51
|
Jia Y, Morand EF, Song W, Cheng Q, Stewart A, Yang YH. Regulation of lung fibroblast activation by annexin A1. J Cell Physiol 2013; 228:476-84. [PMID: 22777765 DOI: 10.1002/jcp.24156] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Annexin-A1 (AnxA1) is a glucocorticoid-induced protein with multiple actions in the regulation of inflammatory cell activation. The contribution of AnxA1 to human cell biology is not well understood. We investigated the contribution of AnxA1 and its receptor, formyl-peptide receptor 2 (FPR2), to the regulation of inflammatory responses in human normal lung fibroblasts (NLF). Silencing constitutive AnxA1 expression in NLF using small interfering RNA (siRNA) was associated with moderate but significant increases in tumor necrosis factor (TNF)-induced proliferation and interleukin (IL)-6 production, accompanied by reduction of ERK and NF-κB activity. AnxA1 regulation of ERK and NF-κB activation was associated with effects on proliferation. Blocking FPR2 using the specific antagonist WRW4 mimicked the effects of AnxA1 silencing on TNF-induced proliferation, IL-6, ERK, and NF-κB activation. AnxA1 silencing also impaired inhibitory effects of glucocorticoid on IL-6 production and on the expression of glucocorticoid-induced leucine zipper (GILZ), but blocking FPR2 failed to mimic these effects of AnxA1 silencing. These data suggest that AnxA1 regulates TNF-induced proliferation and inflammatory responses in lung fibroblasts, via effects on the ERK and NF-κB pathways, which depend on FPR2. AnxA1 also mediates effects of glucocorticoids and GILZ expression, but these effects appear independent of FPR2. These findings suggest that mimicking AnxA1 actions might have therapeutic potential in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Yuan Jia
- Centre for Inflammatory Diseases, Southern Clinical School, Monash University Faculty of Medicine Nursing and Health Sciences, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
52
|
Calmon MF, Mota MTDO, Babeto É, Candido NM, Girol AP, Mendiburu CF, Bonilha JL, Silvestre RVD, Rosa BM, Thomé JA, Medeiros GHA, Soares FA, Guimarães GC, de Arruda JGF, Oliani SM, Villa LL, Vassallo J, Rahal P. Overexpression of ANXA1 in penile carcinomas positive for high-risk HPVs. PLoS One 2013; 8:e53260. [PMID: 23341933 PMCID: PMC3544802 DOI: 10.1371/journal.pone.0053260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/27/2012] [Indexed: 01/16/2023] Open
Abstract
The incidence of penile cancer varies between populations but is rare in developed nations. Penile cancer is associated with a number of established risk factors and associated diseases including phimosis with chronic inflammation, human papillomavirus (HPV) infection, poor hygiene and smoking. The objective of this study was to identify genes related to this type of cancer. The detection of HPV was analyzed in 47 penile squamous cell carcinoma samples. HPV DNA was detected in 48.9% of penile squamous cell carcinoma cases. High-risk HPV were present in 42.5% of cases and low-risk HPV were detected in 10.6% of penile squamous cell carcinomas. The RaSH approach identified differential expression of Annexin A1 (ANXA1), p16, RPL6, PBEF1 and KIAA1033 in high-risk HPV positive penile carcinoma; ANXA1 and p16 were overexpressed in penile squamous cells positive for high-risk HPVs compared to normal penile samples by qPCR. ANXA1 and p16 proteins were significantly more expressed in the cells from high-risk HPV-positive penile carcinoma as compared to HPV-negative tumors (p<0.0001) independently of the subtype of the carcinoma. Overexpression of ANXA1 might be mediated by HPV E6 in penile squamous cell carcinoma of patients with high-risk HPVs, suggesting that this gene plays an important role in penile cancer.
Collapse
Affiliation(s)
| | | | - Érica Babeto
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | | | - Ana Paula Girol
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Carlos Fabian Mendiburu
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | - Jane Lopes Bonilha
- College of Medicine of Rio Preto,São José do Rio Preto, São Paulo, Brazil
| | | | - Bruno Miziara Rosa
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | - Jorge Alberto Thomé
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | | | | - Luisa Lina Villa
- Department of Radiology and Basic Oncology, School of Medicine, University of São Paulo, and College of Medical Sciences of Santa Casa de São Paulo, São Paulo,São Paulo, Brazil
| | - José Vassallo
- Hospital A. C. Camargo,São Paulo, São Paulo, São Paulo, Brazil
| | - Paula Rahal
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
53
|
Mercer SE, Cheng CH, Atkinson DL, Krcmery J, Guzman CE, Kent DT, Zukor K, Marx KA, Odelberg SJ, Simon HG. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 2012; 7:e52375. [PMID: 23300656 PMCID: PMC3530543 DOI: 10.1371/journal.pone.0052375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.
Collapse
Affiliation(s)
- Sarah E. Mercer
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Chia-Ho Cheng
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Donald L. Atkinson
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Krcmery
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Claudia E. Guzman
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - David T. Kent
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine Zukor
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Shannon J. Odelberg
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| |
Collapse
|
54
|
Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 2012; 4:1439-60. [PMID: 22857533 DOI: 10.4155/fmc.12.80] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are one of the last frontiers in pharmaceutical research. Several classes of HDACi have been identified. Although more than 20 HDACi are under preclinical and clinical investigation as single agents and in combination therapies against different cancers, just two of them were approved by the US FDA: Zolinza(®) and Istodax(®), both licensed for the treatment of cutaneous T-cell lymphoma, the latter also of peripheral T-cell lymphoma. Since HDAC enzymes act by forming multiprotein complexes (clusters), containing cofactors, the main problem in designing new HDACi is that the inhibition activity evaluated on isolated enzyme isoforms does not match the in vivo outcomes. In the coming years, the research will be oriented toward a better understanding of the functioning of these protein complexes as well as the development of new screening assays, with the final goal to obtain new drug candidates for the treatment of cancer.
Collapse
|
55
|
Shimizu T, Kasamatsu A, Yamamoto A, Koike K, Ishige S, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Annexin A10 in human oral cancer: biomarker for tumoral growth via G1/S transition by targeting MAPK signaling pathways. PLoS One 2012; 7:e45510. [PMID: 23029062 PMCID: PMC3444476 DOI: 10.1371/journal.pone.0045510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Background Annexins are calcium and phospholipid binding proteins that form an evolutionary conserved multigene family. Considerable evidence indicates that annexin A10 (ANXA10) is involved in tumoral progression, although little is known about its role in human oral carcinogenesis. In this study, we investigated the involvement of ANXA10 in oral squamous cell carcinoma (OSCC). Methodology/Principal Findings ANXA10 mRNA and protein expressions were assessed by quantitative reverse transcriptase polymerase chain reaction and immunoblotting, and we conducted a proliferation assay and cell-cycle analysis in ANXA10 knockdown cells in vitro. We evaluated the correlation between the ANXA10 expression status in 100 primary OSCCs and the clinicopathological features by immunohistochemistry. ANXA10 mRNA and protein expression levels were up-regulated in all cellular lines examined (n = 7, p<0.05). ANXA10 knockdown cells showed that cellular proliferation decreased by inactivation of extracellular regulated kinase (ERK) (p<0.05), and cell-cycle arrest at the G1 phase resulted from up-regulation of cyclin-dependent kinase inhibitors. ANXA10 protein expression in primary OSCCs was also significantly greater than in normal counterparts (p<0.05), and higher expression was correlated with tumoral size (p = 0.027). Conclusions/Significance Our results proposed for the first time that ANXA10 is an indicator of cellular proliferation in OSCCs. Our results suggested that ANXA10 expression might indicate cellular proliferation and ANXA10 might be a potential therapeutic target for the development of new treatments for OSCCs.
