51
|
Spencer D, Novarra S, Zhu L, Mugabe S, Thisted T, Baca M, Depaz R, Barton C. O-xylosylation in a Recombinant Protein is Directed at a Common Motif on Glycine–Serine Linkers. J Pharm Sci 2013; 102:3920-4. [DOI: 10.1002/jps.23733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/10/2022]
|
52
|
Differential properties of native and tagged or untagged recombinant glucose isomerases of Streptomyces sp. SK and possible implication of the glycosylation. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
53
|
Chauhan JS, Rao A, Raghava GPS. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 2013; 8:e67008. [PMID: 23840574 PMCID: PMC3695939 DOI: 10.1371/journal.pone.0067008] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
Glycosylation is one of the most abundant and an important post-translational modification of proteins. Glycosylated proteins (glycoproteins) are involved in various cellular biological functions like protein folding, cell-cell interactions, cell recognition and host-pathogen interactions. A large number of eukaryotic glycoproteins also have therapeutic and potential technology applications. Therefore, characterization and analysis of glycosites (glycosylated residues) in these proteins is of great interest to biologists. In order to cater these needs a number of in silico tools have been developed over the years, however, a need to get even better prediction tools remains. Therefore, in this study we have developed a new webserver GlycoEP for more accurate prediction of N-linked, O-linked and C-linked glycosites in eukaryotic glycoproteins using two larger datasets, namely, standard and advanced datasets. In case of standard datasets no two glycosylated proteins are more similar than 40%; advanced datasets are highly non-redundant where no two glycosites’ patterns (as defined in methods) have more than 60% similarity. Further, based on our results with several algorihtms developed using different machine-learning techniques, we found Support Vector Machine (SVM) as optimum tool to develop glycosite prediction models. Accordingly, using our more stringent and non-redundant advanced datasets, the SVM based models developed in this study achieved a prediction accuracy of 84.26%, 86.87% and 91.43% with corresponding MCC of 0.54, 0.20 and 0.78, for N-, O- and C-linked glycosites, respectively. The best performing models trained on advanced datasets were then implemented as a user-friendly web server GlycoEP (http://www.imtech.res.in/raghava/glycoep/). Additionally, this server provides prediction models developed on standard datasets and allows users to scan sequons in input protein sequences.
Collapse
Affiliation(s)
| | - Alka Rao
- Protein Science and Engineering, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
54
|
Mazal D, Lo-Man R, Bay S, Pritsch O, Dériaud E, Ganneau C, Medeiros A, Ubillos L, Obal G, Berois N, Bollati-Fogolin M, Leclerc C, Osinaga E. Monoclonal antibodies toward different Tn-amino acid backbones display distinct recognition patterns on human cancer cells. Implications for effective immuno-targeting of cancer. Cancer Immunol Immunother 2013; 62:1107-22. [PMID: 23604173 PMCID: PMC11029704 DOI: 10.1007/s00262-013-1425-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
The Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibody Specificity/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Biomarkers, Tumor
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Female
- Glycopeptides/chemistry
- Glycopeptides/immunology
- Glycopeptides/metabolism
- Humans
- Male
- Mice
- Middle Aged
- Neoplasm Staging
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Binding/immunology
Collapse
Affiliation(s)
- Daniel Mazal
- Departamento de Anatomía Patológica y Citología del Hospital de la Mujer, Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR 3523, Paris, France
| | - Otto Pritsch
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Edith Dériaud
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Christelle Ganneau
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR 3523, Paris, France
| | - Andrea Medeiros
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luis Ubillos
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
| | - Gonzalo Obal
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Eduardo Osinaga
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
55
|
Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, Daughdrill GW, Uversky VN. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24360. [PMID: 28516008 PMCID: PMC5424786 DOI: 10.4161/idp.24360] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/17/2013] [Indexed: 11/19/2022]
Abstract
A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - Lajos Kalmar
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Peter Tompa
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium.,Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Kyou-Hoon Han
- Department of Bioinformatics; University of Science and Technology; Daejeon, Yuseong-gu, Korea.,Biomedical Translational Research Center; Division of Convergent Biomedical Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Yuseong-gu, Korea
| | - Philipp Selenko
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics; Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis, IN USA
| | - Gary W Daughdrill
- Center for Drug Discovery and Innovation; Department of Cell Biology, Microbiology and Molecular Biology; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
56
|
Halim A, Rüetschi U, Larson G, Nilsson J. LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins. J Proteome Res 2013; 12:573-84. [PMID: 23234360 DOI: 10.1021/pr300963h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The GalNAc O-glycosylation on Ser/Thr residues of extracellular proteins has not been well characterized from a proteomics perspective. We previously reported a sialic acid capture-and-release protocol to enrich tryptic N- and O-glycopeptides from human cerebrospinal fluid glycoproteins using nano-LC-ESI-MS/MS with collision-induced dissociation (CID) for glycopeptide characterization. Here, we have introduced peptide N-glycosidase F (PNGase F) pretreatment of CSF samples to remove the N-glycans facilitating the selective characterization of O-glycopeptides and enabling the use of an automated CID-MS(2)/MS(3) search protocol for glycopeptide identification. We used electron-capture and -transfer dissociation (ECD/ETD) to pinpoint the glycosylation site(s) of the glycopeptides, identified as predominantly core-1-like HexHexNAc-O- structure attached to one to four Ser/Thr residues. We characterized 106 O-glycosylations and found Pro residues preferentially in the n - 1, n + 1, and/or n + 3 positions in relation to the Ser/Thr attachment site (n). The characterization of glycans and glycosylation sites in glycoproteins from human clinical samples provides a basis for future studies addressing the biological and diagnostic importance of specific protein glycosylations in relation to human disease.
Collapse
Affiliation(s)
- Adnan Halim
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | |
Collapse
|
57
|
Bräutigam J, Scheidig AJ, Egge-Jacobsen W. Mass spectrometric analysis of hepatitis C viral envelope protein E2 reveals extended microheterogeneity of mucin-type O-linked glycosylation. Glycobiology 2012; 23:453-74. [PMID: 23242014 DOI: 10.1093/glycob/cws171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The infectious liver disease hepatitis C is caused by the small, enveloped, positive single-strand RNA hepatitis C virus (HCV). The HCV genome encodes for a single polyprotein precursor of ∼3010 amino acid residues. Host and cellular proteases co- and posttranslational process the precursor creating six nonstructural (NS) proteins and four structural components. Properly folded forms of the envelope proteins E1 and E2 form the associated E1-E2 complex. This complex represents a significant antigenic component at the viral surface that can interact with several target cell receptors. Extent and type of glycosylation is an important factor for virulence and escape from the immune system. Detailed characterization of the glycosylated sites is helpful for the understanding of different phenotypes as well as for the development of E1/E2-related treatments of HCV infection. Here, we have investigated in detail the O-linked glycosylation of the HCV envelope protein E2 expressed in and isolated from human embryonic kidney (HEK 293) cells. Using nano-liquid chromatography and tandem mass spectrometry approaches, we clearly have identified six residues for O-linked glycosylation within isolated glycopeptides (Ser393, Thr396, Ser401, Ser404, Thr473 and Thr518), carrying mainly Core 1 and Core 2 mucin-type structures. Based on our data, Thr385 is probably glycosylated as well. In addition, we could show that Ser479 within the hyper variable region (HVR) I is not O-glycosylated. For most of these sites, different degrees of microheterogeneity could be verified. Concerning HCV E2, this is the first case of experimentally proven O-linked glycosylation in detail via mass spectrometry.
