51
|
Fernandes LD, Guseva K, de Moura APS. Cooperative response and clustering: Consequences of membrane-mediated interactions among mechanosensitive channels. Phys Rev E 2017; 96:022410. [PMID: 28950473 DOI: 10.1103/physreve.96.022410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/07/2022]
Abstract
Mechanosensitive channels are ion channels which act as cells' safety valves, opening when the osmotic pressure becomes too high and making cells avoid damage by releasing ions. They are found on the cellular membrane of a large number of organisms. They interact with each other by means of deformations they induce in the membrane. We show that collective dynamics arising from the interchannel interactions lead to first- and second-order phase transitions in the fraction of open channels in equilibrium relating to the formation of channel clusters. We show that this results in a considerable delay of the response of cells to osmotic shocks, and to an extreme cell-to-cell stochastic variations in their response times, despite the large numbers of channels present in each cell. We discuss how our results are relevant for E. coli.
Collapse
Affiliation(s)
- Lucas D Fernandes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz - Universidade de São Paulo (USP), 13418-900, Piracicaba, São Paulo, Brazil
| | - Ksenia Guseva
- Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany
| | - Alessandro P S de Moura
- Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, AB24 3UE, Aberdeen, United Kingdom
| |
Collapse
|
52
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
53
|
Abstract
Mechanosensitive (MS) channels provide protection against hypo-osmotic shock in bacteria whereas eukaryotic MS channels fulfil a multitude of important functions beside osmoregulation. Interactions with the membrane lipids are responsible for the sensing of mechanical force for most known MS channels. It emerged recently that not only prokaryotic, but also eukaryotic, MS channels are able to directly sense the tension in the membrane bilayer without any additional cofactor. If the membrane is solely viewed as a continuous medium with specific anisotropic physical properties, the sensitivity towards tension changes can be explained as result of the hydrophobic coupling between membrane and transmembrane (TM) regions of the channel. The increased cross-sectional area of the MS channel in the active conformation and elastic deformations of the membrane close to the channel have been described as important factors. However, recent studies suggest that molecular interactions of lipids with the channels could play an important role in mechanosensation. Pockets in between TM helices were identified in the MS channel of small conductance (MscS) and YnaI that are filled with lipids. Less lipids are present in the open state of MscS than the closed according to MD simulations. Thus it was suggested that exclusion of lipid fatty acyl chains from these pockets, as a consequence of increased tension, would trigger gating. Similarly, in the eukaryotic MS channel TRAAK it was found that a lipid chain blocks the conducting path in the closed state. The role of these specific lipid interactions in mechanosensation are highlighted in this review.
Collapse
|
54
|
Yang Y, Jiang H. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems. PHYSICAL REVIEW LETTERS 2017; 118:208102. [PMID: 28581769 DOI: 10.1103/physrevlett.118.208102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 06/07/2023]
Abstract
Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
55
|
Çetiner U, Rowe I, Schams A, Mayhew C, Rubin D, Anishkin A, Sukharev S. Tension-activated channels in the mechanism of osmotic fitness in Pseudomonas aeruginosa. J Gen Physiol 2017; 149:595-609. [PMID: 28424229 PMCID: PMC5412531 DOI: 10.1085/jgp.201611699] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/16/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is resistant to drastic osmotic changes because of its ability to quickly jettison small osmolytes through osmotic release channels. Çetiner et al. reveal that it uses one MscL-like and at least two types of MscS-like channels during its osmotic response. Pseudomonas aeruginosa (PA) is an opportunistic pathogen with an exceptional ability to adapt to a range of environments. Part of its adaptive potential is the ability to survive drastic osmolarity changes. Upon a sudden dilution of external medium, such as during exposure to rain, bacteria evade mechanical rupture by engaging tension-activated channels that act as osmolyte release valves. In this study, we compare fast osmotic permeability responses in suspensions of wild-type PA and Escherichia coli (EC) strains in stopped-flow experiments and provide electrophysiological descriptions of osmotic-release channels in PA. Using osmotic dilution experiments, we first show that PA tolerates a broader range of shocks than EC. We record the kinetics of cell equilibration reported by light scattering responses to osmotic up- and down-shocks. PA exhibits a lower water permeability and faster osmolyte release rates during large osmotic dilutions than EC, which correlates with better survival. To directly characterize the PA tension-activated channels, we generate giant spheroplasts from this microorganism and record current responses in excised patches. Unlike EC, which relies primarily on two types of channels, EcMscS and EcMscL, to generate a distinctive two-wave pressure ramp response, PA exhibits a more gradual response that is dominated by MscL-type channels. Genome analysis, cloning, and expression reveal that PA possesses one MscL-type (PaMscL) and two MscS-type (PaMscS-1 and 2) proteins. In EC spheroplasts, both PaMscS channels exhibit a slightly earlier activation by pressure compared with EcMscS. Unitary currents reveal that PaMscS-2 has a smaller conductance, higher anionic preference, stronger inactivation, and slower recovery compared with PaMscS-1. We conclude that PA relies on MscL as the major valve defining a high rate of osmolyte release sufficient to curb osmotic swelling under extreme shocks, but it still requires MscS-type channels with a strong propensity to inactivation to properly terminate massive permeability response.
