51
|
Grimoldi N, Colleoni F, Tiberio F, Vetrano IG, Cappellari A, Costa A, Belicchi M, Razini P, Giordano R, Spagnoli D, Pluderi M, Gatti S, Morbin M, Gaini SM, Rebulla P, Bresolin N, Torrente Y. Stem cell salvage of injured peripheral nerve. Cell Transplant 2013; 24:213-22. [PMID: 24268028 DOI: 10.3727/096368913x675700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously developed a collagen tube filled with autologous skin-derived stem cells (SDSCs) for bridging long rat sciatic nerve gaps. Here we present a case report describing a compassionate use of this graft for repairing the polyinjured motor and sensory nerves of the upper arms of a patient. Preclinical assessment was performed with collagen/SDSC implantation in rats after sectioning the sciatic nerve. For the patient, during the 3-year follow-up period, functional recovery of injured median and ulnar nerves was assessed by pinch gauge test and static two-point discrimination and touch test with monofilaments, along with electrophysiological and MRI examinations. Preclinical experiments in rats revealed rescue of sciatic nerve and no side effects of patient-derived SDSC transplantation (30 and 180 days of treatment). In the patient treatment, motor and sensory functions of the median nerve demonstrated ongoing recovery postimplantation during the follow-up period. The results indicate that the collagen/SDSC artificial nerve graft could be used for surgical repair of larger defects in major lesions of peripheral nerves, increasing patient quality of life by saving the upper arms from amputation.
Collapse
Affiliation(s)
- Nadia Grimoldi
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Stem cells in plastic surgery: a review of current clinical and translational applications. Arch Plast Surg 2013; 40:666-75. [PMID: 24286038 PMCID: PMC3840172 DOI: 10.5999/aps.2013.40.6.666] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Stem cells are a unique cell population characterized by self-renewal and cellular differentiation capabilities. These characteristics, among other traits, make them an attractive option for regenerative treatments of tissues defects and for aesthetic procedures in plastic surgery. As research regarding the isolation, culture and behavior of stem cells has progressed, stem cells, particularly adult stem cells, have shown promising results in both translational and clinical applications. METHODS The purpose of this review is to evaluate the applications of stem cells in the plastic surgery literature, with particular focus on the advances and limitations of current stem cell therapies. Different key areas amenable to stem cell therapy are addressed in the literature review; these include regeneration of soft tissue, bone, cartilage, and peripheral nerves, as well as wound healing and skin aging. RESULTS The reviewed studies demonstrate promising results, with favorable outcomes and minimal complications in the cited cases. In particular, adipose tissue derived stem cell (ADSC) transplants appear to provide effective treatment options for bony and soft tissue defects, and non-healing wounds. ADSCs have also been shown to be useful in aesthetic surgery. CONCLUSIONS Further studies involving both the basic and clinical science aspects of stem cell therapies are warranted. In particular, the mechanism of action of stem cells, their interactions with the surrounding microenvironment and their long-term fate require further elucidation. Larger randomized trials are also necessary to demonstrate the continued safety of transplanted stem cells as well as the efficacy of cellular therapies in comparison to the current standards of care.
Collapse
|
53
|
Salomone R, Bento RF, Costa HJZR, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve 2013; 48:423-9. [PMID: 23824709 DOI: 10.1002/mus.23768] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Severe lesions in the facial nerve may have extensive axonal loss and leave isolated stumps that impose technical difficulties for nerve grafting. METHODS We evaluated bone marrow stem cells (BMSC) in a silicone conduit for rat facial nerve regeneration from isolated stumps. Group A utilized empty silicone tubes; in groups B-D, the tube was filled with acellular gel; and, in groups C and D, undifferentiated BMSC (uBMSC) or Schwann-like cells differentiated from BMSC (dBMSC) were added, respectively. Compound muscle action potentials (CMAPs) were measured, and histology was evaluated. RESULTS Groups C and D had the highest CMAP amplitudes. Group C had shorter CMAP durations than groups A, B, and D. Distal axonal number and density were increased in group C compared with groups A and B. CONCLUSIONS Regeneration of the facial nerve was improved by both uBMSC and dBMSC in rats, yet uBMSC was associated with superior functional results.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, Avenida Dr. Enéas de Carvalho Aguiar, 155-6° andar, Bloco 6, CEP 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bíró V. [The role of mesenchymal stem cells in the reconstruction of nerve injuries in the hand]. Orv Hetil 2013; 154:574-80. [PMID: 23567875 DOI: 10.1556/oh.2013.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At present the end results of reconstruction of peripheral nerve injuries cannot be considered unequivocally advantageous. It seems that the level of reconstructive possibilities of these injuries has already peaked. Hence, ongoing research focuses on experimental studies to further improve results. One of the methods is the joint usage of pluripotent mesenchymal stem cells with tissue inductive polypeptides (growth factors) and frame structures to enhance the attachment of these cells with the aim creating new neural tissue (tissue engineering). The conditions to create new tissue can be further improved by gene technology. Based on recent literature data, the author summarizes the basic characteristics of the method related to nerve injuries, and the possibilities and modalities of clinical applications. In conclusion, future direction is a the wider use of stem cells, however, the currently established surgical and rehabilitation methods have to be performed at high levels since stem cell research data are not established in the clinical setting yet.