Collapse
Affiliation(s)
- Toshihiro Shimizu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Ayumi Yamamoto
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Kazuyuki Koike
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shunsaku Ishige
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hiroaki Takatori
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yosuke Sakamoto
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Masashi Shiiba
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|
56
|
Sejima H, Mori K, Ariumi Y, Ikeda M, Kato N. Identification of host genes showing differential expression profiles with cell-based long-term replication of hepatitis C virus RNA. Virus Res 2012; 167:74-85. [DOI: 10.1016/j.virusres.2012.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 02/01/2023]
|
57
|
Swa HLF, Blackstock WP, Lim LHK, Gunaratne J. Quantitative proteomics profiling of murine mammary gland cells unravels impact of annexin-1 on DNA damage response, cell adhesion, and migration. Mol Cell Proteomics 2012; 11:381-93. [PMID: 22511458 DOI: 10.1074/mcp.m111.011205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Annexin 1 (ANXA1), the first characterized member of the annexin superfamily, is known to bind or annex to cellular membranes in a calcium-dependent manner. Besides mediating inflammation, ANXA1 has also been reported to be involved in important physiopathological implications including cell proliferation, differentiation, apoptosis, cancer, and metastasis. However, with controversies in ANXA1 expression in breast carcinomas, its role in breast cancer initiation and progression remains unclear. To elucidate how ANXA1 plays a role in breast cancer initiation, we performed stable isotope labeling of amino acids in cell culture analysis on normal mammary gland epithelial cells from ANXA1-heterozygous (ANXA1(+/-)) and ANXA1-null (ANXA1(-/-)) mice. Among over 4000 quantified proteins, we observed 214 up-regulated and 169 down-regulated with ANXA1(-/-). Bioinformatics analysis of the down-regulated proteins revealed that ANXA1 is potentially implicated in DNA damage response, whereas the analysis of up-regulated proteins showed the possible roles of ANXA1 in cell adhesion and migration pathways. These observations were supported by relevant functional assays. The assays for DNA damage response demonstrated an accumulation of more DNA damage with slower recovery on heat stress and an impaired oxidative damage response in ANXA1(-/-) cells in comparison with ANXA1(+/-) cells. Overexpressing Yes-associated protein 1 or Yap1, the most down-regulated protein in DNA damage response pathway cluster, rescued the proliferative response in ANXA1(-/-) cells exposed to oxidative damage. Both migration and wound healing assays showed that ANXA1(+/-) cells possess higher motility with better wound closure capability than ANXA1(-/-) cells. Knocking down of β-parvin, the protein with the highest fold change in the cell adhesion protein cluster, indicated an increased cell migration in ANXA1(-/-) cells. Altogether our quantitative proteomics study on ANXA1 suggests that ANXA1 plays a protective role in DNA damage and modulates cell adhesion and motility, indicating its potential role in cancer initiation as well as progression in breast carcinoma.
Collapse
Affiliation(s)
- Hannah L F Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
58
|
Mass spectrometry-based salivary proteomics for the discovery of head and neck squamous cell carcinoma. Pathol Oncol Res 2012; 18:623-8. [PMID: 22350791 DOI: 10.1007/s12253-011-9486-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/01/2011] [Indexed: 12/31/2022]
Abstract
The 5-year survival rates for cases of head and neck squamous cell carcinoma (HNSCC) are only some 60%, mainly because 20%-40% of the patients develop a local relapse in the same or an adjacent anatomic region, even when the surgical margins are histologically tumour-free. Tumours are often discovered in an advanced stage because of the lack of specific symptoms and the diagnostic difficulties. The more advanced the stage of the tumour, the more invasive the diagnostic and treatment interventions needed. An early molecular diagnosis is therefore of vital importance in order to increase the survival rate. The aim of this study was to develop an efficient rapid and sensitive mass spectrometric method for the detection of differentially expressed proteins as tumour-specific biomarkers in saliva from HNSCC patients. Whole saliva samples were collected from patients with HNSCC and from healthy subjects. The proteins were profiled by using SDS PAGE, MALDI TOF/TOF mass spectrometry and the Mascot database search engine. Several potential tumour markers were identified, including annexin A1, beta- and gamma-actin, cytokeratin 4 and 13, zinc finger proteins and P53 pathway proteins. All of these proteins play a proven role in tumour genesis, and have not been detected previously in saliva. Salivary proteomics is a non-invasive specific method for cancer diagnosis and follow-up treatment. It provides facilities for the readily reproducible and reliable detection of tumours in early stages.
Collapse
|
59
|
Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2011; 12:58-67. [PMID: 22158022 DOI: 10.1038/nrc3171] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of cancer involves mechanisms by which aberrant cells overcome normal regulatory pathways that limit their numbers and their migration. The evasion of programmed cell death is one of several key early events that need to be overcome in the progression from normal cellular homeostasis to malignant transformation. Recently, we provided evidence in mouse and human cancers that successful cancer clones must also overcome programmed cell removal. In this Opinion article, we explore the role of programmed cell removal in both normal and neoplastic cells, and we place this pathway in the context of the initiation of programmed cell death.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine and Cancer Institute, Division of Haematology, Stanford University School of Medicine, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, California 94305, USA.
| | | | | |
Collapse
|
60
|
Wu Y, Elshimali Y, Sarkissyan M, Mohamed H, Clayton S, Vadgama JV. Expression of FOXO1 is associated with GATA3 and Annexin-1 and predicts disease-free survival in breast cancer. Am J Cancer Res 2011. [PMID: 22206049 DOI: 10.1158/1538-7445.am2012-704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To determine the prognostic value of FOXO1, GATA3 and Annexin-1 expression in breast cancer. METHODS Tissue microarray and individual paraffin tissue slides from 131 patients were used for the study. The association of FOXO1, GATA3 and Annexin-1 expression with clinicopathological features of breast cancer and disease outcome was examined in retrospective samples. Kaplan-Meier survival curves and Cox regression with multivariate analysis were used for assessing the relative risk (RR) and disease-free survival (DFS). The expression of FOXO1, GATA3 and Annexin-1 were determined by immunohistochemistry and the association among the three proteins was analyzed by Logistic regression analysis. RESULTS The nuclear expression of FOXO1 was observed in most of the normal breast tissues and 51.3% of the malignant breast tissues. GATA3 and Annexin-1 were expressed at 73% and 24.6% respectively in breast cancer tissues. The expression of FOXO1, GATA3 and Annexin-1 were all inversely correlated with lymph node-positive tumors. Both FOXO1 and Annexin-1 expression were also inversely associated with HER2-overexpressing tumors. FOXO1 expression was significantly associated with both GATA3 and Annexin-1 expression. In addition, Multivariate analyses confirm that only FOXO1 levels independently predict DFS. CONCLUSION FOXO1 expression in breast cancer is regulated by the PI3K/Akt pathway. The expression of FOXO1 is also associated with GATA3 and/or Annexin-1. Restoring or targeting FOXO1 to the cell nucleus in breast cancer tissues may improve response to therapy and disease outcome. Further clinical studies are warranted to test this hypothesis.
Collapse
|
61
|
STAT-Related Profiles Are Associated with Patient Response to Targeted Treatments in Locally Advanced SCCHN. Transl Oncol 2011; 4:47-58. [PMID: 21286377 DOI: 10.1593/tlo.10217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/08/2010] [Accepted: 11/18/2010] [Indexed: 02/07/2023] Open
Abstract
The anti-epidermal growth factor receptor antibody cetuximab (Erbitux, CTX) is currently used for the treatment of locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN), as yet with modest effectiveness, prompting for the identification of response predictors to this treatment and for the targeting of additional pathways implicated in this disease. Within this scope, we investigated the effect of SRC/STAT pathway components on LA-SCCHN patient outcome. SRC, STAT1, STAT3, STAT5A, STAT5B, ANXA1, CAV1, IGFBP2, EPHA2, EPHB2, and MSN relative gene expression, as well as Stat protein activation, were assessed on LA-SCCHN tumor tissues from 35 patients treated with combined radiotherapy (RT) and CTX-based regimens. Stat1, Stat3, and Stat5 proteins were usually found activated in neoplastic nuclei (70.4%, 85.7%, and 70.8%, respectively). Activated Stat3 and Stat5 were associated with each other (P = .017) and with a CAV1(high)/MSN(high)/IGFBP2(low) profile. All patients with tumors expressing high STAT5A/EPHA2 experienced a complete response on RT-CTX-based treatments (12/15 complete responders, P < .0001) and a longer progression-free survival (P = .024). Few tumors expressed high ANXA1/CAV1/EPHA2 and low IGFBP2, a putative dasatinib response-related profile, whereas high ANXA1 was associated with shorter overall survival (P = .003). In conclusion, Stat activation is common in LA-SCCHN, where overexpression of STAT5A and EPHA2 may predict for response to RT-CTX treatments. The STAT5A/EPHA2 profile seems of particular interest for validation in larger cohorts and in multiple tumor types because markers for the positive selection of patients to benefit from CTX-containing treatments are currently lacking.
Collapse
|
62
|
Long X, Zhang J, Zhang Y, Yao J, Cai Z, Yang P. Nano-LC-MS/MS based proteomics of hepatocellular carcinoma cells compared to Chang liver cells and tanshinone IIA induction. MOLECULAR BIOSYSTEMS 2011; 7:1728-41. [DOI: 10.1039/c0mb00343c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Beck HC, Petersen J, Nielsen SJ, Morsczeck C, Morszeck C, Jensen PB, Sehested M, Grauslund M. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat. Electrophoresis 2010; 31:2714-21. [PMID: 20717991 DOI: 10.1002/elps.201000033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC-MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto-oncogene proteins p53, Myc, activator protein 1, and c-fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed.