Collapse
Affiliation(s)
- Uğur Çetiner
- Department of Biology, University of Maryland, College Park, MD 20742.,Institute of Physical Science and Technology, University of Maryland, College Park, MD 20742.,Maryland Biophysics Program, University of Maryland, College Park, MD 20742
| | - Ian Rowe
- Department of Biology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Anthony Schams
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Christina Mayhew
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Deanna Rubin
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742 .,Institute of Physical Science and Technology, University of Maryland, College Park, MD 20742.,Maryland Biophysics Program, University of Maryland, College Park, MD 20742
| |
Collapse
|
56
|
|
57
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
58
|
On the mobility, membrane location and functionality of mechanosensitive channels in Escherichia coli. Sci Rep 2016; 6:32709. [PMID: 27596282 PMCID: PMC5011748 DOI: 10.1038/srep32709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/12/2016] [Indexed: 11/23/2022] Open
Abstract
Bacterial mechanosensitive channels protect cells from structural damage during hypoosmotic shock. MscS, MscL and MscK are the most abundant channels in E. coli and arguably the most important ones in osmoprotection. By combining physiological assays with quantitative photo-activated localization microscopy (qPALM), we find an almost linear relationship between channel abundance and cell survival. A minimum of 100 MscL (or MscS) channels is needed for protection when a single type of channel is expressed. Under native-like conditions MscL, MscS as well as MscK distribute homogeneously over the cytoplasmic membrane and the lateral diffusion of the channels is in accordance with their relative protein mass. However, we observe cluster formation and a reduced mobility of MscL when the majority of the subunits of the pentameric channel contain the fluorescent mEos3.2 protein. These data provide new insights into the quantitative biology of mechanosensitive channels and emphasizes the need for care in analysing protein complexes even when the fluorescent tag has been optimized for monomeric behaviour.
Collapse
|
59
|
Pliotas C, Dahl ACE, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S, Robinson CV, Bayley H, Sansom MSP, Booth IR, Naismith JH. The role of lipids in mechanosensation. Nat Struct Mol Biol 2015; 22:991-8. [PMID: 26551077 PMCID: PMC4675090 DOI: 10.1038/nsmb.3120] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
The ability of proteins to sense membrane tension is pervasive in biology. A higher-resolution structure of the Escherichia coli small-conductance mechanosensitive channel MscS identifies alkyl chains inside pockets formed by the transmembrane helices (TMs). Purified MscS contains E. coli lipids, and fluorescence quenching demonstrates that phospholipid acyl chains exchange between bilayer and TM pockets. Molecular dynamics and biophysical analyses show that the volume of the pockets and thus the number of lipid acyl chains within them decreases upon channel opening. Phospholipids with one acyl chain per head group (lysolipids) displace normal phospholipids (with two acyl chains) from MscS pockets and trigger channel opening. We propose that the extent of acyl-chain interdigitation in these pockets determines the conformation of MscS. When interdigitation is perturbed by increased membrane tension or by lysolipids, the closed state becomes unstable, and the channel gates.
Collapse
Affiliation(s)
- Christos Pliotas
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | | | - Tim Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Terry K Smith
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | - Phedra Marius
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Thandiwe Banda
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Akiko Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Samantha Miller
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ian R Booth
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Kocer A. Mechanisms of mechanosensing - mechanosensitive channels, function and re-engineering. Curr Opin Chem Biol 2015; 29:120-7. [PMID: 26610201 DOI: 10.1016/j.cbpa.2015.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Sensing and responding to mechanical stimuli is an ancient behavior and ubiquitous to all forms of life. One of its players 'mechanosensitive ion channels' are involved in processes from osmosensing in bacteria to pain in humans. However, the mechanism of mechanosensing is yet to be elucidated. This review describes recent developments in the understanding of a bacterial mechanosensitive channel. Force from the lipid principle of mechanosensation, new methods to understand protein-lipid interactions, the role of water in the gating, the use of engineered mechanosensitive channels in the understanding of the gating mechanism and application of the accumulated knowledge in the field of drug delivery, drug design and sensor technologies are discussed.
Collapse
Affiliation(s)
- Armagan Kocer
- University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
61
|
The impact of the C-terminal domain on the gating properties of MscCG from Corynebacterium glutamicum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:130-8. [PMID: 26494188 DOI: 10.1016/j.bbamem.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022]
Abstract
The mechanosensitive (MS) channel MscCG from the soil bacterium Corynebacterium glutamicum functions as a major glutamate exporter. MscCG belongs to a subfamily of the bacterial MscS-like channels, which play an important role in osmoregulation. To understand the structural and functional features of MscCG, we investigated the role of the carboxyl-terminal domain, whose relevance for the channel gating has been unknown. The chimeric channel MscS-(C-MscCG), which is a fusion protein between the carboxyl terminal domain of MscCG and the MscS channel, was examined by the patch clamp technique. We found that the chimeric channel exhibited MS channel activity in Escherichia coli spheroplasts characterized by a lower activation threshold and slow closing compared to MscS. The chimeric channel MscS-(C-MscCG) was successfully reconstituted into azolectin liposomes and exhibited gating hysteresis in a voltage-dependent manner, especially at high pipette voltages. Moreover, the channel remained open after releasing pipette pressure at membrane potentials physiologically relevant for C. glutamicum. This contribution to the gating hysteresis of the C-terminal domain of MscCG confers to the channel gating properties highly suitable for release of intracellular solutes.