Collapse
Affiliation(s)
- Joachim Bräutigam
- Department of Structural Biology, Centre for Biochemistry and Molecular Biology, Christian-Albrechts Universität, 24118 Kiel, Germany
| | | | | |
Collapse
|
58
|
Zhou K, Ai C, Dong P, Fan X, Yang L. A novel model to predict O-glycosylation sites using a highly unbalanced dataset. Glycoconj J 2012; 29:551-64. [DOI: 10.1007/s10719-012-9434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
59
|
Darula Z, Sherman J, Medzihradszky KF. How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Mol Cell Proteomics 2012; 11:O111.016774. [PMID: 22393263 DOI: 10.1074/mcp.o111.016774] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different workflows were tested in order to develop methods that provide deeper insight into the secreted O-glycoproteome. Bovine serum samples were subjected to lectin affinity-chromatography both at the protein- and peptide-level in order to selectively isolate glycopeptides with the most common, mucin core-1 sugar. This enrichment step was implemented with either protein-level mixed-bed ion-exchange chromatography or with peptide-level electrostatic repulsion hydrophilic interaction chromatography. Both methods led to at least 65% of the identified products being glycopeptides, in comparison to ≈ 25% without the additional chromatography steps [Darula, Z., and Medzihradszky, K. F. (2009) Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell. Proteomics 8, 2515-2526]. In order to improve not only the isolation but also the characterization of the glycopeptides exoglycosidases were used to eliminate carbohydrate extensions from the directly peptide-bound GalNAc units. Consequent tandem MS analysis of the mixtures using higher-energy collision-dissociation and electron-transfer dissociation led to the identification of 124 glycosylation sites in 51 proteins. While the electron-transfer dissociation data provided the bulk of the information for both modified sequence and modification site assignment, the higher-energy collision-dissociation data frequently yielded confirmation of the peptide identity, and revealed the presence of some core-2 or core-3 oligosaccharides. More than two-thirds of the sites as well as the proteins have never been reported modified.
Collapse
Affiliation(s)
- Z Darula
- Proteomics Research Group, Biological Research Center of Hungarian Academy of Sciences, Szeged, H-6701, Szeged, POB 521, Hungary
| | | | | |
Collapse
|
60
|
Henry SM, Komarraju S, Heathcote D, Rodionov IL. Designing peptide-based FSL constructs to create Miltenberger kodecytes. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1751-2824.2011.01505.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
61
|
Kilcoyne M, Gerlach JQ, Farrell MP, Bhavanandan VP, Joshi L. Periodic acid–Schiff’s reagent assay for carbohydrates in a microtiter plate format. Anal Biochem 2011; 416:18-26. [DOI: 10.1016/j.ab.2011.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
62
|
Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:269-79. [PMID: 21447070 DOI: 10.1111/j.1365-313x.2011.04589.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ICE1, a MYC-type transcription factor, has an important role in the induction of CBF3/DREB1A for regulation of cold signaling and tolerance. Here we reveal that serine 403 of ICE1 is involved in regulating the transactivation and stability of the ICE1 protein. Substitution of serine 403 by alanine enhanced the transactivational activity of ICE1 in Arabidopsis protoplasts. Over-expression of ICE1(S403A) conferred more freezing tolerance than ICE1(WT) in Arabidopsis, and the expression of cold-regulated genes such as CBF3/DREB1A, COR47 and KIN1 was enhanced in plants over-expressing ICE1(S403A). Furthermore, the ICE1(S403A) protein level was not changed after cold treatment, whereas the ICE1(WT) protein level was reduced. Interestingly, polyubiquitylation of the ICE1(S403A) protein in vivo was apparently blocked. These results demonstrate that serine 403 of ICE1 has roles in both transactivation and cold-induced degradation of ICE1 via the ubiquitin/26S proteasome pathway, suggesting that serine 403 is a key residue for the attenuation of cold-stress responses by HOS1-mediated degradation of ICE1.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
63
|
Abstract
A model of the early events of mammalian fertilization has emerged during the past 30 years. However, studies during the past decade have used newly available mouse models to readdress these processes. Here, we will consider these new data in light of the existing model and point to areas of reconciliation and of controversy.
Collapse
Affiliation(s)
- Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Harvey M. Florman
- Department of Cell Biology. University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
64
|
Frank M, Schloissnig S. Bioinformatics and molecular modeling in glycobiology. Cell Mol Life Sci 2010; 67:2749-72. [PMID: 20364395 PMCID: PMC2912727 DOI: 10.1007/s00018-010-0352-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein-carbohydrate interaction are reviewed.
Collapse
Affiliation(s)
- Martin Frank
- Molecular Structure Analysis Core Facility-W160, Deutsches Krebsforschungszentrum (German Cancer Research Centre), 69120 Heidelberg, Germany.
| | | |
Collapse
|
65
|
Fernández-Tejada A, Corzana F, Busto JH, Avenoza A, Peregrina JM. Conformational effects of the non-natural alpha-methylserine on small peptides and glycopeptides. J Org Chem 2010; 74:9305-13. [PMID: 19924838 DOI: 10.1021/jo901988w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and the conformational analysis in aqueous solution of a peptide and a glycopeptide containing the sequence threonine-alanine-alanine (Thr-Ala-Ala) are reported. Furthermore, the threonine residue has been replaced by the quaternary amino acid alpha-methylserine (MeSer) and their corresponding non-natural peptide and glycopeptide are also studied. The conformational analysis in aqueous solution combines NOEs and coupling constants data with Molecular Dynamics (MD) simulations with time-averaged restraints. The study reveals that the beta-O-glycosylation produces a remarkable and completely different effect on the backbone of the peptide derived from Thr and MeSer. In the former, the beta-O-glycosylation is responsible for the experimentally observed shift from extended conformations (peptide) to folded ones (glycopeptide). In contrast, the beta-O-glycosylation of the MeSer-containing peptide, which clearly shows two main conformations in aqueous solution [extended ones (70%) and beta-turn (30%)], causes a high degree of flexibility for the backbone.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Sintesis Química, Grupo de Sintesis Química de La Rioja, UA-CSIC, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
66
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
67
|
Hamby SE, Hirst JD. Prediction of glycosylation sites using random forests. BMC Bioinformatics 2008; 9:500. [PMID: 19038042 PMCID: PMC2651179 DOI: 10.1186/1471-2105-9-500] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 11/27/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Post translational modifications (PTMs) occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. RESULTS We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program), predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. CONCLUSION We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at http://comp.chem.nottingham.ac.uk/glyco/.