Collapse
|
64
|
McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, Solito E. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. THE JOURNAL OF IMMUNOLOGY 2010; 185:6317-28. [PMID: 20962261 DOI: 10.4049/jimmunol.1001095] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. We have identified ANXA1 to be sparingly expressed in microglia of normally aged human brains and to be more strongly expressed in Alzheimer's disease. Using an in vitro model comprising microglial and neuronal cell lines, as well as primary microglia from wild-type and ANXA1 null mice, we have identified two distinct roles for microglial ANXA1: 1) controlling the noninflammatory phagocytosis of apoptotic neurons and 2) promoting resolution of inflammatory microglial activation. In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.
Collapse
Affiliation(s)
- Simon McArthur
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
65
|
Zhu F, Xu C, Jiang Z, Jin M, Wang L, Zeng S, Teng L, Cao J. Nuclear localization of annexin A1 correlates with advanced disease and peritoneal dissemination in patients with gastric carcinoma. Anat Rec (Hoboken) 2010; 293:1310-4. [PMID: 20665809 DOI: 10.1002/ar.21176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Annexin A1 (ANXA1) is a multifunctional molecule, which mediates various important physiologic processes depending on its subcelluar localization. The purpose of this study was to investigate the expression of ANXA1 level and its subcellular localization in paired clinical samples of gastric adenocarcinoma and adjacent normal counterpart. The study also assesses the clinical significance of ANXA1 subcelluar localization in gastric adenocarcinoma. A total of 104 paired resected gastric adenocarcinoma and corresponding normal specimens were collected in this study. Expression of ANXA1 was examined by immunohistochemical staining. Both cytoplasmic and nuclear ANXA1 expression levels and their correlation with clinicopathological parameters were assessed. ANXA1 protein expression was positive in 72 of 104 (69.2%) normal tissues and 47 of 104 (45.2%) gastric adenocarcinoma tissues. ANXA1 staining was predominantly localized in the cytoplasm in all 72 ANXA1-positive normal specimens, whereas 12 ANXA1-positive gastric adenocarcinoma specimens showed positive nuclear staining. The positive nuclear staining correlated well with serosal invasion, peritoneal dissemination and TNM stage. Cases with positive nuclear staining presented more peritoneal dissemination (41.7%, 5/12) than those with negative nuclear staining (8.7%, 8/92; P = 0.007). A logistic regression model revealed that positive ANXA1 nuclear staining had an independent association with peritoneal dissemination (P = 0.039; hazards ratio, 9.499; 95% confidence interval, 1.159-77.815). These results indicated that ANXA1 is expressed in both gastric adenocarcinoma and normal tissues. In gastric adenocarcinoma tissues ANXA1 is expressed both in cytoplasm and nucleus and its nuclear localization correlates with advanced disease stage and peritoneal dissemination.
Collapse
Affiliation(s)
- Fengjia Zhu
- Sir Run Run Shaw Institute of Clinical Medicine, College of Medicine, Zhejiang University and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Khau T, Langenbach SY, Schuliga M, Harris T, Johnstone CN, Anderson RL, Stewart AG. Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. FASEB J 2010; 25:483-96. [PMID: 20930115 DOI: 10.1096/fj.09-154096] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of the calcium- and phospholipid-binding protein annexin I (ANXA1) in cell cycle regulation has been investigated in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast tumor cell lines. In MCF-7 cells, ANXA1-targeting small interfering RNA (siRNA) reduced ANXA1 mRNA and protein levels and attenuated cell proliferation induced by FCS, estradiol, or epidermal growth factor. Well-characterized agonists for the known ANXA1 receptor, FPR2, including the ANXA1 N-terminal proteolytic product ANXA1(2-26), lipoxin A(4) (LXA(4)), and the synthetic peptide, Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), stimulated proliferation of MCF-7 and MDA-MB-231 cells that was attenuated by incubation with FPR2 antagonists WRW(4) (1 μM) or Boc2 (100 nM) or by siRNA against FPR2. FCS-induced mitogenic responses were attenuated by each of the FPR antagonists and by siRNA against FPR2 and, to a lesser extent, FPR1. LXA(4) increased phosphorylation of Akt, p70(S6K) but not ERK1/2. Increases in cyclin D1 protein induced by FCS or LXA(4) were blocked by the PI3 kinase inhibitor, LY294002, and attenuated by FPR2 antagonism using Boc2. In invasive breast cancer, immunohistochemistry revealed the presence of ANXA1 and its receptor, FPR2, in both tumor epithelium and stromal cells. These observations suggest a novel signaling role for ANXA1 in mitogen-activated proliferation of breast tumor epithelial cells that is mediated via activation of FPR1 and FPR2.
Collapse
Affiliation(s)
- Thippadey Khau
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
67
|
Zhu X, Ding M, Yu ML, Feng MX, Tan LJ, Zhao FK. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC Cancer 2010; 10:290. [PMID: 20546628 PMCID: PMC3087317 DOI: 10.1186/1471-2407-10-290] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/15/2010] [Indexed: 12/11/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies. Early diagnosis is critical for guiding the therapeutic management of ESCC. It is imperative to find more effective biomarkers of ESCC. Methods To identify novel biomarkers for esophageal squamous cell carcinoma (ESCC), specimens from 10 patients with ESCC were subjected to a comparative proteomic analysis. The proteomic patterns of ESCC samples and normal esophageal epithelial tissues (NEETs) were compared using two-dimensional gel electrophoresis. And differentially expressed proteins were identified using MALDI-TOF-MS/MS. For further identification of protein in selected spot, western blotting and immunohistochemistry were employed. Results Twelve proteins were up-regulated and fifteen proteins were down-regulated in the ESCC samples compared with the NEET samples. Up-regulation of galectin-7 was further confirmed by western blotting and immunohistochemistry. Furthermore, immunohistochemical staining of galectin-7 was performed on a tissue microarray containing ESCC samples (n = 50) and NEET samples (n = 10). The expression levels of galectin-7 were markedly higher in the ESCC samples than in the NEET samples (P = 0.012). In addition, tissue microarray analysis also showed that the expression level of galectin-7 was related to the differentiation of ESCC. Conclusions The present proteomics analysis revealed that galectin-7 was highly expressed in ESCC tissues. The alteration in the expression of galectin-7 was confirmed using a tissue microarray. These findings suggest that galectin-7 could be used as a potential biomarker for ESCC.
Collapse
Affiliation(s)
- Xi Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
68
|
Decreased GRP78 Protein Expression is a Potential Prognostic Marker of Oral Squamous Cell Carcinoma in Taiwan. J Formos Med Assoc 2010; 109:326-37. [DOI: 10.1016/s0929-6646(10)60060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/16/2008] [Accepted: 08/20/2009] [Indexed: 11/23/2022] Open
|
69
|
Colavita I, Esposito N, Martinelli R, Catanzano F, Melo JV, Pane F, Ruoppolo M, Salvatore F. Gaining insights into the Bcr-Abl activity-independent mechanisms of resistance to imatinib mesylate in KCL22 cells: a comparative proteomic approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1974-87. [PMID: 20417730 DOI: 10.1016/j.bbapap.2010.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/26/2010] [Accepted: 04/15/2010] [Indexed: 11/18/2022]
Abstract
Imatinib mesylate is a potent inhibitor of Bcr-Abl tyrosine kinase, an oncoprotein that plays a key role in the development of chronic myeloid leukemia. Consequently, imatinib is used as front-line therapy for this disease. A major concern in imatinib treatment is the emergence of resistance to the drug. Here we used the imatinib-resistant KCL22R and imatinib-sensitive KCL22S cells in which none of the known resistance mechanisms has been detected and hence novel Bcr-Abl activity-independent mechanisms could be envisaged. We characterized proteins that were differentially expressed between the KCL22R and KCL22S cells. Using two-dimensional differential gel electrophoresis coupled with mass spectrometry and Western blot analysis we identified 51 differentially expressed proteins: 27 were over-expressed and 24 were under-expressed in KCL22R versus KCL22S cells. Several of these proteins are likely to be involved in such survival mechanisms as modulation of redox balance and activation of anti-apoptotic pathways mediated by NF-kappaB and Ras-MAPK signaling. The data reported may be useful for further studies on mechanisms of imatinib resistance and for the screening of biomarkers to develop new combinatorial therapeutic approaches.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Glutathione/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- NADP/metabolism
- Piperazines/therapeutic use
- Proteome/analysis
- Pyrimidines/therapeutic use
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
Collapse
|
70
|
de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, Pardali E, Le Dévédec SE, Smit VT, van der Wal A, Van't Veer LJ, Cleton-Jansen AM, ten Dijke P, van de Water B. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci U S A 2010; 107:6340-5. [PMID: 20308542 PMCID: PMC2852023 DOI: 10.1073/pnas.0913360107] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A1 (AnxA1) is a candidate regulator of the epithelial- to mesenchymal (EMT)-like phenotypic switch, a pivotal event in breast cancer progression. We show here that AnxA1 expression is associated with a highly invasive basal-like breast cancer subtype both in a panel of human breast cancer cell lines as in breast cancer patients and that AnxA1 is functionally related to breast cancer progression. AnxA1 knockdown in invasive basal-like breast cancer cells reduced the number of spontaneous lung metastasis, whereas additional expression of AnxA1 enhanced metastatic spread. AnxA1 promotes metastasis formation by enhancing TGFbeta/Smad signaling and actin reorganization, which facilitates an EMT-like switch, thereby allowing efficient cell migration and invasion of metastatic breast cancer cells.
