertension (PAH). We aimed to test if venous plasma 5-HT is a potential biomarker of PAH. We also measured venous blood β-thromboglobulin (β-TG) in all participants to ensure that any increase in serotonin levels measured is due to platelet release. DESIGN Blood samples from patients (n = 9) with pulmonary arterial hypertension (Group 1 of the World Health Organization classification of pulmonary hypertension) as well as healthy volunteers (n = 9) were analyzed. We used enzyme-linked immunosorbent assay (ELISA) to measure venous platelet-poor plasma 5-HT and β-TG in patients with pulmonary arterial hypertension (PAH) and in age-matched normal controls. RESULTS Venous platelet-free plasma 5-HT and β-TG were almost similar in patients with PAH and healthy controls with only a slight trend toward increased 5-HT levels in patients with PAH. No correlation was found between venous platelet-poor plasma 5-HT and disease severity. There was no association between venous plasma 5-HT and the mean pulmonary artery pressure. CONCLUSIONS Our data suggest that 5-HT is not significantly elevated in venous platelet-free plasma in patients with PAH and may accordingly not be a useful biomarker in this condition.
Collapse
Affiliation(s)
- Fatemeh Zeinali
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU , Trondheim , Norway
| | | | | | | | | |
Collapse
|
99
|
DiRaimondo TR, Klöck C, Warburton R, Herrera Z, Penumatsa K, Toksoz D, Hill N, Khosla C, Fanburg B. Elevated transglutaminase 2 activity is associated with hypoxia-induced experimental pulmonary hypertension in mice. ACS Chem Biol 2014; 9:266-75. [PMID: 24152195 DOI: 10.1021/cb4006408] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies in human patients and animal models have suggested that transglutaminase 2 (TG2) is upregulated in pulmonary hypertension (PH), a phenomenon that appears to be associated with the effects of serotonin (5-hydroxytryptamine; 5-HT) in this disease. Using chemical tools to interrogate and inhibit TG2 activity in vivo, we have shown that pulmonary TG2 undergoes marked post-translational activation in a mouse model of hypoxia-induced PH. We have also identified irreversible fluorinated TG2 inhibitors that may find use as non-invasive positron emission tomography probes for diagnosis and management of this debilitating, lifelong disorder. Pharmacological inhibition of TG2 attenuated the elevated right ventricular pressure but had no effect on hypertrophy of the right ventricle of the heart. A longitudinal study of pulmonary TG2 activity in PH patients is warranted.
Collapse
Affiliation(s)
| | | | - Rod Warburton
- Pulmonary
and Critical Care Division, Tufts University, Boston, Massachusetts 02111, United States
| | | | - Krishna Penumatsa
- Pulmonary
and Critical Care Division, Tufts University, Boston, Massachusetts 02111, United States
| | - Deniz Toksoz
- Pulmonary
and Critical Care Division, Tufts University, Boston, Massachusetts 02111, United States
| | - Nicholas Hill
- Pulmonary
and Critical Care Division, Tufts University, Boston, Massachusetts 02111, United States
| | | | - Barry Fanburg
- Pulmonary
and Critical Care Division, Tufts University, Boston, Massachusetts 02111, United States
| |
Collapse
|
100
|
Sulica R, Poon M. Medical therapeutics for pulmonary arterial hypertension: from basic science and clinical trial design to evidence-based medicine. Expert Rev Cardiovasc Ther 2014; 3:347-60. [PMID: 15853607 DOI: 10.1586/14779072.3.2.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulmonary arterial hypertension is a severe disease with poor prognosis, caused by obliteration of the pulmonary vasculature as a result of pulmonary-vascular remodeling, active vasoconstriction and in situ thrombosis. Left untreated, pulmonary arterial hypertension results in right-ventricular failure and death. There has been dramatic progress in the treatment of pulmonary arterial hypertension during recent years. A remarkable number of randomized-controlled trials with agents known to target specific abnormalities present in pulmonary arterial hypertension have been completed. Most commonly, therapeutic efficacy was judged by the ability of the drug under study to improve exercise capacity and to decrease the rate of severe complications. Completed clinical trials have mainly evaluated patients with relatively advanced disease. Despite these advances, responses to therapy in pulmonary arterial hypertension are not uniformly favorable and frequently incomplete. In addition, the methods of delivery and the adverse effect profile of the currently available pulmonary arterial hypertension-specific drugs create further management difficulties. Based on newly identified pathobiologic abnormalities in the pulmonary vasculature, future studies are likely to focus on the discovery of new therapeutic targets. Clinical trial design will continue to evolve in an attempt to enable inclusion of patients with less advanced disease and evaluation of treatment combinations or comparisons of the currently approved drugs.
Collapse
Affiliation(s)
- Roxana Sulica
- Mount Sinai School of Medicine, 1 Gustave L Levy Place, Box 1030, New York, NY 10029, USA.
| | | |
Collapse
|