Collapse
|
62
|
Najem JS, Dunlap MD, Rowe ID, Freeman EC, Grant JW, Sukharev S, Leo DJ. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci Rep 2015; 5:13726. [PMID: 26348441 PMCID: PMC4562232 DOI: 10.1038/srep13726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 02/01/2023] Open
Abstract
MscL, a stretch-activated channel, saves bacteria experiencing hypo-osmotic shocks from lysis. Its high conductance and controllable activation makes it a strong candidate to serve as a transducer in stimuli-responsive biomolecular materials. Droplet interface bilayers (DIBs), flexible insulating scaffolds for such materials, can be used as a new platform for incorporation and activation of MscL. Here, we report the first reconstitution and activation of the low-threshold V23T mutant of MscL in a DIB as a response to axial compressions of the droplets. Gating occurs near maximum compression of both droplets where tension in the membrane is maximal. The observed 0.1-3 nS conductance levels correspond to the V23T-MscL sub-conductive and fully open states recorded in native bacterial membranes or liposomes. Geometrical analysis of droplets during compression indicates that both contact angle and total area of the water-oil interfaces contribute to the generation of tension in the bilayer. The measured expansion of the interfaces by 2.5% is predicted to generate a 4-6 mN/m tension in the bilayer, just sufficient for gating. This work clarifies the principles of interconversion between bulk and surface forces in the DIB, facilitates the measurements of fundamental membrane properties, and improves our understanding of MscL response to membrane tension.
Collapse
Affiliation(s)
- Joseph S. Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Myles D. Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ian D. Rowe
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Eric C. Freeman
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - John W. Grant
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Donald J. Leo
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
63
|
Chi G, Rohde PR, Ridone P, Hankamer B, Martinac B, Landsberg MJ. Functional similarities between heterogeneously and homogenously expressed MscL constructs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:589-98. [PMID: 26233759 DOI: 10.1007/s00249-015-1062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
The mechanosensitive channel of large conductance MscL is a well-characterized mechanically gated non-selective ion channel, which often serves as a prototype mechanosensitive channel for mechanotransduction studies. However, there are some discrepancies between MscL constructs used in these studies, most notably unintended heterogeneous expression from some MscL expression constructs. In this study we investigate the possible cause of this expression pattern, and compare the original non-homogenously expressing constructs with our new homogeneously expressing one to confirm that there is little functional difference between them. In addition, a new MscL construct has been developed with an improved molar extinction coefficient at 280 nm, enabling more accurate protein quantification.
Collapse
Affiliation(s)
- Gamma Chi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
64
|
Sawada Y, Sokabe M. Molecular dynamics study on protein-water interplay in the mechanogating of the bacterial mechanosensitive channel MscL. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:531-43. [PMID: 26233760 PMCID: PMC4562998 DOI: 10.1007/s00249-015-1065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/18/2015] [Indexed: 11/03/2022]
Abstract
One of the goals of mechanosensitive channel (MSC) studies is to understand the underlying molecular and biophysical mechanisms of the mechano-gating process from force sensing to gate opening. We focus on the latter process and investigate the role of water in the bacterial MSC MscL, which is activated by membrane tension. We analyze the interplay between water and the gate-constituting amino acids, Leu19-Gly26, through molecular dynamics simulations. To highlight the role of water, specifically hydration of the gate, in MscL gating, we restrain lateral movements of the water molecules along the water-vapor interfaces at the top and bottom of the vapor bubble, plugging the closed gate. The gating behaviors in this model and the normal MscL model, in which water movements are unrestrained, are compared. In the normal model, increased membrane tension breaks the hydrogen bond between Leu19 and Val 23 of the inner helix, exposing the backbone carbonyl oxygen of Leu19 to the water-accessible lumen side of the gate. Associated with this activity, water comes to access the vapor region and stably interacts with the carbonyl oxygen to induce a dewetting to wetting transition that facilitates gate expansion toward channel opening. By contrast, in the water-restrained model, carbonyl oxygen is also exposed, but no further conformational changes occur at the gate. This suggests that gate opening relies on a conformational change initiated by wetting. The penetrated water weakens the hydrophobic interaction between neighboring transmembrane inner helices called the "hydrophobic lock" by wedging into the space between their interacting portions.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | |
Collapse
|
65
|
Shaikh S, Cox CD, Nomura T, Martinac B. Energetics of gating MscS by membrane tension in azolectin liposomes and giant spheroplasts. Channels (Austin) 2015; 8:321-6. [PMID: 24758942 DOI: 10.4161/chan.28366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive (MS) ion channels are molecular sensors that detect and transduce signals across prokaryotic and eukaryotic cell membranes arising from external mechanical stimuli or osmotic gradients. They play an integral role in mechanosensory responses including touch, hearing, and proprioception by opening or closing in order to facilitate or prevent the flow of ions and organic osmolytes. In this study we use a linear force model of MS channel gating to determine the gating membrane tension (γ) and the gating area change (ΔA) associated with the energetics of MscS channel gating in giant spheroplasts and azolectin liposomes. Analysis of Boltzmann distribution functions describing the dependence of MscS channel gating on membrane tension indicated that the gating area change (ΔA) was the same for MscS channels recorded in both preparations. The comparison of the membrane tension (γ) gating the channel, however, showed a significant difference between the MscS channel activities in these two preparations.