Collapse
Affiliation(s)
- Stephen E Hamby
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
68
|
Ahmad I, Hoessli DC, Qazi WM, Khurshid A, Mehmood A, Walker‐Nasir E, Ahmad M, Shakoori AR, Nasir‐ud‐Din. MAPRes: An efficient method to analyze protein sequence around post‐translational modification sites. J Cell Biochem 2008; 104:1220-31. [DOI: 10.1002/jcb.21699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
69
|
Kaleem A, Hoessli DC, Ahmad I, Walker-Nasir E, Nasim A, Shakoori AR. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem 2008; 103:835-51. [PMID: 17668447 DOI: 10.1002/jcb.21454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammalian cells, induction of immediate-early (IE) gene transcription occurs concomitantly with histone H3 phosphorylation on Ser 10 and is catalyzed by mitogen-activated protein kinases (MAPKs). Histone H3 is an evolutionarily conserved protein located in the core of the nucleosome, along with histones H2A, H2B, and H4. The N-terminal tails of histones protrude outside the chromatin structure and are accessible to various enzymes for post-translational modifications (PTM). Phosphorylation, O-GlcNAc modification, and their interplay often induce functional changes, but it is very difficult to monitor dynamic structural and functional changes in vivo. To get started in this complex task, computer-assisted studies are useful to predict the range in which those dynamic structural and functional changes may occur. As an illustration, we propose blocking of phosphorylation by O-GlcNAc modification on Ser 10, which may result in gene silencing in the presence of methylated Lys 9. Thus, alternate phosphorylation and O-GlcNAc modification on Ser 10 in the histone H3 protein may provide an on/off switch to regulate expression of IE genes.
Collapse
Affiliation(s)
- Afshan Kaleem
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | | | |
Collapse
|
70
|
Cook RF, Cook SJ, Even DL, Schaffer C, Issel CJ. Full-length and internally deleted forms of interleukin-7 are present in horse (Equus caballus) lymph node tissue. Vet Immunol Immunopathol 2008; 125:126-34. [PMID: 18573542 DOI: 10.1016/j.vetimm.2008.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/14/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Horse IL-7 (HIL-7) cDNA was isolated from adult lymph node tissue by reverse transcription polymerase chain reaction (RT-PCR) using oligonucleotide primers based on horse genomic sequences (The Broad Institute). In addition, to the full-length (FL) 531bp reading frame encoding 176 amino acids, shorter open-reading frames of 477, 396 and 264bp were also amplified. Nucleotide sequence analysis of these RT-PCR products demonstrated they were homologous except the shorter species were missing internal sequences consistent with multiple RNA splicing events. Consequently, the shorter open-reading frames were re-named splice variant (SV) 1 (477bp), 2 (396bp) and 3 (264bp). Organization of the horse IL-7 is predicted to be similar to that in humans with exon 5 deleted from SV1, exons 3, 5 deleted from SV2 and exons 3, 4, and 5 missing from SV3. Each of these open-reading frames has the potential to be stably expressed as demonstrated using a polyclonal antiserum against human IL-7 to visualize the protein products produced when the FL HIL-7 and each SV were molecularly cloned into pCI and transfected in brefeldin A treated HEK 293 cells. Furthermore, addition of supernatants to horse PBMC from HEK cells transfected (without brefeldin A treatment) with pCI HIL-7 FL, pCI HIL-7SV1, pCI HIL-7SV2 and pCI IL-7SV3 all induced significant incorporation of (3)H-thymidine in the presence of sub-stimulatory amounts of concanavalin A compared to supernatants from mock-transfected cells. Therefore, all isoforms of horse IL-7 described in this report have the ability to stimulate proliferative responses in ex vivo horse PBMC cultures.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | |
Collapse
|
71
|
Khwaja TA, Wajahat T, Ahmad I, Hoessli DC, Walker-Nasir E, Kaleem A, Qazi WM, Shakoori AR, Din NU. In silico modulation of apoptotic Bcl-2 proteins by mistletoe lectin-1: functional consequences of protein modifications. J Cell Biochem 2008; 103:479-91. [PMID: 17583555 DOI: 10.1002/jcb.21412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mistletoe lectin-1 (ML-1) modulates tumor cell apoptosis by triggering signaling cascades through the complex interplay of phosphorylation and O-linked N-acetylglucosamine (O-GlcNAc) modification in pro- and anti-apoptotic proteins. In particular, ML-1 is predicted to induce dephosphorylation of Bcl-2-family proteins and their alternative O-GlcNAc modification at specific, conserved Ser/Thr residues. The sites for phosphorylation and glycosylation were predicted and analyzed using Netphos 2.0 and YinOYang 1.2. The involvement of modified Ser/Thr, and among them the potential Yin Yang sites that may undergo both types of posttranslational modification, is proposed to mediate apoptosis modulation by ML-1.
Collapse
Affiliation(s)
- Tasneem A Khwaja
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ahmad I, Qazi WM, Khurshid A, Ahmad M, Hoessli DC, Khawaja I, Choudhary MI, Shakoori AR, Nasir-ud-Din. MAPRes: Mining association patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications. Proteomics 2008; 8:1954-8. [DOI: 10.1002/pmic.200700657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
73
|
Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:546-63. [PMID: 17988798 DOI: 10.1016/j.bbagen.2007.09.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.
Collapse
Affiliation(s)
- Mads Agervig Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
74
|
Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics 2008; 9:101. [PMID: 18282281 PMCID: PMC2335299 DOI: 10.1186/1471-2105-9-101] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 02/18/2008] [Indexed: 12/02/2022] Open
Abstract
Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP encoding's ability of reflecting characteristics of the sequences surrounding mucin-type O-glycosylation sites, CKSAAP_ OGlySite has been proved more powerful than the conventional binary encoding based method. This suggests that it can be used as a competitive mucin-type O-glycosylation site predictor to the biological community. CKSAAP_OGlySite is now available at .
Collapse
|
75
|
Pallesen LT, Pedersen LRL, Petersen TE, Rasmussen JT. Characterization of carbohydrate structures of bovine MUC15 and distribution of the mucin in bovine milk. J Dairy Sci 2007; 90:3143-52. [PMID: 17582096 DOI: 10.3168/jds.2007-0082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present work reports the characterization of carbohydrate structures and the distribution of the newly identified mucin MUC15, a highly glycosylated protein associated with the bovine milk fat globule membrane (MFGM). Distribution of MUC15 was investigated in various fractions of bovine milk by densitometric scanning of Western blots. In raw milk, MUC15 was shown to constitute 0.08% (wt) of the protein and approximately 1.5% (wt) of the MFGM-associated proteins. Surprisingly, this study showed that in addition to the fat-containing fractions, such as MFGM and buttermilk, MUC15 was present in nonfat-containing fractions as well, such as skim milk and whey. Compositional and structural studies of the carbohydrates of bovine milk MUC15 showed that the glycans are composed of fucose, galactose, mannose, N-acetylgalactosamine, N-acetylglycosamine, and sialic acid. The carbohydrate was shown to constitute 65% of the total molecular weight, and the molar ratios of the individual sugars to protein of the O-linked glycans were determined. The glycan structures of MUC15 were further studied by enzymatic deglycosylation experiments using different endo- and exoglycosidases as well as a panel of lectins. The N-linked glycans were shown to contain mainly hybrid-type N-glycans. In addition, the N-glycans were shown to be sialylated and contain terminal poly-lactosamine structures. The O-linked glycans were found to constitute some unsubstituted Core-1 structures and a substantial number of sialylated Core-1 O-linked glycans. By comparing the results of peanut agglutinin lectin binding, enzymatic deglycosylation, and monosaccharide composition analysis, we concluded that bovine MUC15 also contains more complex O-glycans containing high amounts N-acetylglucosamine residues. Furthermore, a small subset of the O-linked glycans is decorated with lactosamine on their terminal ends.