Collapse
Affiliation(s)
- Marjo de Graauw
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Martine H. van Miltenburg
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Marjanka K. Schmidt
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX, Amsterdam, The Netherlands
| | - Chantal Pont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Reshma Lalai
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Joelle Kartopawiro
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Evangelia Pardali
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RA, Leiden, The Netherlands; and
| | - Sylvia E. Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Vincent T. Smit
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Annemieke van der Wal
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Laura J. Van't Veer
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX, Amsterdam, The Netherlands
| | | | - Peter ten Dijke
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RA, Leiden, The Netherlands; and
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
71
|
Zhu F, Wang Y, Zeng S, Fu X, Wang L, Cao J. Involvement of annexin A1 in multidrug resistance of K562/ADR cells identified by the proteomic study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 13:467-76. [PMID: 20001861 DOI: 10.1089/omi.2009.0046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multidrug resistance (MDR) to chemotherapy is a significant barrier to the effective treatment of chromic myeloid leukemia (CML). In an attempt to identify more factors associated with MDR for an understanding of the mechanism, we first established an adriamycin (ADR)-resistant human erythroleukemia cell line K562/ADR by stepwise selection in vitro using ADR. Besides the elevated resistance to ADR, the K562/ADR cells also showed significantly increased crossed-resistance to vincristin and Gleevec, compared to the parental K562 cells. Then we compared the global protein profiles between K562 and K562/ADR cells. Following two-dimensional gel electrophoresis and image analysis, some of the proteins with different levels between the two cell lines were identified by MALDI TOF/TOF mass spectrometry and Western blot analysis. The differentially expressed proteins were classified into groups based on their functions: calcium-binding proteins, chaperones, metabolic enzymes, proteins related to protein synthesis or DNA synthesis, and proteins related to signal transduction. In particular, ANXA1, a protein that was downregulated in K562/ADR, was analyzed further for its involvement in MDR by transfection and subsequent assays. The functional validation showed that the downregulated ANXA1 expression contributes considerably to the observed drug resistance in K562/ADR cells. These data will be valuable for further study of the mechanisms of MDR and may reveal a potential new diagnostic marker to chemotherapy.
Collapse
Affiliation(s)
- Fengjia Zhu
- Sir Run Run Shaw Institute of Clinical Medicine, College of Medicine, Zhejiang University and Key Laboratory of Biotherapy of Zhejiang Province , Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
72
|
Jung EJ, Moon HG, Park ST, Cho BI, Lee SM, Jeong CY, Ju YT, Jeong SH, Lee YJ, Choi SK, Ha WS, Lee JS, Kang KR, Hong SC. Decreased annexin A3 expression correlates with tumor progression in papillary thyroid cancer. Proteomics Clin Appl 2010; 4:528-37. [PMID: 21137070 DOI: 10.1002/prca.200900063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 11/30/2009] [Accepted: 12/15/2009] [Indexed: 01/21/2023]
Abstract
PURPOSE The aim of this study is to identify the potential tumor markers that function in carcinogenesis and tumor progression, thus providing important diagnostic and prognostic information. EXPERIMENTAL DESIGN We performed 2-D gel electrophoresis and MALDI-TOF MS to investigate the differentially expressed proteins in 25 papillary thyroid carcinoma tissues. For validation of candidate proteins and investigation of clinical significance, we performed Western, Northern blot analysis and immunohistochemical staining. RESULTS Our proteomic analyses revealed significantly decreased annexin A3 expression in papillary thyroid carcinoma at both the protein and mRNA levels, compared with normal thyroid tissue. ANXA3 immunoreactivity was not significantly correlated with lymph node metastasis, multifocality, capsular invasion or perithyroidal extension in thyroid cancer. However, the tumor subgroup with a lymph node metastasis score of >3 displayed significantly lower ANXA3 expression than did subgroups with negative and ≤3 scores (p=0.001). Moreover, ANXA3 expression was markedly lower in large tumors (>1 cm in diameter) than in microcarcinomas (p=0.001). CONCLUSION AND CLINICAL RELEVANCE Decreased expression of ANXA3 in papillary thyroid cancer supports the idea that ANXA3 may be an effective marker of microcarcinoma, and a negative predictor of papillary thyroid cancer progression.
Collapse
Affiliation(s)
- Eun-Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National Unniversity, Gyeongsang National University Hospital, Gyeongnam Regional Cancer Center, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Li CF, Shen KH, Huang LC, Huang HY, Wang YH, Wu TF. Annexin-I overexpression is associated with tumour progression and independently predicts inferior disease-specific and metastasis-free survival in urinary bladder urothelial carcinoma. Pathology 2010; 42:43-9. [PMID: 20025479 DOI: 10.3109/00313020903434405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS In our previous studies, comparative proteomics and immunohistochemistry (IHC) demonstrated that annexin-I (ANXA1) is up-regulated in high grade urinary bladder urothelial carcinoma (UBUC) as compared to non-high grade carcinomas. However, the small sample size prohibited further correlation of ANXA1 expression to tumour progression. Therefore, in the present study, 81 primary localised UBUC specimens of various grades and primary tumour (pT) status were examined for ANXA1 expression to further confirm the proteomics data and to clarify the relevance of ANXA1 expression level to the prognosis of UBUC. METHODS IHC was implemented to investigate ANXA1 protein expression in 81 primary localised UBUC specimens. The association of ANXA1 expression with tumour progression and prognosis was analysed. RESULTS Our data demonstrated that the ANXA1 expression level was strongly associated with an escalated pT status (p < 0.001) and a higher histological grade (p < 0.001), suggesting that ANXA1 might be related to tumour progression. Moreover, at the univariate level, ANXA1 overexpression, along with higher pT status and histological grade, significantly predicted disease-specific survival (DSS) and metastasis-free survival (MFS). More importantly, multivariate analyses revealed that the association of ANXA1 overexpression and prognosis remained significant for both DSS and MFS. CONCLUSION The above results reinforced the comparative proteomics results and confirmed the prognostic role of ANXA1 in UBUC.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
74
|
Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1878-90. [PMID: 20133820 DOI: 10.2353/ajpath.2010.090950] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subependymal giant cell astrocytomas (SEGAs) are rare brain tumors associated with tuberous sclerosis complex (TSC), a disease caused by mutations in TSC1 or TSC2, resulting in enhancement of mammalian target of rapamycin (mTOR) activity, dysregulation of cell growth, and tumorigenesis. Signaling via mTOR plays a role in multifaceted genomic responses, but its effectors in the brain are largely unknown. Therefore, gene expression profiling on four SEGAs was performed with Affymetrix Human Genome arrays. Of the genes differentially expressed in TSC, 11 were validated by real-time PCR on independent tumor samples and 3 SEGA-derived cultures. Expression of several proteins was confirmed by immunohistochemistry. The differentially-regulated proteins were mainly involved in tumorigenesis and nervous system development. ANXA1, GPNMB, LTF, RND3, S100A11, SFRP4, and NPTX1 genes were likely to be mTOR effector genes in SEGA, as their expression was modulated by an mTOR inhibitor, rapamycin, in SEGA-derived cells. Inhibition of mTOR signaling affected size of cultured SEGA cells but had no influence on their proliferation, morphology, or migration, whereas inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways led to significant alterations of these processes. For the first time, we identified genes related to the occurrence of SEGA and regulated by mTOR and demonstrated an effective modulation of SEGA growth by pharmacological inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways, which could represent a novel therapeutic approach.