Collapse
|
66
|
Becker M, Krämer R. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:577-88. [PMID: 26033538 DOI: 10.1007/s00249-015-1041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/01/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022]
Abstract
Corynebacterium glutamicum is used in microbial biotechnology for the production of amino acids, e.g., glutamate and lysine. Excretion of glutamate into the surrounding medium under production conditions is mediated by MscCG, an MscS-type mechanosensitive channel. In difference to most other MscS-type channel proteins, MscCG carries, in addition to the N-terminal pore domain, a long C-terminal domain that amounts to about half of the size of the protein and harbors an additional transmembrane segment. Here we study the impact of the C-terminal domain on both functions of MscCG as mechanosensitive channel and as glutamate exporter. Sequential truncations of the C-terminal domain were applied, as well as deletion of particular subdomains, replacement of these segments by other amino acid sequences, and sequence randomization. Several parameters of cell physiology and bioenergetics of the obtained mutants related to both glutamate excretion and response to osmotic stress were quantified. All three subdomains of the C-terminal domain, i.e., the periplasmic loop, the fourth transmembrane segment, and the cytoplasmic loop, proved to be of core significance for MscCG function, in particular for glutamate excretion.
Collapse
Affiliation(s)
- Michael Becker
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | | |
Collapse
|
67
|
Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:503-12. [DOI: 10.1007/s00249-015-1032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
68
|
Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid-protein interactions: Lessons learned from stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1744-56. [PMID: 25922225 DOI: 10.1016/j.bbamem.2015.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- A R Battle
- Menzies Health Institute Queensland and School of Pharmacy, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - P Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Y Nakayama
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Y A Nikolaev
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|
69
|
Booth IR, Miller S, Müller A, Lehtovirta-Morley L. The evolution of bacterial mechanosensitive channels. Cell Calcium 2014; 57:140-50. [PMID: 25591932 DOI: 10.1016/j.ceca.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Mechanosensitive channels are ubiquitous and highly studied. However, the evolution of the bacterial channels remains enigmatic. It can be argued that mechanosensitivity might be a feature of all membrane proteins with some becoming progressively less sensitive to membrane tension over the course of evolution. Bacteria and archaea exhibit two main classes of channels, MscS and MscL. Present day channels suggest that the evolution of MscL may be highly constrained, whereas MscS has undergone elaboration via gene fusion (and potentially gene fission) events to generate a diversity of channel structures. Some of these channel variants are constrained to a small number of genera or species. Some are only found in higher organisms. Only exceptionally have these diverse channels been investigated in any detail. In this review we consider both the processes that might have led to the evolved complexity but also some of the methods exploiting the explosion of genome sequences to understand (and/or track) their distribution. The role of MscS-related channels in calcium-mediated cell biology events is considered.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Samantha Miller
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, Broad Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Laura Lehtovirta-Morley
- Institute of Biological and Environmental Sciences, Cruikshank Building, University of Aberdeen, St Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
70
|
Zhong D, Yang LM, Blount P. Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface. Biophys J 2014; 106:375-81. [PMID: 24461012 DOI: 10.1016/j.bpj.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
MscL, the highly conserved bacterial mechanosensitive channel of large conductance, is one of the best studied mechanosensors. It is a homopentameric channel that serves as a biological emergency release valve that prevents cell lysis from acute osmotic stress. We previously showed that the periplasmic region of the protein, particularly a single residue located at the TM1/periplasmic loop interface, F47 of Staphylococcus aureus and I49 of Escherichia coli MscL, plays a major role in both the open dwell time and mechanosensitivity of the channel. Here, we introduced cysteine mutations at these sites and found they formed disulfide bridges that decreased the channel open dwell time. By scanning a likely interacting domain, we also found that these sites could be disulfide trapped by addition of cysteine mutations in other locations within the periplasmic loop of MscL, and this also led to rapid channel kinetics. Together, the data suggest structural rearrangements and protein-protein interactions that occur within this region upon normal gating, and further suggest that locking portions of the channel into a transition state decreases the stability of the open state.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
71
|
Mukherjee N, Jose MD, Birkner JP, Walko M, Ingólfsson HI, Dimitrova A, Arnarez C, Marrink SJ, Koçer A. The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 2014; 28:4292-302. [PMID: 24958207 DOI: 10.1096/fj.14-251579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the best-studied mechanosensitive channels is the mechanosensitive channel of large conductance (MscL). MscL senses tension in the membrane evoked by an osmotic down shock and directly couples it to large conformational changes leading to the opening of the channel. Spectroscopic techniques offer unique possibilities to monitor these conformational changes if it were possible to generate tension in the lipid bilayer, the native environment of MscL, during the measurements. To this end, asymmetric insertion of l-α-lysophosphatidylcholine (LPC) into the lipid bilayer has been effective; however, how LPC activates MscL is not fully understood. Here, the effects of LPC on tension-sensitive mutants of a bacterial MscL and on MscL homologs with different tension sensitivities are reported, leading to the conclusion that the mode of action of LPC is different from that of applied tension. Our results imply that LPC shifts the free energy of gating by interfering with MscL-membrane coupling. Furthermore, we demonstrate that the fine-tuned addition of LPC can be used for controlled activation of MscL in spectroscopic studies.