Collapse
Affiliation(s)
- L T Pallesen
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
76
|
Robbe-Masselot C, Herrmann A, Carlstedt I, Michalski JC, Capon C. Glycosylation of the two O-glycosylated domains of human MUC2 mucin in patients transposed with artificial urinary bladders constructed from proximal colonic tissue. Glycoconj J 2007; 25:213-24. [PMID: 18004654 DOI: 10.1007/s10719-007-9079-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/10/2007] [Accepted: 10/17/2007] [Indexed: 11/25/2022]
Abstract
Transposition of intestinal segments is frequently used for bladder reconstruction. Following transposition, bowel segments continue to produce mucus and a correlation between excessive mucus production and complications such as urinary tract infection or catheter blockage has been observed for a long time. However, no information is currently available on the change of mucin expression and glycosylation under these abnormal conditions. In this study, the variable number tandem repeat region and the irregular repeat domain of human MUC2 were isolated as two glycopeptide populations after reduction and trypsin digestion followed by gel chromatography from urine of patients transposed with urinary bladders. After alkaline borohydride treatment, the oligosaccharides released from the whole MUC2 mucin and the two glycosylated domains were investigated by nanoESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem mass spectrometry). More than 60 different glycans were identified, mainly based on sialylated core 3 structures. Some core 1, 2 and 4 oligosaccharides were also found. Most of the structures were acidic with NeuAc residues mainly alpha2-6 linked to the N-acetylgalactosaminitol and sulphate residues exclusively 3-linked to galactose. No expression of blood group A and B or Sda/Cad determinants was observed. Similar patterns of glycosylation were found in the tandem repeat region and the irregular repeat domain and the level of expression of the major oligosaccharides were in the same order of magnitude. The most interesting feature of this study was that sialyl-Tn antigen, which is considered as a tumour antigen, was the oligosaccharide most highly expressed. This result suggests that mucins from intestinal transposed segments are abnormally glycosylated.
Collapse
Affiliation(s)
- Catherine Robbe-Masselot
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS/USTL 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
77
|
Caragea C, Sinapov J, Silvescu A, Dobbs D, Honavar V. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 2007; 8:438. [PMID: 17996106 PMCID: PMC2220009 DOI: 10.1186/1471-2105-8-438] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/09/2007] [Indexed: 11/10/2022] Open
Abstract
Background Glycosylation is one of the most complex post-translational modifications (PTMs) of proteins in eukaryotic cells. Glycosylation plays an important role in biological processes ranging from protein folding and subcellular localization, to ligand recognition and cell-cell interactions. Experimental identification of glycosylation sites is expensive and laborious. Hence, there is significant interest in the development of computational methods for reliable prediction of glycosylation sites from amino acid sequences. Results We explore machine learning methods for training classifiers to predict the amino acid residues that are likely to be glycosylated using information derived from the target amino acid residue and its sequence neighbors. We compare the performance of Support Vector Machine classifiers and ensembles of Support Vector Machine classifiers trained on a dataset of experimentally determined N-linked, O-linked, and C-linked glycosylation sites extracted from O-GlycBase version 6.00, a database of 242 proteins from several different species. The results of our experiments show that the ensembles of Support Vector Machine classifiers outperform single Support Vector Machine classifiers on the problem of predicting glycosylation sites in terms of a range of standard measures for comparing the performance of classifiers. The resulting methods have been implemented in EnsembleGly, a web server for glycosylation site prediction. Conclusion Ensembles of Support Vector Machine classifiers offer an accurate and reliable approach to automated identification of putative glycosylation sites in glycoprotein sequences.
Collapse
Affiliation(s)
- Cornelia Caragea
- Artificial Intelligence Research Laboratory, Computer Science Department, Iowa State University, USA.
| | | | | | | | | |
Collapse
|
78
|
Abstract
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
79
|
Abstract
UNLABELLED Glycosylation plays an important role in a number of therapeutic proteins, including monoclonal antibodies. The enzymatic activity of a therapeutic protein is mainly determined by the protein structure, whereas the pharmacokinetics, pharmacodistribution, solubility, stability, enhancement of effector function and receptor binding are all influenced by the carbohydrate moiety. Hyperglycosylated proteins show increased serum half-life, are less sensitive to proteolysis and more heat-stable compared with the non-glycosylated forms. Molecular engineering of the TNK-tissue plasminogen activator molecule results in a more complex type of glycosylation and increases the half-life of the protein, which allows a single bolus injection at a lower dose for the treatment of acute myocardial infarction. Antibody-dependent cell cytotoxicity (ADCC) is determined partially by the specific N-glycosylation of the Fc domain of the monoclonal antibody. Specific glycoforms of monoclonal antibodies, which interact solely with the FcgammaRIIIa receptor of natural killer cells, result in superior ADCC compared with heterogeneous glycoforms that interact with different Fc receptors. This demonstrates that glycoengineering for directed glycosylation of therapeutic proteins can improve the therapeutic effect. While the amino acid sequence of the therapeutic protein is determined by the nucleotide sequence of the inserted gene, glycosylation depends on the glycosylating enzymes in the endoplasmatic reticulum and the Golgi apparatus of the eukaryotic host cell. In addition, the glycosylation of the therapeutic protein is affected by the culture medium used, the efficiency of protein expression and the physiological status of the host cell. CONCLUSION For a given protein, changes in the type of host cell, composition of the culture media and fermentation conditions during process development will most likely result in changes in the site occupation and heterogeneity of glycosylation. This, of course, can influence the therapeutic profile. Therefore, the early selection of the host cell and selection of upstream parameters are key in the process development of a product.
Collapse
|
80
|
Kotlín R, Chytilová M, Suttnar J, Salaj P, Riedel T, Santrůcek J, Klener P, Dyr JE. A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution. Eur J Haematol 2007; 78:410-6. [PMID: 17331136 DOI: 10.1111/j.1600-0609.2007.00838.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES A 25-yr-old man from Prague had abnormal bleeding after several surgical operations with low fibrinogen level and hypofibrinogenemia was suspected. PATIENTS AND METHODS The patient, 25 yr-old male had a low fibrinogen concentration as determined by the thrombin time and immunoturbidimetrical method. His 48-yr-old mother presented with normal coagulation tests, normal fibrinogen level and reported no history of bleeding. To identify the genetic mutation responsible for this hypofibrinogen, genomic DNA extracted from the blood was analyzed. Fibrin polymerization measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement, mass spectroscopy, and scanning electron microscopy were performed. RESULTS DNA sequencing showed heterogeneous fibrinogen gammaG351S mutation in the propositus. The mutant chain was found not to be expressed to the circulation by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Scanning electron micrographs of the patient's fibrin clot as well as kinetics of fibrinopeptide release and fibrin polymerization were found to be normal. CONCLUSION A case of hypofibrinogenemia gammaG351S was found by routine coagulation testing and was genetically identified.