Collapse
|
55
|
Yoshinaga T, Hashimoto E, Ukai W, Ishii T, Shirasaka T, Kigawa Y, Tateno M, Kaneta H, Watanabe K, Igarashi T, Kobayashi S, Sohma H, Kato T, Saito T. Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model. J Neural Transm (Vienna) 2013; 120:1491-8. [PMID: 23563790 DOI: 10.1007/s00702-013-1010-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 03/08/2013] [Indexed: 12/12/2022]
Abstract
Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01-0.05% atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03-0.05% atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02%) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03% of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease.
Collapse
Affiliation(s)
- Toshihiro Yoshinaga
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 060-8543, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yang CC, Wang J, Chen SC, Hsieh YL. Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J Tissue Eng Regen Med 2013; 10:120-31. [PMID: 23468370 DOI: 10.1002/term.1714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/11/2022]
Abstract
Transplantation of mesenchymal stem cells (MSCs) has been proposed to exert beneficial effects on peripheral nerve regeneration after a peripheral nerve injury, but the functional recovery in the denervated limb is still limited. In this study, we used low-level laser therapy (LLLT) as an adjunct therapy for MSC transplantation on the functional recovery of crushed sciatic nerve in rats. Peripheral nerve injury was induced in 48 Sprague-Dawley rats by crushing the unilateral sciatic nerve, using a vessel clamp. The animals with crushed injury were randomly divided into four groups: control group, with no treatment; MSC group, treated with MSC alone; LLLT group, treated with LLLT alone; and MSCLLLT group, treated with a combination of MSC and LLLT. The sciatic function index (SFI), vertical activity of locomotion (VA) and ankle angle (AA) of rats were examined for functional assessments after treatment. Electrophysiological, morphological and S100 immunohistochemical studies were also conducted. The MSCLLLT group showed a greater recovery in SFI, VA and AA, with significant difference from MSC, LLLT and control groups (p < 0.05). Moreover, markedly enhanced electrophysiological function and expression of S100 immunoreactivity, as well as fewer inflammatory cells and less vacuole formation were also demonstrated after nerve crush injury in the MSCLLLT group when compared with the groups receiving a single treatment (p < 0.05). MSC transplantation combined with LLLT could achieve better results in functional recovery than a conventional treatment of MSC or LLLT alone. LLLT has a synergistic effect in providing greater functional recovery with MSC transplantation after nerve crush injury.
Collapse
Affiliation(s)
- Chen-Chia Yang
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi General Hospital, Taiwan
| | - John Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taiwan
| | - Shyh-Chang Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taiwan
| | - Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
57
|
Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL. Neural responses to electrical stimulation on patterned silk films. J Biomed Mater Res A 2013; 101:2559-72. [PMID: 23401351 DOI: 10.1002/jbm.a.34565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
58
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
|
60
|
Pereira Lopes FR, Martin PKM, Frattini F, Biancalana A, Almeida FM, Tomaz MA, Melo PA, Borojevic R, Han SW, Martinez AMB. Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 2012; 230:184-97. [PMID: 23103791 DOI: 10.1016/j.neuroscience.2012.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022]
Abstract
Peripheral-nerve injuries are a common clinical problem and often result in long-term functional deficits. Reconstruction of peripheral-nerve defects is currently undertaken with nerve autografts. However, there is a limited availability of nerves that can be sacrificed and the functional recovery is never 100% satisfactory. We have previously shown that gene therapy with vascular endothelial growth factor (VEGF) significantly improved nerve regeneration, neuronal survival, and muscle activity. Our hypothesis is that granulocyte colony-stimulating factor (G-CSF) synergizes with VEGF to improve the functional outcome after sciatic nerve transection. The left sciatic nerves and the adjacent muscle groups of adult mice were exposed, and 50 or 100 μg (in 50 μl PBS) of VEGF and/or G-CSF genes was injected locally, just below the sciatic nerve, and transferred by electroporation. The sciatic nerves were transected and placed in an empty polycaprolactone (PCL) nerve guide, leaving a 3-mm gap to challenge nerve regeneration. After 6 weeks, the mice were perfused and the sciatic nerve, the dorsal root ganglion (DRG), the spinal cord and the gastrocnemius muscle were processed for light and transmission electron microscopy. Treated animals showed significant improvement in functional and histological analyses compared with the control group. However, the best results were obtained with the G-CSF+VEGF-treated animals: quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers and blood vessels, and the number of neurons in the DRG and motoneurons in the spinal cord was significantly higher. Motor function also showed that functional recovery occurred earlier in animals receiving G-CSF+VEGF-treatment. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase, suggesting an improvement of reinnervation and muscle activity. These results suggest that these two factors acted synergistically and optimized the nerve repair potential, improving regeneration after a transection lesion.