Collapse
|
75
|
Grzendowski M, Wolter M, Riemenschneider MJ, Knobbe CB, Schlegel U, Meyer HE, Reifenberger G, Stühler K. Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q. Neuro Oncol 2010; 12:243-56. [PMID: 20167812 DOI: 10.1093/neuonc/nop025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combined deletion of chromosomal arms 1p and 19q is an independent prognostic marker in patients with oligodendroglial brain tumors, including oligodendrogliomas and oligoastrocytomas. However, the relevant genes in these chromosome arms and the molecular mechanisms underlying the prognostic significance of 1p/19q deletion are yet unknown. We used two-dimensional difference gel electrophoresis followed by mass spectrometry to perform a proteome-wide profiling of low-grade oligoastrocytomas stratified for the presence or absence of 1p/19q deletions. Thereby, we identified 22 different proteins showing differential expression in tumors with or without combined deletions of 1p and 19q. Four of the differentially expressed proteins, which are vimentin, villin 2 (ezrin), annexin A1, and glial fibrillary acidic protein, were selected for further analysis. Lower relative expression levels of these proteins in 1p/19q-deleted gliomas were confirmed at the protein level by Western blot analysis and immunohistochemistry. Furthermore, sequencing of sodium bisulfite-treated tumor DNA revealed more frequent methylation of 5'-CpG islands associated with the VIM and VIL2 genes in 1p/19q-deleted gliomas when compared with gliomas without these deletions. In summary, we confirm proteome-wide profiling as a powerful means to identify candidate biomarkers in gliomas. In addition, our data support the hypothesis that 1p/19q-deleted gliomas frequently show epigenetic down-regulation of multiple genes due to aberrant methylation of the 5'-CpG islands.
Collapse
Affiliation(s)
- Michael Grzendowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Pitiyage G, Tilakaratne WM, Tavassoli M, Warnakulasuriya S. Molecular markers in oral epithelial dysplasia: review. J Oral Pathol Med 2009; 38:737-52. [DOI: 10.1111/j.1600-0714.2009.00804.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
77
|
Kim J, Kim MA, Jee CD, Jung EJ, Kim WH. Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer 2009; 125:1842-50. [DOI: 10.1002/ijc.24541] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
Wang Z, Feng X, Liu X, Jiang L, Zeng X, Ji N, Li J, Li L, Chen Q. Involvement of potential pathways in malignant transformation from oral leukoplakia to oral squamous cell carcinoma revealed by proteomic analysis. BMC Genomics 2009; 10:383. [PMID: 19691830 PMCID: PMC2746235 DOI: 10.1186/1471-2164-10-383] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 08/19/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common forms of cancer associated with the presence of precancerous oral leukoplakia. Given the poor prognosis associated with oral leukoplakia, and the difficulties in distinguishing it from cancer lesions, there is an urgent need to elucidate the molecular determinants and critical signal pathways underlying the malignant transformation of precancerous to cancerous tissue, and thus to identify novel diagnostic and therapeutic target. RESULTS We have utilized two dimensional electrophoresis (2-DE) followed by ESI-Q-TOF-LC-MS/MS to identify proteins differentially expressed in six pairs of oral leukoplakia tissues with dysplasia and oral squamous cancer tissues, each pair was collected from a single patient. Approximately 85 differentially and constantly expressed proteins (> two-fold change, P < 0.05) were identified, including 52 up-regulated and 33 down-regulated. Gene ontological methods were employed to identify the biological processes that were over-represented in this carcinogenic stage. Biological networks were also constructed to reveal the potential links between those protein candidates. Among them, three homologs of proteosome activator PA28 a, b and g were shown to have up-regulated mRNA levels in OSCC cells relative to oral keratinocytes. CONCLUSION Varying levels of differentially expressed proteins were possibly involved in the malignant transformation of oral leukoplakia. Their expression levels, bioprocess, and interaction networks were analyzed using a bioinformatics approach. This study shows that the three homologs of PA28 may play an important role in malignant transformation and is an example of a systematic biology study, in which functional proteomics were constructed to help to elucidate mechanistic aspects and potential involvement of proteins. Our results provide new insights into the pathogenesis of oral cancer. These differentially expressed proteins may have utility as useful candidate markers of OSCC.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukoplakia, Oral/genetics
- Leukoplakia, Oral/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Muscle Proteins/genetics
- Proteasome Endopeptidase Complex/genetics
- Proteomics/methods
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xinyu Liu
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| |
Collapse
|
79
|
Ang EZF, Nguyen HT, Sim HL, Putti TC, Lim LHK. Annexin-1 regulates growth arrest induced by high levels of estrogen in MCF-7 breast cancer cells. Mol Cancer Res 2009; 7:266-74. [PMID: 19208747 DOI: 10.1158/1541-7786.mcr-08-0147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen, a naturally occurring female steroid growth hormone, has been implicated as a major risk factor for the development of breast cancer. Recent research into this disease has also correlated Annexin-1 (ANXA1), a glucocorticoid-inducible protein, with the development of breast tumorigenesis. ANXA1 is lost in many cancers, including breast cancer, and this may result in a functional promotion of tumor growth. In this study, we investigated the expression of ANXA1 in MCF-7 cells treated with estrogen and the regulation of estrogen functions by ANXA1. Exposure of MCF-7 breast cancer cells to high physiologic levels (up to 100 nmol/L) of estrogen leads to an up-regulation of ANXA1 expression partially through the activation of cyclic AMP-responsive element binding protein and dependency on activation of the estrogen receptor. In addition, treatment of MCF-7 cells with physiologic levels of estrogen (1 nmol/L) induced proliferation, whereas high pregnancy levels of estrogen (100 nmol/L) induced a growth arrest of MCF-7 cells, associated with constitutive activation of extracellular signal-regulated kinase 1/2 and up-regulation of cell cycle arrest proteins such as p21(waf/cip). Silencing of ANXA1 with specific small interfering RNA reverses the estrogen-dependent proliferation as well as growth arrest and concomitantly modulates extracellular signal-regulated kinase 1/2 phosphorylation. We confirm that ANXA1 is lost in clinical breast cancer, indicating that the antiproliferative protective function of ANXA1 against high levels of estrogen may be lost. Finally, we show that ANXA1-deficient mice exhibit faster carcinogen-induced tumor growth. Our data suggest that ANXA1 may act as a tumor suppressor gene and modulate the proliferative functions of estrogens.
Collapse
Affiliation(s)
- Emily Zhao-Feng Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
80
|
Alves VAF, Nonogaki S, Cury PM, Wünsch-Filho V, de Carvalho MB, Michaluart-Júnior P, Moyses RA, Curioni OA, Figueiredo DLA, Scapulatempo-Neto C, Parra ER, Polachini GM, Silistino-Souza R, Oliani SM, Silva-Júnior WA, Nobrega FG, Tajara EH, Zago MA. Annexin A1 subcellular expression in laryngeal squamous cell carcinoma. Histopathology 2009; 53:715-27. [PMID: 19076685 DOI: 10.1111/j.1365-2559.2008.03186.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Annexin A1 (ANXA1) is a soluble cytoplasmic protein, moving to membranes when calcium levels are elevated. ANXA1 has also been shown to move to the nucleus or outside the cells, depending on tyrosine-kinase signalling, thus interfering in cytoskeletal organization and cell differentiation, mostly in inflammatory and neoplastic processes. The aim was to investigate subcellular patterns of immunohistochemical expression of ANXA1 in neoplastic and non-neoplastic samples from patients with laryngeal squamous cell carcinomas (LSCC), to elucidate the role of ANXA1 in laryngeal carcinogenesis. METHODS AND RESULTS Serial analysis of gene expression experiments detected reduced expression of ANXA1 gene in LSCC compared with the corresponding non-neoplastic margins. Quantitative polymerase chain reaction confirmed ANXA1 low expression in 15 LSCC and eight matched normal samples. Thus, we investigated subcellular patterns of immunohistochemical expression of ANXA1 in 241 paraffin-embedded samples from 95 patients with LSCC. The results showed ANXA1 down-regulation in dysplastic, tumourous and metastatic lesions and provided evidence for the progressive migration of ANXA1 from the nucleus towards the membrane during laryngeal tumorigenesis. CONCLUSIONS ANXA1 dysregulation was observed early in laryngeal carcinogenesis, in intra-epithelial neoplasms; it was not found related to prognostic parameters, such as nodal metastases.