Collapse
Affiliation(s)
- Roman Kotlín
- Institute of Hematology and Blood Transfusion, Praha, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Keil C, Maskos K, Than M, Hoopes JT, Huber R, Tan F, Deddish PA, Erdös EG, Skidgel RA, Bode W. Crystal Structure of the Human Carboxypeptidase N (Kininase I) Catalytic Domain. J Mol Biol 2007; 366:504-16. [PMID: 17157876 DOI: 10.1016/j.jmb.2006.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 11/21/2022]
Abstract
Human carboxypeptidase N (CPN), a member of the CPN/E subfamily of "regulatory" metallo-carboxypeptidases, is an extracellular glycoprotein synthesized in the liver and secreted into the blood, where it controls the activity of vasoactive peptide hormones, growth factors and cytokines by specifically removing C-terminal basic residues. Normally, CPN circulates in blood plasma as a hetero-tetramer consisting of two 83 kDa (CPN2) domains each flanked by a 48 to 55 kDa catalytic (CPN1) domain. We have prepared and crystallized the recombinant C-terminally truncated catalytic domain of human CPN1, and have determined and refined its 2.1 A crystal structure. The structural analysis reveals that CPN1 has a pear-like shape, consisting of a 319 residue N-terminal catalytic domain and an abutting, cylindrically shaped 79 residue C-terminal beta-sandwich transthyretin (TT) domain, more resembling CPD-2 than CPM. Like these other CPN/E members, two surface loops surrounding the active-site groove restrict access to the catalytic center, offering an explanation for why some larger protein carboxypeptidase inhibitors do not inhibit CPN. Modeling of the Pro-Phe-Arg C-terminal end of the natural substrate bradykinin into the active site shows that the S1' pocket of CPN1 might better accommodate P1'-Lys than Arg residues, in agreement with CPN's preference for cleaving off C-terminal Lys residues. Three Thr residues at the distal TT edge of CPN1 are O-linked to N-acetyl glucosamine sugars; equivalent sites in the membrane-anchored CPM are occupied by basic residues probably involved in membrane interaction. In tetrameric CPN, each CPN1 subunit might interact with the central leucine-rich repeat tandem of the cognate CPN2 subunit via a unique hydrophobic surface patch wrapping around the catalytic domain-TT interface, exposing the two active centers.
Collapse
Affiliation(s)
- Cora Keil
- Arbeitsgruppe Proteinaseforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
De Groot AS, Goldberg M, Moise L, Martin W. Evolutionary deimmunization: An ancillary mechanism for self-tolerance? Cell Immunol 2006; 244:148-53. [PMID: 17445787 DOI: 10.1016/j.cellimm.2007.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 02/05/2007] [Indexed: 01/18/2023]
Abstract
Self-proteins in the extracellular environment are constantly sampled and processed through the Class II antigen presentation pathway. Mechanisms responsible for central and peripheral tolerance reduce the chance of autoimmune responses to these proteins. However, tolerance can and does break down, leading to the development of autoimmune disease. In a preliminary analysis, we observed that common serum proteins have fewer HLA class II-restricted T-cell epitopes than expected, when compared to random protein sequences. We therefore performed a broader analysis of human proteins to determine whether the number of T-cell epitopes in extracellular proteins is reduced in comparison with non-secreted (intracellular) proteins. Here we document fewer putative HLA class II-restricted T-cell epitopes in extracellular proteins, compared to intracellular proteins. These data suggest that the diminished presence of T-cell epitopes may reduce the potential for autoimmunity. Over evolutionary timescales, immune pressure may have resulted in alterations in the inherent T-cell immunogenic potential of autologous proteins.
Collapse
|
83
|
Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 2006; 281:22453-63. [PMID: 16720580 DOI: 10.1074/jbc.m604064200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fungicidal activity of Hst 5 is initiated by binding to cell surface proteins on Candida albicans, followed by intracellular transport to cytoplasmic effectors leading to cell death. As we identified heat shock 70 proteins (Ssa1p and/or Ssa2p) from C. albicans lysates that bind Hst 5, direct interactions between purified recombinant Ssa proteins and Hst 5 were tested by pull-down and yeast two-hybrid assays. Pulldown of both native complexes and those stabilized by cross-linking demonstrated higher affinity of Hst 5 for Ssa2p than for Ssa1p, in agreement with higher levels of interactions between Ssa2p and Hst 5 measured by yeast two-hybrid analyses. C. albicans ssa1Delta and ssa2Delta mutants were constructed to examine Hst 5 binding, translocation, and candidacidal activities. Both ssa1Delta and ssa2Delta mutants were indistinguishable from wild-type cells in growth and hyphal formation. However, C. albicans ssa2Delta mutants were highly resistant to the candidacidal activity of Hst 5, although the ssa1Delta mutant did not have any significant reduction in killing by Hst 5. Total cellular binding of 125I-Hst 5 in the ssa2Delta mutant was reduced to one-third that of wild-type cells, in contrast to the ssa1Delta mutant whose total cellular binding of Hst 5 was similar to the wild-type strain. Intracellular transport of Hst 5 was significantly impaired in the ssa2Delta mutant strain, but only mildly so in the ssa1Delta mutant. Thus, C. albicans Ssa2p facilitates fungicidal activity of Hst 5 in binding and intracellular translocation, whereas Ssa1p appears to have a lesser functional role in Hst 5 toxicity.
Collapse
Affiliation(s)
- Xuewei S Li
- Department of Oral Biology and Restorative Dentistry, School of Dental Medicine, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
84
|
Jullien ND, Cuniasse P, Georgiadis D, Yiotakis A, Dive V. Combined use of selective inhibitors and fluorogenic substrates to study the specificity of somatic wild-type angiotensin-converting enzyme. FEBS J 2006; 273:1772-81. [PMID: 16623712 DOI: 10.1111/j.1742-4658.2006.05196.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Somatic angiotensin-converting enzyme (ACE) contains two homologous domains, each bearing a functional active site. Studies on the selectivity of these ACE domains towards either substrates or inhibitors have mostly relied on the use of mutants or isolated domains of ACE. To determine directly the selectivity properties of each ACE domain, working with wild-type enzyme, we developed an approach based on the combined use of N-domain-selective and C-domain-selective ACE inhibitors and fluorogenic substrates. With this approach, marked differences in substrate selectivity were revealed between rat, mouse and human somatic ACE. In particular, the fluorogenic substrate Mca-Ala-Ser-Asp-Lys-DpaOH was shown to be a strict N-domain-selective substrate of mouse ACE, whereas with rat ACE it displayed marked C-domain selectivity. Similar differences in selectivity between these ACE species were also observed with a new fluorogenic substrate of ACE, Mca-Arg-Pro-Pro-Gly-Phe-Ser-Pro-DpaOH. In support of these results, changes in amino-acid composition in the binding site of these three ACE species were pinpointed. Together these data demonstrate that the substrate selectivity of the N-domain and C-domain depends on the ACE species. These results raise concerns about the interpretation of functional studies performed in animals using N-domain and C-domain substrate selectivity data derived only from human ACE.