Collapse
Affiliation(s)
- F R Pereira Lopes
- Programa de Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Raheja A, Suri V, Suri A, Sarkar C, Srivastava A, Mohanty S, Jain KG, Sharma MC, Mallick HN, Yadav PK, Kalaivani M, Pandey RM. Dose-dependent facilitation of peripheral nerve regeneration by bone marrow-derived mononuclear cells: a randomized controlled study: laboratory investigation. J Neurosurg 2012; 117:1170-81. [PMID: 23039144 DOI: 10.3171/2012.8.jns111446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT Bone marrow-derived stem cells enhance the rate of regeneration of neuronal cells leading to clinical improvement in nerve injury, spinal cord injury, and brain infarction. Recent experiments in the local application of bone marrow-derived mononuclear cells (BM-MNCs) in models of sciatic nerve transection in rats have suggested their beneficial role in nerve regeneration, although the effects of variable doses of stem cells on peripheral nerve regeneration have never been specifically evaluated in the literature. In this paper, the authors evaluated the dose-dependent role of BM-MNCs in peripheral nerve regeneration in a model of sciatic nerve transection in rats. METHODS The right sciatic nerve of 60 adult female Wistar rats (randomized into 2 test groups and 1 control group, 20 rats in each group) underwent transection under an operating microscope. The cut ends of the nerve were approximated using 2 epineural microsutures. The gap was filled with low-dose (5 million BM-MNCs/100 μl phosphate-buffered saline [PBS]) rat BM-MNCs in one group, high-dose (10 million BM-MNCs/100 μl PBS) rat BM-MNCs in another group, and only PBS in the control group, and the approximated nerve ends were sealed using fibrin glue. Histological assessment was performed after 30 days by using semiquantitative and morphometric analyses and was done to assess axonal regeneration, percentage of myelinated fibers, axonal diameter, fiber diameter, and myelin thickness at distal-most sites (10 mm from site of repair), intermediate distal sites (5 mm distal to the repair site), and site of repair. RESULTS The recovery of nerve cell architecture after nerve anastomosis was far better in the high-dose BM-MNC group than in the low-dose BM-MNC and control groups, and it was most evident (p < 0.02 in the majority of the parameters [3 of 4]) at the distal-most site. Overall, the improvement in myelin thickness was most significant with incremental dosage of BM-MNCs, and was evident at the repair, intermediate distal, and distal-most sites (p = 0.001). CONCLUSIONS This study emphasizes the role of BM-MNCs, which can be isolated easily from bone marrow aspirates, in peripheral nerve injury and highlights their dose-dependent facilitation of nerve regeneration.
Collapse
Affiliation(s)
- Amol Raheja
- Department of Neurosurgery and Gamma Knife, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
do Nascimento-Elias AH, Fresnesdas BC, Schiavoni MCL, de Almeida NFG, Santos AP, de Oliveira Ramos J, Junior WM, Barreira AA. Identification of adequate vehicles to carry nerve regeneration inducers using tubulisation. BMC Neurosci 2012; 13:100. [PMID: 22889258 PMCID: PMC3512473 DOI: 10.1186/1471-2202-13-100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/26/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Axonal regeneration depends on many factors, such as the type of injury and repair, age, distance from the cell body and distance of the denervated muscle, loss of surrounding tissue and the type of injured nerve. Experimental models use tubulisation with a silicone tube to research regenerative factors and substances to induce regeneration. Agarose, collagen and DMEM (Dulbecco's modified Eagle's medium) can be used as vehicles. In this study, we compared the ability of these vehicles to induce rat sciatic nerve regeneration with the intent of finding the least active or inert substance. The experiment used 47 female Wistar rats, which were divided into four experimental groups (agarose 4%, agarose 0.4%, collagen, DMEM) and one normal control group. The right sciatic nerve was exposed, and an incision was made that created a 10 mm gap between the distal and proximal stumps. A silicone tube was grafted onto each stump, and the tubes were filled with the respective media. After 70 days, the sciatic nerve was removed. We evaluated the formation of a regeneration cable, nerve fibre growth, and the functional viability of the regenerated fibres. RESULTS Comparison among the three vehicles showed that 0.4% agarose gels had almost no effect on provoking the regeneration of peripheral nerves and that 4% agarose gels completely prevented fibre growth. The others substances were associated with profuse nerve fibre growth. CONCLUSIONS In the appropriate concentration, agarose gel may be an important vehicle for testing factors that induce regeneration without interfering with nerve growth.