Collapse
Affiliation(s)
- Nobina Mukherjee
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Mac Donald Jose
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jan Peter Birkner
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands; Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands; and
| | - Martin Walko
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Anna Dimitrova
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Clément Arnarez
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Armağan Koçer
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands; Neuroscience Department, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
72
|
MscL: channeling membrane tension. Pflugers Arch 2014; 467:15-25. [PMID: 24859800 DOI: 10.1007/s00424-014-1535-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Mechanosensitive channels are integral components for the response of bacteria to osmotic shock. The mechanosensitive channel of large conductance (MscL) responds to extreme turgor pressure increase that would otherwise lyse the cellular membrane. MscL has been studied as a model mechanosensitive channel using both structural and functional approaches. We will summarize the structural data and discuss outstanding questions surrounding the gating mechanism of this homo-oligomeric channel that has ~3 nS conductance. Specifically, we will explore the following: (1) the variability in oligomeric state that has been observed, (2) the open pore size measurements, and (3) the role of the C-terminal coiled coil domain for channel function. The oligomeric state of MscL has been characterized using various techniques, with a pentamer being the predominant form; however, the presence of mixtures of oligomers in the membrane is still uncertain. In the absence of structural data for the open state of MscL, the diameter of the open state pore has been estimated by several different approaches, leading to a current estimate between 25 and 30 Å. While the C-terminal domain is highly conserved among MscL homologues, it is not required for activity in vivo or in vitro. This domain is likely to remain intact during the gating transition and perform a filtering function that retains valuable osmolytes in the cytosol. Overall, studies of MscL have provided significant insight to the field, and serve as a paradigm for the analysis of non-homologous, eukaryotic mechanosensitive channel proteins.
Collapse
|
73
|
Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K. Water permeation drives tumor cell migration in confined microenvironments. Cell 2014; 157:611-23. [PMID: 24726433 DOI: 10.1016/j.cell.2014.02.052] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/10/2013] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Abstract
Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hongyuan Jiang
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, PRC
| | - Shih-Hsun Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziqiu Tong
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X Sun
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
74
|
Booth IR. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr Opin Microbiol 2014; 18:16-22. [PMID: 24607989 PMCID: PMC4005912 DOI: 10.1016/j.mib.2014.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
Abstract
Multiple mechanosensitive channels are found in most bacteria and archaea. Channels are required to prevent loss of structural integrity during transitions from high to low osmolarity. Channel diversity feeds into the detailed response of cells to hypo-osmotic stress. There is growing evidence that organisms have evolved MS channels that reflect their niche. Structural diversity may reflect roles additional to the observed function of protection of structural integrity.
Bacterial mechanosensitive channels sense the changes in lateral tension in the bilayer of the cytoplasmic membrane generated by rapid water flow into the cell. Two major structural families are found widely distributed across bacteria and archaea: MscL and MscS. Our understanding of the mechanisms of gating has advanced rapidly through genetic analysis, structural biology and electrophysiology. It is only recently that the analysis of the physiological roles of the channels has kept pace with mechanistic studies. Recent advances have increased our understanding of the role of the channels in preventing structural perturbation during osmotic transitions and its relationship to water flow across the membrane. It is to these recent developments that this review is dedicated.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom; Visiting Associate in Chemistry, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
75
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 2014; 20:952-69. [PMID: 23834368 DOI: 10.1089/ars.2013.5471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. RECENT ADVANCES As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. CRITICAL ISSUES In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. FUTURE DIRECTIONS A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.
Collapse
Affiliation(s)
- Boris Martinac
- 1 Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute , Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Barthmes M, Jose MDF, Birkner JP, Brüggemann A, Wahl-Schott C, Koçer A. Studying mechanosensitive ion channels with an automated patch clamp. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:97-104. [DOI: 10.1007/s00249-014-0944-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
|
77
|
Najem J, Dunlap M, Sukharev S, Leo DJ. Mechanosensitive Channels Activity in a Droplet Interface Bilayer System. ACTA ACUST UNITED AC 2014. [DOI: 10.1557/opl.2014.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTThis paper presents the first attempts to study the large conductance mechano-sensitive channel (MscL) activity in an artificial droplet interface bilayer (DIB) system. A novel and simple technique is developed to characterize the behavior of an artificial lipid bilayer interface containing mechano-sensitive (MS) channels. The experimental setup is assembled on an inverted microscope and consists of two micropipettes filled with PEG-DMA hydrogel and containing Ag/AgCl wires, a cylindrical oil reservoir glued on top of a thin acrylic sheet, and a piezoelectric oscillator actuator. By using this technique, dynamic tension can be applied by oscillating axial motion of one droplet, producing deformation of both droplets and area changes of the DIB interface. The tension in the artificial membrane will cause the MS channels to gate, resulting in an increase in the conductance levels of the membrane. The results show that the MS channels are able to gate under an applied dynamic tension. Moreover, it can be concluded that the response of channel activity to mechanical stimuli is voltage-dependent and highly related to the frequency and amplitude of oscillations.
Collapse
|
78
|
Rowe I, Elahi M, Huq A, Sukharev S. The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae. ACTA ACUST UNITED AC 2014; 142:75-85. [PMID: 23797422 PMCID: PMC3691451 DOI: 10.1085/jgp.201310985] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen.
Collapse
Affiliation(s)
- Ian Rowe
- Department of Biology, Maryland Pathogen Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
79
|
Reuter M, Hayward NJ, Black SS, Miller S, Dryden DTF, Booth IR. Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper? J R Soc Interface 2013; 11:20130850. [PMID: 24258154 PMCID: PMC3869158 DOI: 10.1098/rsif.2013.0850] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.