Collapse
Affiliation(s)
- Nicolas D Jullien
- CEA, Département d'Ingénerie et d'Etudes des Protéines, Gif/Yvette, France
| | | | | | | | | |
Collapse
|
85
|
Doyle CK, Nethery KA, Popov VL, McBride JW. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect Immun 2006; 74:711-20. [PMID: 16369028 PMCID: PMC1346619 DOI: 10.1128/iai.74.1.711-720.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia canis major immunoreactive proteins of 36 and 19 kDa elicit the earliest detectable antibody responses during the acute phase of canine monocytic ehrlichiosis. Genes encoding the major immunoreactive 36-kDa protein of E. canis and the corresponding ortholog of E. chaffeensis (47 kDa) were identified and the proteins characterized. The molecular masses of the strongly immunoreactive recombinant proteins were larger than predicted (26.7 and 32.9 kDa, respectively) but were consistent with those of the corresponding native proteins (36 and 47 kDa). Similar to other reported ehrlichial immunoreactive glycoproteins, carbohydrate was detected on the recombinant expressed proteins, indicating that they were glycoproteins. Both glycoproteins (gp36 and gp47) have carboxy-terminal serine/threonine-rich tandem repeat regions containing repeats that vary in number (4 to 16 repeats) and amino acid sequence among different isolates of each species. E. canis gp36 was recognized by early acute-phase antibodies (day 14), and species-specific antibody epitopes were mapped to C-terminal nonhomologous repeat units of gp36 and gp47. Periodate treatment of recombinant gp36 reduced the antibody reactivity, and nonglycosylated synthetic peptide repeat units from E. canis gp36 and E. chaffeensis gp47 were substantially less immunoreactive than corresponding recombinant peptides, demonstrating that glycans are important epitope determinants that are structurally conserved on the recombinant proteins expressed in Escherichia coli. E. canis gp36 and E. chaffeensis gp47 were differentially expressed only on the surface of dense-cored ehrlichiae and detected in the Ehrlichia-free supernatants, indicating that these proteins are released extracellularly during infection.
Collapse
Affiliation(s)
- C Kuyler Doyle
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
86
|
Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 2006; 94:1626-35. [PMID: 15959882 DOI: 10.1002/jps.20319] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic proteins have revolutionized the treatment of many diseases but low activity or rapid clearance limits their utility. New approaches have been taken to design drugs with enhanced in vivo activity and half-life to reduce injection frequency, increase convenience, and improve patient compliance. One recently used approach is glycoengineering, changing protein-associated carbohydrate to alter pharmacokinetic properties of proteins. This technology has been applied to erythropoietin and resulted in the discovery of darbepoetin alfa (DA), a hyperglycosylated analogue of erythropoietin that contains two additional N-linked carbohydrates, a threefold increase in serum half-life and increased in vivo activity compared to recombinant human erythropoietin (rHuEPO). The increased serum half-life allows for less frequent dosing to maintain target hemoglobin levels in anemic patients. Carbohydrates on DA and other molecules can also increase molecular stability, solubility, increase in vivo biological activity, and reduce immunogenicity. These properties are discussed.
Collapse
Affiliation(s)
- Angus M Sinclair
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | | |
Collapse
|
87
|
Ahmad I, Hoessli DC, Walker-Nasir E, Rafik SM, Shakoori AR. Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res 2006; 34:175-84. [PMID: 16431844 PMCID: PMC1326018 DOI: 10.1093/nar/gkj401] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Phosphorylation and O-GlcNAc modification often induce conformational changes and allow the protein to specifically interact with other proteins. Interplay of phosphorylation and O-GlcNAc modification at the same conserved site may result in the protein undergoing functional switches. We describe that at conserved Ser/Thr residues of human Oct-2, alternative phosphorylation and O-GlcNAc modification (Yin Yang sites) can be predicted by the YinOYang1.2 method. We propose here that alternative phosphorylation and O-GlcNAc modification at Ser191 in the N-terminal region, Ser271 and 274 in the linker region of two POU sub-domains and Thr301 and Ser323 in the POUh subdomain are involved in the differential binding behavior of Oct-2 to the octamer DNA motif. This implies that phosphorylation or O-GlcNAc modification of the same amino acid may result in a different binding capacity of the modified protein. In the C-terminal domain, Ser371, 389 and 394 are additional Yin Yang sites that could be involved in the modulation of Oct-2 binding properties.
Collapse
Affiliation(s)
- Ishtiaq Ahmad
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | |
Collapse
|
88
|
Seddas P, Boissinot S. Glycosylation of beet western yellows virus proteins is implicated in the aphid transmission of the virus. Arch Virol 2005; 151:967-84. [PMID: 16320008 DOI: 10.1007/s00705-005-0669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/24/2005] [Indexed: 01/22/2023]
Abstract
Beet western yellows virus relies on the aphid M. persicae for its transmission in a persistent and circulative mode. To be transmitted, the virus must cross the midgut and the accessory salivary gland epithelial barriers by a transcytosis mechanism where vector receptors interact with virions. The aphid and the peptidic viral determinants implicated in this interaction mechanism have been studied. In this paper, we report that the coat and the readthrough proteins that constitute the capsid of this virus are glycosylated. Modification of the glucidic core of these structural viral proteins by oxidation with sodium metaperiodate or deglycosylation with N-glycosidase F or alpha-D-galactosidase abrogates the aphid transmission of the virus. Aphid transmission could also be inhibited by lectins directed against alpha-D-galactose when aphids were allowed to acquire virus on artificial membranes. These results suggest that the glucidic cores of the capsid proteins of beet western yellows virus contain alpha-D-galactose residues that are implicated in virus-aphid interaction and promote aphid transmission of the virus.
Collapse
Affiliation(s)
- P Seddas
- Institut National de la Recherche Agronomique, Unité de Recherche Biologie des Interactions Virus/Vecteur, Colmar, France.
| | | |
Collapse
|
89
|
Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P. Caspartin and Calprismin, Two Proteins of the Shell Calcitic Prisms of the Mediterranean Fan Mussel Pinna nobilis. J Biol Chem 2005; 280:33895-908. [PMID: 15994301 DOI: 10.1074/jbc.m506526200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used the combination of preparative electrophoresis and immunological detection to isolate two new proteins from the shell calcitic prisms of Pinna nobilis, the Mediterranean fan mussel. The amino acid composition of these proteins was determined. Both proteins are soluble, intracrystalline, and acidic. The 38-kDa protein is glycosylated; the 17-kDa one is not. Ala, Asx, Thr, and Pro represent the dominant residues of the 38-kDa protein, named calprismin. An N-terminal sequence was obtained from calprismin. This sequence, which comprises a pattern of 4 cysteine residues, is not related to any known protein. The second protein, named caspartin, exhibits an unusual amino acid composition, since Asx constitutes by far the main amino acid residue. Preliminary sequencing surprisingly suggests that the first 75 N-terminal residues are all Asp. Caspartin self-aggregates spontaneously into multimers. In vitro tests show that it inhibits the precipitation of calcium carbonate. Furthermore, it strongly interferes with the growth of calcite crystals. A polyclonal antiserum raised against caspartin was used to localize this protein in the shell by immunogold. The immunolocalization demonstrates that caspartin is distributed within the prisms and makes a continuous film at the interface between the prisms and the surrounding insoluble sheets. Our finding emphasizes the prominent role of aspartic acid-rich proteins for the building of calcitic prisms among molluscs.