Collapse
Affiliation(s)
- V A F Alves
- Department of Pathology, School of Medicine, USP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nomura H, Uzawa K, Yamano Y, Fushimi K, Nakashima D, Kouzu Y, Kasamatsu A, Ogawara K, Shiiba M, Bukawa H, Yokoe H, Tanzawa H. Down-regulation of plasma membranous Annexin A1 protein expression in premalignant and malignant lesions of the oral cavity: correlation with epithelial differentiation. J Cancer Res Clin Oncol 2008; 135:943-9. [PMID: 19101730 DOI: 10.1007/s00432-008-0530-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/02/2008] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine the potential involvement of ANXA1 in oral squamous-cell carcinoma (OSCC), we evaluated the ANXA1 protein expression in oral premalignant lesions (OPLs) and OSCCs and correlated the results with clinicopathologic variables. METHODS Matched normal and tumour specimens of 44 primary OSCCs and 28 OPLs were analyzed for ANXA1 subcellular localization and protein expression level by immunohistochemistry (IHC). Correlations between ANXA1-IHC staining scores of OSCCs and clinicopathologic features were evaluated by Fisher's exact test. RESULTS Markedly down-regulation of ANXA1 protein expression was identified on the plasma membrane of epithelial cells in OSCCs (P < 0.001) and OPLs (P = 0.001) compared with normal counterparts. Moreover, loss of plasma membranous ANXA1 expression was significantly correlated with the poorly differentiated status of OSCC cells (P = 0.012). CONCLUSIONS Our findings suggest that loss of ANXA1 is frequent and early event during oral carcinogenesis and that ANXA1 could contribute to maintaining epithelial differentiation in OSCC.
Collapse
Affiliation(s)
- Hitomi Nomura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The annexins are a super-family of closely related calcium and membrane-binding proteins. They have a diverse range of cellular functions that include vesicle trafficking, cell division, apoptosis, calcium signalling and growth regulation. Many studies have shown the annexins to be among the genes whose expression are consistently differentially altered in neoplasia. Some annexins show increased expression in specific types of tumours, while others show loss of expression. Mechanistic studies relating the changes in annexin expression to tumour cell function, particularly tumour invasion and metastasis, angiogenesis and drug resistance, are now also emerging. Changes in the expression of individual annexins are associated with particular types of tumour and hence the annexins may also be useful biomarkers in the clinic.
Collapse
Affiliation(s)
- S Mussunoor
- Department of Pathology, University of Aberdeen, UK
| | | |
Collapse
|
83
|
Tsai YS, Lin CT, Tseng GC, Chung IF, Pal NR. Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems. BMC Bioinformatics 2008; 9:425. [PMID: 18842155 PMCID: PMC2620271 DOI: 10.1186/1471-2105-9-425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background The Signal-to-Noise-Ratio (SNR) is often used for identification of biomarkers for two-class problems and no formal and useful generalization of SNR is available for multiclass problems. We propose innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene Dominant Index and Gene Dormant Index (GDIs). These two indices lead to the concepts of dominant and dormant genes with biological significance. We use these indices to develop methodologies for discovery of dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from the literature we have shown that the GDI based method can identify dominant and dormant genes that play significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems. Results and discussion To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer). For each data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers. We then use six machine learning tools, Nearest Neighbor Classifier (NNC), Nearest Mean Classifier (NMC), Support Vector Machine (SVM) classifier with linear kernel, and SVM classifier with Gaussian kernel, where both SVMs are used in conjunction with one-vs-all (OVA) and one-vs-one (OVO) strategies. We found GDIs to be very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets we could achieve better or comparable prediction accuracies usually with fewer marker genes than results reported in the literature using the same computational protocols. The dominant genes are usually easy to find while good dormant genes may not always be available as dormant genes require stronger constraints to be satisfied; but when they are available, they can be used for authentication of diagnosis. Conclusion Since GDI based schemes can find a small set of dominant/dormant biomarkers that is adequate to design diagnostic prediction systems, it opens up the possibility of using real-time qPCR assays or antibody based methods such as ELISA for an easy and low cost diagnosis of diseases. The dominant and dormant genes found by GDIs can be used in different ways to design more reliable diagnostic prediction systems.
Collapse
Affiliation(s)
- Yu-Shuen Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
84
|
Wang LD, Yang YH, Liu Y, Song HT, Zhang LY, Li PL. Decreased expression of annexin A1 during the progression of cervical neoplasia. J Int Med Res 2008; 36:665-72. [PMID: 18652761 DOI: 10.1177/147323000803600407] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate whether the expression of annexin A1 (ANXA1) is associated with the progression of cervical neoplasia. ANXA1 expression was examined by immunohistochemistry in paraffin-embedded cervical tissue samples (n = 234), comprising 52 samples of normal cervical epithelia, 30 of cervical intraepithelial neoplasia (CIN) I, 27 of CIN II, 32 of CIN III, and 93 of invasive squamous cell carcinoma (ISCC). ANXA1 expression was strong in normal cervical squamous epithelium and significantly reduced with increasing progression of cervical neoplasia. Moreover, a close association was observed between ANXA1 expression and tumour cell differentiation in ISCC. These preliminary results indicate that ANXA1 may be an effective candidate for detecting CIN lesions and for evaluating tumour cell differentiation in squamous cell carcinoma of the cervix.
Collapse
Affiliation(s)
- L D Wang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
85
|
Murphy L, Henry M, Meleady P, Clynes M, Keenan J. Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1184-91. [DOI: 10.1016/j.bbapap.2008.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 12/17/2022]
|
86
|
Koehn J, Krapfenbauer K, Huber S, Stein E, Sutter W, Watzinger F, Erovic BM, Thurnher D, Schindler T, Fountoulakis M, Turhani D. Potential Involvement of MYC- and p53-Related Pathways in Tumorigenesis in Human Oral Squamous Cell Carcinoma Revealed by Proteomic Analysis. J Proteome Res 2008; 7:3818-29. [DOI: 10.1021/pr800077a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jadranka Koehn
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Kurt Krapfenbauer
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Susanna Huber
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Elisabeth Stein
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Walter Sutter
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Franz Watzinger
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Boban M. Erovic
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Dietmar Thurnher
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Thomas Schindler
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Michael Fountoulakis
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| | - Dritan Turhani
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria, Novartis Institutes for Biomedical Research, Novartis, Vienna, Austria, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria, and Roche Center for Medical Genomics, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
87
|
Lin CY, Jeng YM, Chou HY, Hsu HC, Yuan RH, Chiang CP, Kuo MYP. Nuclear localization of annexin A1 is a prognostic factor in oral squamous cell carcinoma. J Surg Oncol 2008; 97:544-50. [PMID: 18297688 DOI: 10.1002/jso.20992] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES To investigate whether annexin A1 (ANXA1) expression is a marker in predicting the prognosis of oral cancer patients. METHODS We immunohistochemically examined the expression of ANXA1 in 66 cases of oral epithelial dysplasia (OED) and 115 cases of oral squamous cell carcinoma (OSCC). The results were correlated with the clinicopathological parameters of tumors and overall patient survival. RESULTS In normal oral mucosa, ANXA1 staining was predominantly located on the cell membrane. In OED and OSCC specimens, membranous staining decreased, whereas nuclear staining increased. Positive nuclear staining was observed in 9 of 66 (13.64%) OED cases and 63 of 115 (54.8%) OSCCs. Kaplan-Meier curves showed that OSCC patients with ANXA1 nuclear staining had significantly shorter overall lengths of survival (P = 0.00036 by the log-rank test). Multivariate analysis showed that ANXA1 nuclear staining is a significant predictor of poor overall survival. And oral cancer SAS cells treated with hepatocyte growth factor (HGF) can induce ANXA1 protein translocation from cytoplasm to nucleus. Cells pretreated with LY294002 (PI3K inhibitor) almost completely inhibited (88.3% inhibition) HGF-mediated ANXA1 nuclear translocation. CONCLUSIONS The nuclear localization of ANXA1 protein is a frequent event and could be used as a prognostic factor in OSCC.
Collapse
Affiliation(s)
- Chiao-Ying Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
88
|
Yu G, Wang J, Chen Y, Wang X, Pan J, Li Q, Xie K. Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin A1 expression and nodal metastasis in gastric cancer. Clin Exp Metastasis 2008; 25:695-702. [PMID: 18535914 DOI: 10.1007/s10585-008-9178-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/04/2008] [Indexed: 05/26/2023]
Abstract
AIMS Annexin A1 (ANXA1) is a calcium- and phospholipid-binding protein that has been implicated in the regulation of inflammation, cell proliferation, and apoptosis. Its role in tumor development and progression is controversial, whereas its role in gastric cancer is unknown. We investigated ANXA1 expression and determined its clinical significance in gastric cancer. METHODS AND RESULTS Tissue microarray blocks containing primary gastric cancer, lymph node metastasis, and adjacent normal mucosa specimens obtained from 1,072 Chinese patients were constructed. Expression of ANXA1 in these specimens was analyzed using immunohistochemistry. Complete loss of ANXA1 expression was observed in 691 (64%) of the 1,072 primary tumors and 146 (86%) of 169 nodal metastases. Loss of ANXA1 expression was significantly associated with advanced T stage, lymph node metastasis, advanced disease stage, and poor histological differentiation. Loss of ANXA1 expression correlated significantly with poor survival rates in both univariate and multivariate analyses. CONCLUSIONS ANXA1 expression decreased significantly as gastric cancer progressed and metastasized, suggesting the importance of ANXA1 as a negative biomarker for gastric cancer development and progression.