Collapse
Affiliation(s)
- Marcel Reuter
- School of Chemistry and COSMIC, University of Edinburgh, , The King's Buildings, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|
80
|
Petrov E, Palanivelu D, Constantine M, Rohde PR, Cox CD, Nomura T, Minor DL, Martinac B. Patch-clamp characterization of the MscS-like mechanosensitive channel from Silicibacter pomeroyi. Biophys J 2013; 104:1426-34. [PMID: 23561519 DOI: 10.1016/j.bpj.2013.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
Based on sequence similarity, the sp7 gene product, MscSP, of the sulfur-compound-decomposing Gram-negative marine bacterium Silicibacter pomeroyi belongs to the family of MscS-type mechanosensitive channels. To investigate MscSP channel properties, we measured its response to membrane tension using the patch-clamp technique on either a heterologous expression system using giant spheroplasts of MJF465 Escherichia coli strain (devoid of mechanosensitive channels MscL, MscS, and MscK), or on purified MscSP protein reconstituted in azolectin liposomes. These experiments showed typical pressure-dependent gating properties of a stretch-activated channel with a current/voltage plot indicating a rectifying behavior and weak preference for anions similar to the MscS channel of E. coli. However, the MscSP channel exhibited functional differences with respect to conductance and desensitization behavior, with the most striking difference between the two channels being the lack of inactivation in MscSP compared with MscS. This seems to result from the fact that although MscSP has a Gly in an equivalent position to MscS (G113), a position that is critical for inactivation, MscSP has a Glu residue instead of an Asn in a position that was recently shown to allosterically influence MscS inactivation, N117. To our knowledge, this study describes the first electrophysiological characterization of an MscS-like channel from a marine bacterium belonging to sulfur-degrading α-proteobacteria.
Collapse
Affiliation(s)
- Evgeny Petrov
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Wilson ME, Maksaev G, Haswell ES. MscS-like mechanosensitive channels in plants and microbes. Biochemistry 2013; 52:5708-22. [PMID: 23947546 DOI: 10.1021/bi400804z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, consists of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, determining the crystal structure of E. coli MscS and several homologues in several conformational states has contributed to our understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologues from all three domains of life and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Washington University in St. Louis, Missouri 63130, United States
| | | | | |
Collapse
|
82
|
Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 2013; 288:27307-27314. [PMID: 23897808 DOI: 10.1074/jbc.m113.478321] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K(+) channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.
Collapse
Affiliation(s)
- Catherine Berrier
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Alexandre Pozza
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Agnes de Lacroix de Lavalette
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Solenne Chardonnet
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Agnes Mesneau
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay
| | - Christine Jaxel
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Marc le Maire
- Institute of Biology and Technology Saclay (iBitec-S), UMR 8221 Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud and CEA Saclay, 91191 Gif sur Yvette, France
| | - Alexandre Ghazi
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), Unité Mixte de Recherche (UMR) 8619, CNRS, Université Paris-Sud, 91405 Orsay.
| |
Collapse
|
83
|
Selectivity mechanism of the mechanosensitive channel MscS revealed by probing channel subconducting states. Nat Commun 2013; 4:2137. [DOI: 10.1038/ncomms3137] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/12/2013] [Indexed: 11/08/2022] Open
|
84
|
Antimicrobial dyes and mechanosensitive channels. Antonie van Leeuwenhoek 2013; 104:155-67. [DOI: 10.1007/s10482-013-9937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/17/2013] [Indexed: 01/09/2023]
|
85
|
Vásquez V. MscS inactivation: an exception rather than the rule. An extremophilic MscS reveals diversity within the family. Biophys J 2013; 104:1391-3. [PMID: 23561511 DOI: 10.1016/j.bpj.2013.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Valeria Vásquez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
86
|
Martinac B, Rohde PR, Cranfield CG, Nomura T. Patch clamp electrophysiology for the study of bacterial ion channels in giant spheroplasts of E. coli. Methods Mol Biol 2013; 966:367-380. [PMID: 23299747 DOI: 10.1007/978-1-62703-245-2_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ion channel studies have been focused on ion channels from animal and human cells over many years. Based on the knowledge acquired, predominantly over the last 20 years, a large diversity of ion channels exists in cellular membranes of prokaryotes as well. Paradoxically, most of what is known about the structure of eukaryotic ion channels is based on the structure of bacterial channels. This is largely due to the suitability of bacterial cells for functional and structural studies of biological macromolecules in a laboratory environment. Development of the "giant spheroplast" preparation from E. coli cells was instrumental for functional studies of ion channels in the bacterial cell membrane. Here we describe detailed protocols used for the preparation of giant spheroplasts as well as protocols used for the patch-clamp recording of native or heterologously expressed ion channels in E. coli spheroplast membrane.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
| | | | | | | |
Collapse
|
87
|
Structure and molecular mechanism of an anion-selective mechanosensitive channel of small conductance. Proc Natl Acad Sci U S A 2012; 109:18180-5. [PMID: 23074248 DOI: 10.1073/pnas.1207977109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mechanosensitive (MS) channels are universal cellular membrane pores. Bacterial MS channels, as typified by MS channel of small conductance (MscS) from Escherichia coli (EcMscS), release osmolytes under hypoosmotic conditions. MS channels are known to be ion selective to different extents, but the underlying mechanism remains poorly understood. Here we identify an anion-selective MscS channel from Thermoanaerobacter tengcongensis (TtMscS). The structure of TtMscS closely resembles that of EcMscS, but it lacks the large cytoplasmic equatorial portals found in EcMscS. In contrast, the cytoplasmic pore formed by the C-terminal β-barrel of TtMscS is larger than that of EcMscS and has a strikingly different pattern of electrostatic surface potential. Swapping the β-barrel region between TtMscS and EcMscS partially switches the ion selectivity. Our study defines the role of the β-barrel in the ion selection of an anion-selective MscS channel and provides a structural basis for understanding the ion selectivity of MscS channels.