Collapse
Affiliation(s)
- Frédéric Marin
- UMR CNRS 5561 "Biogéosciences," Université de Bourgogne, 6 Boulevard Gabriel, Dijon F-21000, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Nakav S, Jablonka-Shariff A, Kaner S, Chadna-Mohanty P, Grotjan HE, Ben-Menahem D. The LHbeta gene of several mammals embeds a carboxyl-terminal peptide-like sequence revealing a critical role for mucin oligosaccharides in the evolution of lutropin to chorionic gonadotropin in the animal phyla. J Biol Chem 2005; 280:16676-84. [PMID: 15723833 DOI: 10.1074/jbc.m500730200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of a previously untranslated carboxylterminal sequence is associated with the ancestral lutropin (LH) beta to the beta-subunit gene evolution of choriogonadotropins (CG). The peptide extension (denoted as CTP) is rich in mucin-type O-glycans and confers new hormonal properties on CG relative to the LH. Although the LHbeta gene is conserved among mammals and only a few frameshift mutations account for the extension, it is merely seen in primates and equids. Bioinformatics identified a CTP-like sequence that is encrypted in the LHbeta gene of several mammalian species but not in birds, amphibians, or fish. We then examined whether or not decoding of the cryptic CTP in the bovine LHbeta gene (boCTP) would be sufficient to generate the LHbeta species of a ruminant with properties typical to the CGbeta subunit. The mutated bovine LHbeta-boCTP subunit was expressed and N-glycosylated in transfected Chinese hamster ovary cells. However, unlike human (h) CGbeta CTP, the cryptic boCTP was devoid of mucin O-glycans. This deficiency was further confirmed when the boCTP domain was substituted for the natural CTP in the human CGbeta subunit. Moreover, when expressed in polarized Madin-Darby canine kidney cells, this hCGbeta-boCTP chimera was secreted basolaterally rather than from the apical compartment, which is the route of the wild type hCGbeta subunit, a sorting function attributed to the O-glycans attached to the CTP. This result shows that the cryptic peptide does not orientate CG to the apical face of the placenta, to the maternal circulation as seen in primates. The absence of this function, which distinguishes CG from LH, provides an explanation as to why the LHbeta to CGbeta evolution did not occur in ruminants. We propose that in primates and equids, further natural mutations in the progenitor LHbeta gene resulted in the efficient O-glycosylation of the CTP, thus favoring the retention of an elongated reading frame.
Collapse
Affiliation(s)
- Sigal Nakav
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
91
|
Bao Y, Yamano Y, Morishima I. A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:127-31. [PMID: 15621517 DOI: 10.1016/j.cbpc.2004.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/22/2022]
Abstract
A cDNA clone with homology to lebocin gene was isolated from fat body of immunized Samia cynthia ricini larvae. The cDNA has an open reading frame encoding 162 amino acid residues. The deduced amino acid sequence shows significant homology to lebocin precursor proteins from Bombyx mori and Trichoplusia ni only in the "prosegment" region, but no homology to mature lebocin, a proline-rich antibacterial peptide, indicating the protein is not a precursor for lebocin antibacterial peptide. Northern analysis indicates that transcript of the lebocin-like gene is not detected in any tissues of naive larvae, but induced mainly in fat body after injection of the larvae with bacterial cells or cell wall components, such as peptidoglycan.
Collapse
Affiliation(s)
- Yanyuan Bao
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan
| | | | | |
Collapse
|
92
|
Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 2004; 280:3275-85. [PMID: 15546882 DOI: 10.1074/jbc.m407536200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28, that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino acids located in the N terminus of US28 that differentially contribute to the high affinity binding of CC versus CX3C chemokines. Additionally, our results highlight the importance of secondary modifications occurring at US28, such as sulfation, for ligand recognition. Finally, the effects of chemokine dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.
Collapse
Affiliation(s)
- Paola Casarosa
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Julenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2004; 15:153-64. [PMID: 15385431 DOI: 10.1093/glycob/cwh151] [Citation(s) in RCA: 688] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.
Collapse
Affiliation(s)
- Karin Julenius
- Center for Biological Sequence Analysis, BioCentrum, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
94
|
Yahiro K, Wada A, Yamasaki E, Nakayama M, Nishi Y, Hisatsune J, Morinaga N, Sap J, Noda M, Moss J, Hirayama T. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin. J Biol Chem 2004; 279:51013-21. [PMID: 15383529 DOI: 10.1074/jbc.m406473200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused by VacA. To define the region of RPTPbeta involved in VacA binding, we made mutants of human cDNA RPTPbeta-B, a short receptor form of RPTPbeta. Immunoprecipitation experiments to assess VacA binding to RPTPbeta-B mutants indicated that five residues (QTTQP) at positions 747-751 of the extracellular domain of RPTPbeta-B (which is commonly retained in RPTPbeta-A, a long form of RPTPbeta) play a crucial role in its interaction with VacA, resulting in vacuolation as well as Git-1 phosphorylation. Transfected cells expressing deletion mutant Delta752, which lacks QTTQP, or the double point mutant Delta747 (T748A,T749A) had diminished vacuolation in response to VacA. Treatment of RPTPbeta-B and Delta747 (which have QTTQP at 747-751) with neuraminidase and O-glycosidase diminished their VacA binding, whereas chondroitinase ABC did not have an effect. No inhibitory effect of pleiotrophin, a natural RPTPbeta ligand, on VacA binding to RPTPbeta-B or Delta747 was observed, supporting the conclusion that the extracellular region of RPTPbeta-B responsible for VacA binding is different from that involved in binding pleiotrophin. These data define the region in the RPTPbeta extracellular domain critical for VacA binding, in particular the sequence QTTQP at positions 747-751 with crucial threonines at positions 748 and 749 and are consistent with a role for terminal sialic acids possibly because of threonine glycosylation.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Kajimura D, Takahashi S, Yoshikawa K, Hattori S, Sado Y, Imamura Y, Hayashi T. Non-helical type IV collagen polypeptides in human placenta. Biochem Biophys Res Commun 2004; 314:11-6. [PMID: 14715239 DOI: 10.1016/j.bbrc.2003.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Our previous reports showed that cultured human cells secrete non-disulfide-bonded non-helical alpha1(IV) and alpha2(IV) chains under physiological conditions. In the present report we show that the alpha(IV) chains in non-helical form were reactive to lectin ABA (Agaricus bisporus agglutinin), whereas the alpha(IV) chains secreted in triple-helical form were not. These results indicate that ABA could be used to distinguish the two conformational isomers of type IV collagen polypeptides. An alpha1(IV) chain isolated from human placenta with an antibody-coupled column showed a positive reaction to ABA, indicating that gelatin form of the type IV collagen alpha1(IV) chain is produced and retained in the tissue in vivo. A possible significance of the gelatin form is discussed from the finding that the non-helical alpha1(IV) chain purified with EDTA-free buffer contained degraded polypeptides including NC1-size domain and showed an apparent inhibition against activated pro-MMP-9. This is the first report to show that a gelatin form of protein exists in vivo.