Collapse
Affiliation(s)
- Guanzhen Yu
- Department of Medical Oncology, Changzheng Hospital, Hetian Road 64, Shanghai 200070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
89
|
Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY, Li F, Li JL, Li C, Yi H, Yi B, Xiao ZQ. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 2008; 14:435-45. [PMID: 18223218 DOI: 10.1158/1078-0432.ccr-07-1215] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To identify novel nasopharyngeal carcinoma (NPC) biomarkers by laser capture microdissection and a proteomic approach. EXPERIMENTAL DESIGN Proteins from pooled microdissected NPC and normal nasopharyngeal epithelial tissues (NNET) were separated by two-dimensional gel electrophoresis, and differential proteins were identified by mass spectrometry. Expression of three differential proteins (stathmin, 14-3-3sigma, and annexin I) in the above two tissues as well as four NPC cell lines was determined by Western blotting. Immunohistochemistry was also done to detect the expression of three differential proteins in 98 cases of primary NPC, 30 cases of NNET, and 20 cases of cervical lymph node metastases, and the correlation of their expression levels with clinicopathologic features and clinical outcomes were evaluated. RESULTS Thirty-six differential proteins between the NPC and NNET were identified. The expression levels of stathmin, 14-3-3sigma, and annexin I in the two types of tissues were confirmed and related to differentiation degree and/or metastatic potential of the NPC cell lines. Significant stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I were observed in NPC versus NNET, and significant down-regulation of 14-3-3sigma and annexin I was also observed in lymph node metastasis versus primary NPC. In addition, stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I were significantly correlated with poor histologic differentiation, advanced clinical stage, and recurrence, whereas down-regulation of 14-3-3sigma and annexin I was also significantly correlated with lymph node and distant metastasis. Furthermore, survival curves showed that patients with stathmin up-regulation and down-regulation of 14-3-3sigma and annexin I had a poor prognosis. Multivariate analysis revealed that the expression status of stathmin, 14-3-3sigma, and annexin I was an independent prognostic indicator. CONCLUSION The data suggest that stathmin, 14-3-3sigma, and annexin I are potential biomarkers for the differentiation and prognosis of NPC, and their dysregulation might play an important role in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Ai-Lan Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Medical Research Center, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kim JY, Kim DY, Ro JY. Granule formation in NGF-cultured mast cells is associated with expressions of pyruvate kinase type M2 and annexin I proteins. Int Arch Allergy Immunol 2008; 146:287-97. [PMID: 18362474 DOI: 10.1159/000121463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/27/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nerve growth factor (NGF) is a potent mediator, which regulates characteristics of mast cells, but its biological function is not well characterized. This study aimed to screen proteins associated with the maturation of human mast cells-1 (HMC-1) or mouse bone marrow-derived mast cells (BMMCs) cultured with NGF, and to examine the functions of proteins involved. METHODS NGF (10 ng/ml) was added to cell culture medium every other day for 10 days for HMC-1 or twice a week for 5 weeks for BMMCs. Granule formation was determined by electron microscopy or May-Grunwald-Giemsa staining, TNF-alpha by ELISA, expressions of various proteins by two-dimensional gel electrophoresis (2-DE), siRNA transfection by Lipofectamine 2000, and the expressions of pyruvate kinase and annexin I by immunoblotting. RESULTS After NGF treatment, granule formation and total amounts of granular mediator, TNF-alpha increased in both mast cells. This TNF-alpha was released by calcium ionophore or by antigen/antibody reaction. Expressions of pyruvate kinase and annexin I obtained by 2-DE were confirmed by immunoblotting and siRNA-transfected HMC-1 cells. Expressions of proteins, granule formation and TNF-alpha content were blocked by both the TrkA inhibitor, K252a, and the ERK inhibitor, PD98059, but not by the PI3 kinase inhibitors, LY294002 and wortmannin. CONCLUSION These data suggest that pyruvate kinase and annexin I expressed by NGF contribute to granule formation containing TNF-alpha as well as other mediators in mast cells, which play a major role in allergic diseases via a TrkA/ERK pathway.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
91
|
Petrella A, D’Acunto CW, Rodriquez M, Festa M, Tosco A, Bruno I, Terracciano S, Taddei M, Paloma LG, Parente L. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of Annexin A1. Eur J Cancer 2008; 44:740-9. [DOI: 10.1016/j.ejca.2008.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
92
|
Pena-Alonso E, Rodrigo JP, Parra IC, Pedrero JMG, Meana MVG, Nieto CS, Fresno MF, Morgan RO, Fernandez MP. Annexin A2 localizes to the basal epithelial layer and is down-regulated in dysplasia and head and neck squamous cell carcinoma. Cancer Lett 2008; 263:89-98. [PMID: 18262347 DOI: 10.1016/j.canlet.2007.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/07/2007] [Accepted: 12/14/2007] [Indexed: 12/11/2022]
Abstract
Annexin A2 is a highly expressed gene with important roles in cell membrane physiology and is frequently dysregulated in cancer. The objective of this study was to determine the pattern of expression and prognostic significance of annexin A2 protein in head and neck squamous cell carcinoma. We assessed both quantitative changes and qualitative distribution of annexin A2 mRNA and protein expression in normal and diseased tissues by immunohistochemistry, immunofluorescence and in situ hybridization. Annexin A2 expression was confined to the basal and suprabasal cells of normal epithelium and the protein cellular location was consistently observed at the cell membrane. Expression levels correlated with histopathological grade, showing significant suppression in moderately and poorly differentiated tumours. We conclude that annexin A2 exhibits a characteristic pattern of expression, distinct from other annexins and suggestive of a cell-specific functional role. The marked reduction of annexin A2 in poorly differentiated tumours and dysplastic tissue is expected to result in a loss of function aimed at the coordination of membrane signalling enzyme complexes, actin polymerization and extracellular matrix proteolysis. The phenotypic consequences may become manifest in an alteration of epithelial tissue growth and remodelling with secondary influence on tumour development, progression and metastasis.
Collapse
Affiliation(s)
- Emma Pena-Alonso
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Gu X, Coates PJ, Boldrup L, Nylander K. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett 2008; 263:26-34. [PMID: 18194839 DOI: 10.1016/j.canlet.2007.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
The transcription factor p63 is commonly over-expressed in squamous cell carcinomas of the head and neck (SCCHN). By microarray analysis of p63-siRNA-treated SCCHN cells we identified 127 genes whose expression relies on over-expression of p63. More than 20% of these genes are involved in cell motility. Chromatin immunoprecipitation and reporter assay revealed PAI-1 and AQP3 as direct p63 transcriptional targets. In addition to PAI-1, most of the key cell motility-related molecules are up-regulated by p63, such as MMP14 and LGALS1. Our findings indicate a contribution by p63 in cell invasion and migration, supporting an oncogenic role for p63 in SCCHN.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Building 6M, 2nd floor, Umeå University, SE - 901 85 Umeå, Sweden
| | | | | | | |
Collapse
|
94
|
Wang KL, Wu TT, Resetkova E, Wang H, Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Hamilton SR, Albarracin CT. Expression of annexin A1 in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Clin Cancer Res 2007; 12:4598-604. [PMID: 16899607 DOI: 10.1158/1078-0432.ccr-06-0483] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Annexin A1 (ANXA1) is a calcium-binding protein involved in arachidonic acid metabolism and epidermal growth factor receptor tyrosine kinase pathway. ANXA1 has been implicated in early squamous cell carcinogenesis of esophagus and correlates with degree of tumor differentiation. However, the role of ANXA1 in esophageal adenocarcinoma is unclear. Our goal was to evaluate ANXA1 expression and determine its prognostic significance in adenocarcinoma of the esophagus and esophagogastric junction. EXPERIMENTAL DESIGN This study included 104 consecutive patients with primary resected esophageal and esophagogastric junction adenocarcinomas (11 stage I, 24 stage II, 53 stage III, and 16 stage IV). ANXA1 protein expression in each tumor was assessed by immunohistochemical staining of tissue microarrays. ANAX1 expression level was classified as high (>/=25% of tumor cells with cytoplasmic staining), low (<25% of tumor cells with cytoplasmic staining), or negative; and was correlated with clinicopathologic features and patients' outcomes. RESULTS High ANXA1 expression was present in 39% (41 of 104) of tumors and was associated with higher pathologic T stage (P = 0.03) and distant metastasis (P = 0.04). High ANXA1 expression correlated with increased recurrence rate (P = 0.004) and decreased overall survival (P = 0.003) in univariate analysis. In multivariate analysis, ANXA1 expression and pN stage significantly correlated with recurrence rate (P = 0.008 and P < 0.001, respectively) and overall survival (P = 0.02 and P < 0.001, respectively) independent of T stage. CONCLUSION Our results indicate that high ANXA1 expression is frequent in esophageal and esophagogastric junction adenocarcinomas, correlates with more advanced pathologic T stage and the presence of distant metastasis, and is an independent prognostic factor for patient survival.