Collapse
|
88
|
Malcolm HR, Maurer JA. The mechanosensitive channel of small conductance (MscS) superfamily: not just mechanosensitive channels anymore. Chembiochem 2012; 13:2037-43. [PMID: 22915507 DOI: 10.1002/cbic.201200410] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 01/13/2023]
Abstract
A family of many talents: The mechanosensitive channel of small conductance (MscS) superfamily of ion channels is composed of 15 unique subfamilies. Many of these subfamilies are predicted to be nonmechanosensitive and to have evolved to play critical roles in bacterial signal transduction.
Collapse
Affiliation(s)
- Hannah R Malcolm
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | |
Collapse
|
89
|
Furuichi T, Iida H, Sokabe M, Tatsumi H. Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. PLANT SIGNALING & BEHAVIOR 2012; 7:1022-6. [PMID: 22751361 PMCID: PMC3474671 DOI: 10.4161/psb.20783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Higher plants sense and respond to osmotic and mechanical stresses such as turgor, touch, flexure and gravity. Mechanosensitive (MS) channels, directly activated by tension in the cell membrane and cytoskeleton, are supposed to be involved in the cell volume regulation under hypotonic conditions and the sensing of these mechanical stresses based on electrophysiological and pharmacological studies. However, limited progress has been achieved in the molecular identification of plant MS channels. Here, we show that MCA1 (mid1-complementing activity 1; a putative mechanosensitive Ca ( 2+) -permeable channel in Arabidopsis thaliana) increased MS channel activity in the plasma membrane of Xenopus laevis oocytes. The functional and kinetic properties of MCA1 were examined by using a Xenopus laevis oocytes expression system, which showed that MCA1-dependent MS cation currents were activated by hypo-osmotic shock or by membrane stretch produced by pipette suction. Single-channel analyses suggest that MCA1 encodes a possible MS channel with a conductance of 34 pS.
Collapse
Affiliation(s)
- Takuya Furuichi
- EcoTopia Science Institute, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
90
|
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 2012; 125:3075-83. [PMID: 22797911 DOI: 10.1242/jcs.092353] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
91
|
Martinac B. Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels (Austin) 2012; 6:211-3. [PMID: 22940794 PMCID: PMC3508899 DOI: 10.4161/chan.22047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division; Victor Chang Cardiac Research Institute; Darlinghurst, NSW Australia
| |
Collapse
|
92
|
Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR, Stephen TL, Miller S, Booth IR. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels (Austin) 2012; 6:272-81. [PMID: 22874652 PMCID: PMC3508906 DOI: 10.4161/chan.20998] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.
Collapse
Affiliation(s)
- Michelle D Edwards
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Petrov E, Rohde PR, Cornell B, Martinac B. The protective effect of osmoprotectant TMAO on bacterial mechanosensitive channels of small conductance MscS/MscK under high hydrostatic pressure. Channels (Austin) 2012; 6:262-71. [PMID: 22790324 PMCID: PMC3508905 DOI: 10.4161/chan.20833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the "flying-patch" patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by "shielding" the cytoplasmic domain of the channels.
Collapse
Affiliation(s)
- Evgeny Petrov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
94
|
Jensen GS, Haswell ES. Functional analysis of conserved motifs in the mechanosensitive channel homolog MscS-Like2 from Arabidopsis thaliana. PLoS One 2012; 7:e40336. [PMID: 22768278 PMCID: PMC3386975 DOI: 10.1371/journal.pone.0040336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/06/2012] [Indexed: 11/30/2022] Open
Abstract
The Mechanosensitive channel of Small conductance (MscS) of Escherichia coli has become an excellent model system for the structural, biophysical, and functional study of mechanosensitive ion channels. MscS, a complex channel with multiple states, contributes to protection against lysis upon osmotic downshock. MscS homologs are widely and abundantly dispersed among the bacterial and plant lineages, but are not found in animals. Investigation into the eukaryotic branch of the MscS family is in the beginning stages, and it remains unclear how much MscS homologs from eukaryotes resemble E. coli MscS with respect to structure, function, and regulation. Here we test the effect of mutating three conserved motifs on the function of MscS-Like (MSL)2, a MscS homolog localized to the plastids of Arabidopsis thaliana. We show that 1) a motif at the top of the cytoplasmic domain, referred to here as the PN(X)9N motif, is essential for MSL2 function and for its proper intraplastidic localization; 2) substituting polar residues for two large hydrophobic residues located in the predicted pore-lining transmembrane helix of MSL2 produces a likely gain-of-function allele, as previously shown for MscS; and 3) mis-expression of this allele causes severe defects in leaf growth, loss of chloroplast integrity, and abnormal starch accumulation. Thus, two of the three conserved motifs we analyzed are critical for MSL2 function, consistent with the conservation of structure and function between MscS family members in bacteria and plants. These results underscore the importance of plastidic mechanosensitive channels in the maintenance of normal plastid and leaf morphology.