Collapse
Affiliation(s)
- Daisuke Kajimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Perlman S, van den Hazel B, Christiansen J, Gram-Nielsen S, Jeppesen CB, Andersen KV, Halkier T, Okkels S, Schambye HT. Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J Clin Endocrinol Metab 2003; 88:3227-35. [PMID: 12843169 DOI: 10.1210/jc.2002-021201] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
FSH is a key component in assisted reproductive technologies. Because of rapid clearance of the hormone, patients have to be treated with daily injections. To address this problem, a long-acting FSH mutein was created by introduction of additional N-linked glycosylation into the molecule. New glycosylation sites were introduced by two different approaches: structure-aided, site-directed introduction of sites within the FSH molecule and addition of N-terminal extensions. A mutein with the extension sequence ANITVNITV at the N terminus of the alpha-chain (FSH1208) was efficiently glycosylated at both new sites. This resulted in a molecule with increased size and charge, factors known to reduce renal clearance of proteins. FSH1208 was found to have a 3- to 4-fold increased serum half-life, compared with wild-type recombinant FSH. Furthermore, in spite of a lower in vitro activity, FSH1208 had a markedly increased in vivo potency, as shown by increased ability to augment the ovarian weight and stimulate the serum estradiol levels in rats. These characteristics make FSH1208 a possible candidate for improved infertility treatment.
Collapse
|
97
|
Joseph JS, Valiyaveettil M, Gowda DC, Kini RM. Occurrence of O-linked Xyl-GlcNAc and Xyl-Glc disaccharides in trocarin, a factor Xa homolog from snake venom. J Thromb Haemost 2003; 1:545-50. [PMID: 12871464 DOI: 10.1046/j.1538-7836.2003.00090.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trocarin is a 46515-Da group D prothrombin-activating glycoprotein from the venom of the Australian elapid, Tropidechis carinatus. Amino acid sequencing and functional characterization of trocarin demonstrated that it is a structural and functional homolog of mammalian blood coagulation factor (F)Xa. In this study we show that, in contrast to mammalian Xa, which is not glycosylated, trocarin contains an O-linked carbohydrate moiety in its light chain and an N-linked carbohydrate oligosaccharide in its heavy chain. Mass spectrometry and sugar compositional analysis indicate that the O-linked carbohydrate moiety is a mixture of Xyl-GlcNAc-, GlcNAc-, Xyl-Glc- and Glc- structures linked to Ser 52. The N-linked carbohydrate on Asn 45 of the heavy chain is a sialylated, diantennary oligosaccharide that is located at the lip of the active site of the prothrombin activator.
Collapse
Affiliation(s)
- J S Joseph
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
98
|
Garcia-Campayo V, Sugahara T, Boime I. Unmasking a new recognition signal for O-linked glycosylation in the chorionic gonadotropin beta subunit. Mol Cell Endocrinol 2002; 194:63-70. [PMID: 12242028 DOI: 10.1016/s0303-7207(02)00189-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
hCGbeta subunit is distinguished among the other members of the family of the glycoprotein hormones by the presence of four serine O-linked oligosaccharide units in the last 25 amino acids. This carboxy terminal peptide (CTP) influences the intracellular behavior of the subunit and is important for maintaining the biological half-life of hCG. To examine how the O-linked oligosaccharides affect the metabolic behavior of hCG, we generated a CGbeta mutant devoid of the native O-linked acceptor sites. An alternative site not used in the native subunit was glycosylated and the structure of this oligosaccharide differed from the wild-type O-linked carbohydrates. This glycosylation occurred at serine 130 in the CTP and in contrast to the wild type O-linked oligosaccharides, sialic acid is a major component of the alternatively linked carbohydrate. The data show that deleting the native acceptor sites exposes a new site for O-glycosylation and promotes a differential intracellular processing of the beta subunit. These results support the hypothesis that the CTP participates in the folding of the newly synthesized subunit, which is manifested by the post-translational changes reported here.
Collapse
Affiliation(s)
- Vicenta Garcia-Campayo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
99
|
Pallesen LT, Berglund L, Rasmussen LK, Petersen TE, Rasmussen JT. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2755-63. [PMID: 12047385 DOI: 10.1046/j.1432-1033.2002.02949.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present work reports isolation and characterization of a highly glycosylated protein from bovine milk fat globule membranes, known as PAS III. Partial amino-acid sequencing of the purified protein allowed construction of degenerate oligonucleotide primers, enabling isolation of a full-length cDNA encoding a protein of 330 amino-acid residues. N-terminal amino-acid sequencing of derived peptides and the purified protein confirmed 76% of the sequence and demonstrated presence of a cleavable signal peptide of 23 residues, leaving a mature protein of 307 amino acids. Database searches showed no homology to any other proteins. A survey of the human genome indicated the presence of a corresponding gene on chromosome band 11p14.3. Isolation and sequencing of the complete cDNA sequence of the human homologue proved the existence of the gene product (334 amino-acid residues). This novel mucin-like protein was named MUC15 by appointment of the HUGO Gene Nomenclature Committee. The deduced amino-acid sequences of human and bovine MUC15 demonstrated structural hallmarks characteristic for other membrane-bound mucins, such as a serine, threonine, and proline-rich extracellular region with several potential glycosylation sites, a putative transmembrane domain, and a short cytoplasmic C-terminal. We have shown the presence of O-glycosylations, identified N-glycosylations at 11 of 15 potential sites in bovine MUC15, and a splice variant encoding a short secreted mucin. Finally, analysis of human and bovine cDNA panels and libraries showed MUC15 gene expression in adult human spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocyte, bone marrow, lymph node, tonsil, breast, fetal liver, bovine lymph nodes and lungs of both species.
Collapse
Affiliation(s)
- Lone T Pallesen
- Protein Chemistry Laboratory, Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
100
|
Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 2002; 277:6230-9. [PMID: 11741945 DOI: 10.1074/jbc.m108873200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus stearothermophilus NRS 2004/3a possesses an oblique surface layer (S-layer) composed of glycoprotein subunits as the outermost component of its cell wall. In addition to the elucidation of the complete S-layer glycan primary structure and the determination of the glycosylation sites, the structural gene sgsE encoding the S-layer protein was isolated by polymerase chain reaction-based techniques. The open reading frame codes for a protein of 903 amino acids, including a leader sequence of 30 amino acids. The mature S-layer protein has a calculated molecular mass of 93,684 Da and an isoelectric point of 6.1. Glycosylation of SgsE was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n = 13-18), with a 2-O-methyl group capping the terminal trisaccharide repeating unit at the non-reducing end of the glycan chains. The glycan chains are bound via the disaccharide core -->3)-alpha-l-Rhap-(1-->3)-alpha-L-Rhap-(L--> and the linkage glycose beta-D-Galp in O-glycosidic linkages to the S-layer protein SgsE at positions threonine 620 and serine 794. This S-layer glycoprotein contains novel linkage regions and is the first one among eubacteria whose glycosylation sites have been characterized.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria.
| | | | | | | | | | | |
Collapse
|