Collapse
Affiliation(s)
- Kim L Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Cui L, Wang Y, Shi Y, Zhang Z, Xia Y, Sun H, Wang S, Chen J, Zhang W, Lu Q, Song L, Wei Q, Zhang R, Wang X. Overexpression of annexin a1 induced by terephthalic acid calculi in rat bladder cancer. Proteomics 2007; 7:4192-202. [PMID: 17994624 DOI: 10.1002/pmic.200700582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
96
|
Abstract
Annexins comprise a conserved family of proteins characterised by their ability to bind and order charged phospholipids in membranes, often in response to elevated intracellular calcium. The family members (there are at least 12 in humans) have become specialised over evolutionary time and are involved in a diverse range of cellular functions both inside the cell and extracellularly Although a mutation in an annexin has never been categorically proven to be the cause of a disease state, they have been implicated in pathologies as diverse as autoimmunity, infection, heart disease, diabetes and cancer. 'Annexinopathies' were first described by Jacob H. Rand to describe the pathological sequelae in two disease states, the overexpression of annexin 2 in a patients with a haemorrhagic form of acute promyelocytic leukaemia, and the under-expression of annexin 5 on placental trophoblasts in the antiphospholipid syndrome. In this chapter we will outline some of the more recent observations in regard to these conditions, and describe the involvement of annexins in some other major causes of human morbidity.
Collapse
Affiliation(s)
- M J Hayes
- Div of Cell Biology, University College London Institute of Ophthalmology, 11-43 Bath Street, London ECI V 9EL, UK
| | | | | | | |
Collapse
|
97
|
Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S, Xu Y, Tsutusmi-Ishii Y, Miyake K, Miyake N, Kondo S, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M. Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 2007; 14:1443-56. [PMID: 17464329 DOI: 10.1038/sj.cdd.4402139] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chimeric fusion protein AML1-ETO, created by the t(8;21) translocation, recruits histone deacetylase (HDAC) to AML1-dependent promoters, resulting in transcriptional repression of the target genes. We analyzed the transcriptional changes in t(8;21) Kasumi-1 AML cells in response to the HDAC inhibitors, depsipeptide (FK228) and suberoylanilide hydroxamic acid (SAHA), which induced marked growth inhibition and apoptosis. Using cDNA array, annexin A1 (ANXA1) was identified as one of the FK228-induced genes. Induction of ANXA1 mRNA was associated with histone acetylation in ANXA1 promoter and reversal of the HDAC-dependent suppression of C/EBPalpha by AML1-ETO with direct recruitment of C/EBPalpha to ANXA1 promoter. This led to increase in the N-terminal cleaved isoform of ANXA1 protein and accumulation of ANXA1 on cell membrane. Neutralization with anti-ANXA1 antibody or gene silencing with ANXA1 siRNA inhibited FK228-induced apoptosis, suggesting that the upregulation of endogenous ANXA1 promotes cell death. FK228-induced ANXA1 expression was associated with massive increase in cell attachment and engulfment of Kasumi-1 cells by human THP-1-derived macrophages, which was completely abrogated with ANXA1 knockdown via siRNA transfection or ANXA1 neutralization. These findings identify a novel mechanism of action of HDAC inhibitors, which induce the expression and externalization of ANXA1 in leukemic cells, which in turn mediates the phagocytic clearance of apoptotic cells by macrophages.
Collapse
MESH Headings
- Acetylation
- Annexin A1/biosynthesis
- Annexin A1/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA, Complementary/genetics
- Depsipeptides/pharmacology
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macrophages/physiology
- Oncogene Proteins, Fusion/metabolism
- Phagocytosis/drug effects
- RUNX1 Translocation Partner 1 Protein
- Up-Regulation/drug effects
- Vorinostat
Collapse
Affiliation(s)
- Y Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Yao R, Yi Y, Grubbs CJ, Lubet RA, You M. Gene expression profiling of chemically induced rat bladder tumors. Neoplasia 2007; 9:207-21. [PMID: 17401461 PMCID: PMC1838579 DOI: 10.1593/neo.06814] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 02/08/2023] Open
Abstract
A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumors. To explore expression changes in 4-hydroxybutyl(butyl)nitrosamine-induced rat bladder tumors, microarray analysis was performed. Analysis yielded 1,138 known genes and 867 expressed sequence tags that were changed when comparing tumors to normal rat epithelia. Altered genes included cell cycle-related genes, EGFR-Ras signaling genes, apoptosis genes, growth factors, and oncogenes. Using the pathway visualization tool GenMAPP, we found that these genes can be grouped along several pathways that control apoptosis, cell cycle, and integrin-mediated cell adhesion. When comparing current data with previous mouse bladder tumor data, we found that > 280 of the same known genes were differentially expressed in both mouse and rat bladder tumors, including cell cycle-related genes, small G proteins, apoptosis genes, oncogenes, tumor-suppressor genes, and growth factors. These results suggest that multiple pathways are involved in rat bladder tumorigenesis, and a common molecular mechanism was found in both rat and mouse bladder tumors.
Collapse
Affiliation(s)
- Ruisheng Yao
- Department of Surgery and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yijun Yi
- Department of Surgery and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clinton J Grubbs
- Departments of Surgery, Genetics, and Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronald A Lubet
- Chemoprevention Agent Development Research Group, National Cancer Institute, Rockville, MD 20892, USA
| | - Ming You
- Department of Surgery and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
99
|
Kreunin P, Yoo C, Urquidi V, Lubman DM, Goodison S. Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics 2007; 7:299-312. [PMID: 17205601 PMCID: PMC2663396 DOI: 10.1002/pmic.200600272] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A combination of LC and MS was applied to an isogenic breast tumor metastasis model to identify proteins associated with a cellular phenotype. Chromatofocusing followed by nonporous-RP-HPLC/ESI-TOF MS was applied to cell lysates of a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. This method was developed to separate proteins based on pI and hydrophobicity. The high resolution and mass accuracy of ESI-TOF measurements provided a good correlation of theoretical MW and experimental Mr values of intact proteins measured in mass maps obtained in the pH range 3.8-6.4. The isolated proteins were digested by trypsin and analyzed by MALDI-TOF MS, MALDI-QIT-TOF MS, and monolith-based HPLC/MS/MS. The unique combination of the techniques provided valuable information including quantitation and modification of proteins. We identified 89 selected proteins, of which 43 were confirmed as differentially expressed. Metastasis-associated proteins included galectin-1, whereas annexin I and annexin II were associated with the nonmetastatic phenotype. In this study, we demonstrate that combining a variety of MS tools with a multidimensional liquid-phase separation provides the ability to map cellular protein content, to search for modified proteins, and to correlate protein expression with cellular phenotype.
Collapse
Affiliation(s)
- Paweena Kreunin
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Chul Yoo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Virginia Urquidi
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | - David M. Lubman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Steve Goodison
- Department of Surgery, University of Florida, Jacksonville, FL, USA
| |
Collapse
|
100
|
Abstract
The annexin superfamily consists of 13 calcium or calcium and phospholipid binding proteins with a significant degree of biological and structural homology (40-60%). First described in the late 1970s and subsequently referred to as macrocortin, renocortin, lipomodulin, lipocortin-1, and more recently Annexin 1, this 37 kDa calcium and phospholipid binding protein is a strong inhibitor of glucocorticoid-induced eicosanoid synthesis and PLA2. Recent interest in the biological activity of this intriguing molecule has unraveled important functional attributes of Annexin 1 in a variety of inflammatory pathways, on cell proliferation machinery, in the regulation of cell death signaling, in phagocytic clearance of apoptosing cells, and most importantly in the process of carcinogenesis. Here we attempt to present a short review on these diverse biological activities of an interesting and important molecule, which could be a potential target for novel therapeutic intervention in a host of disease states.
Collapse
Affiliation(s)
- Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | |
Collapse
|