Collapse
Affiliation(s)
- Gregory S. Jensen
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Elizabeth S. Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
95
|
Jimenez V, Docampo R. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002750. [PMID: 22685407 PMCID: PMC3369953 DOI: 10.1371/journal.ppat.1002750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023] Open
Abstract
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes. The use of high-resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. However, the study of ion channels in unicellular eukaryotes has been limited to detection of ion conductances in large cells, gene identification studies, and pharmacological treatments to investigate the potential presence of different ion channels. In this paper we report the first identification, functional expression, purification, reconstitution, and electrophysiological characterization with single-molecule resolution of a novel cation channel (TcCat) from Trypanosoma cruzi. This is a novel channel that shares little sequence and functional similarities to other potassium channels and its peculiar characteristics could be important for the development of specific inhibitors with therapeutic potential against trypanosomiasis. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. We demonstrated the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. In addition, we obtained yeast mutants that will provide a useful genetic system for studies of the assembly and composition of the channel.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| |
Collapse
|
96
|
Abstract
Anchorage-independent growth is the most significant hallmark of cell transformation, which has an intimate relevance to cancer. Anchorage or adhesion physically links cells to the extracellular matrix and allows the transmission of external mechanical cues to intracellular signaling machineries. Transformation involves acquiring the ability to proliferate without requiring mechanically initiated signal transduction, known as mechanotransduction. A number of signaling and cytoskeletal molecules are located at focal adhesions. Src and its related proteins, including p130Cas, localize to adhesion sites, where their functions can be mechanically regulated. In addition, the aberrant activation and expression of Src and p130Cas are linked to transformation and malignancy both in vitro and in vivo. These findings shed light on the importance of mechanotransduction in tumorigenesis and the regulation of cancer progression and also provide insights into the mechanical aspects of cancer signaling.
Collapse
Affiliation(s)
- Hiroyuki Matsui
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Ichiro Harada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Yasuhiro Sawada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
97
|
Naismith JH, Booth IR. Bacterial mechanosensitive channels--MscS: evolution's solution to creating sensitivity in function. Annu Rev Biophys 2012; 41:157-77. [PMID: 22404681 PMCID: PMC3378650 DOI: 10.1146/annurev-biophys-101211-113227] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of mechanosensing channels has changed our understanding of bacterial physiology. The mechanosensitive channel of small conductance (MscS) is perhaps the most intensively studied of these channels. MscS has at least two states: closed, which does not allow solutes to exit the cytoplasm, and open, which allows rapid efflux of solvent and solutes. The ability to appropriately open or close the channel (gating) is critical to bacterial survival. We briefly review the science that led to the isolation and identification of MscS. We concentrate on the structure-function relationship of the channel, in particular the structural and biochemical approaches to understanding channel gating. We highlight the troubling discrepancies between the various models developed to understand MscS gating.
Collapse
Affiliation(s)
- James H. Naismith
- Professor Chemical Biology, Biomedical Sciences Research Complex, The North Haugh, The University, St Andrews, Fife KY16 9ST, United Kingdom;
| | - Ian R. Booth
- Professor Emeritus Microbiology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom;
| |
Collapse
|
98
|
Mechanosensitive channels: what can they do and how do they do it? Structure 2012; 19:1356-69. [PMID: 22000509 DOI: 10.1016/j.str.2011.09.005] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022]
Abstract
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
Collapse
|
99
|
Abstract
Mechanosensation and -transduction are important for physiological processes like the senses of touch, hearing, and balance. The mechanisms underlying the translation of mechanical stimuli into biochemical information by activating various signaling pathways play a fundamental role in physiology and pathophysiology but are only poorly understood. Recently, G protein-coupled receptors (GPCRs), which are essential for the conversion of light, olfactory and gustatory stimuli, as well as of primary messengers like hormones and neurotransmitters into cellular signals and which play distinct roles in inflammation, cell growth, and differentiation, have emerged as potential mechanosensors. The first candidate for a mechanosensitive GPCR was the angiotensin-II type-1 (AT(1)) receptor. Agonist-independent mechanical receptor activation of AT(1) receptors induces an active receptor conformation that appears to differ from agonist-induced receptor conformations and entails the activation of G proteins. Mechanically induced AT(1) receptor activation plays an important role for myogenic vasoconstriction and for the initiation of cardiac hypertrophy. A growing body of evidence suggests that other GPCRs are involved in mechanosensation as well. These findings highlight physiologically relevant, ligand-independent functions of GPCRs and add yet another facet to the polymodal activation spectrum of this ubiquitous protein family.
Collapse
Affiliation(s)
- Ursula Storch
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Germany
| | | | | |
Collapse
|
100
|
Martinac B. Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction. Cell Physiol Biochem 2011; 28:1051-60. [PMID: 22178995 DOI: 10.1159/000335842] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 01/23/2023] Open
Abstract
Research on bacterial mechanosensitive (MS) channels has since their discovery been at the forefront of the MS channel field due to extensive studies of the structure and function of MscL and MscS, two of the several different types of MS channels found in bacteria. Just a few years after these two MS channels were cloned their 3D structure was solved by X-ray crystallography. Today, the repertoire of multidisciplinary approaches used in experimental and theoretical studies following the cloning and crystallographic determination of the MscL and MscS structure has expanded by including electronparamagnetic resonance (EPR) and Förster resonance energy transfer (FRET) spectroscopy aided by computational modelling employing molecular dynamics as well as Brownian dynamics simulations, which significantly advanced the understanding of structural determinants of the gating and conduction properties of these two MS channels. These extensive multidisciplinary studies of MscL and MscS have greatly contributed to elucidation of the basic physical principles of MS channel gating by mechanical force. This review summarizes briefly the major experimental and conceptual advancements, which helped in establishing MscL and MscS as a major paradigm of mechanosensory transduction in living cells.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
| |
Collapse
|