Collapse
Affiliation(s)
| | - Bruno César Fresnesdas
- Department of Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Cristina Lopes Schiavoni
- Department of Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Ana Paula Santos
- Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Jean de Oliveira Ramos
- Department of Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Wilson Marques Junior
- Department of Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Amilton Antunes Barreira
- Department of Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Neurociências, Faculdade de Medicina de Ribeirão Preto, Av Bandeirantes 3900, CEP: 14049-900, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
63
|
Ohtsubo S, Ishikawa M, Kamei N, Kijima Y, Suzuki O, Sunagawa T, Higashi Y, Masuda H, Asahara T, Ochi M. The therapeutic potential of ex vivo expanded CD133+ cells derived from human peripheral blood for peripheral nerve injuries. J Neurosurg 2012; 117:787-94. [PMID: 22880720 DOI: 10.3171/2012.7.jns111503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT CD133(+) cells have the potential to enhance histological and functional recovery from peripheral nerve injury. However, the number of CD133(+) cells safely obtained from human peripheral blood is extremely limited. To address this issue, the authors expanded CD133(+) cells derived from human peripheral blood using the serum-free expansion culture method and transplanted these ex vivo expanded cells into a model of sciatic nerve defect in rats. The purpose of this study was to determine the potential of ex vivo expanded CD133(+) cells to induce or enhance the repair of injured peripheral nerves. METHODS Phosphate-buffered saline (PBS group [Group 1]), 10(5) fresh CD133(+) cells (fresh group [Group 2]), 10(5) ex vivo expanded CD133(+) cells (expansion group [Group 3]), or 10(4) fresh CD133(+) cells (low-dose group [Group 4]) embedded in atelocollagen gel were transplanted into a silicone tube that was then used to bridge a 15-mm defect in the sciatic nerve of athymic rats (10 animals per group). At 8 weeks postsurgery, histological and functional evaluations of the regenerated tissues were performed. RESULTS After 1 week of expansion culture, the number of cells increased 9.6 ± 3.3-fold. Based on the fluorescence-activated cell sorting analysis, it was demonstrated that the initial freshly isolated CD133(+) cell population contained 93.22% ± 0.30% CD133(+) cells and further confirmed that the expanded cells had a purity of 59.02% ± 1.58% CD133(+) cells. However, the histologically and functionally regenerated nerves bridging the defects were recognized in all rats in Groups 2 and 3 and in 6 of 10 rats in Group 4. The nerves did not regenerate to bridge the defect in any of the rats in Group 1. CONCLUSIONS The authors' results show that ex vivo expanded CD133(+) cells derived from human peripheral blood have a therapeutic potential similar to fresh CD133(+) cells for peripheral nerve injuries. The ex vivo procedure that can be used to expand CD133(+) cells without reducing their function represents a novel method for developing cell therapy for nerve defects in a clinical setting.
Collapse
Affiliation(s)
- Shin Ohtsubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Orbay H, Uysal AC, Hyakusoku H, Mizuno H. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg 2012; 65:657-64. [DOI: 10.1016/j.bjps.2011.11.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 09/29/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022]
|
65
|
Yang DY, Sheu ML, Su HL, Cheng FC, Chen YJ, Chen CJ, Chiu WT, Yiin JJ, Sheehan J, Pan HC. Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1α in a sciatic nerve injury model. J Neurosurg 2012; 116:1357-67. [PMID: 22503125 DOI: 10.3171/2012.2.jns111360] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT Human amniotic fluid-derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration. The expression of stromal cell-derived factor-1α (SDF-1α) in the injured nerve exerts a trophic effect by recruiting progenitor cells that promote nerve regeneration. In this study, the authors investigated the feasibility of intravenous administration of AFMSCs according to SDF-1α expression time profiles to facilitate neural regeneration in a sciatic nerve crush injury model. METHODS Peripheral nerve injury was induced in 63 Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into 1 of 3 groups: Group I, crush injury as the control; Group II, crush injury and intravenous administration of AFMSCs (5 × 10(6) cells for 3 days) immediately after injury (early administration); and Group III, crush injury and intravenous administration of AFMSCs (5 × 10(6) cells for 3 days) 7 days after injury (late administration). Evaluation of neurobehavior, electrophysiological study, and assessment of regeneration markers were conducted every week after injury. The expression of SDF-1α and neurotrophic factors and the distribution of AFMSCs in various time profiles were also assessed. RESULTS Stromal cell-derived factor-1α increased the migration and wound healing of AFMSCs in vitro, and the migration ability was dose dependent. Crush injury induced the expression of SDF-1α at a peak of 10-14 days either in nerve or muscle, and this increased expression paralleled the expression of its receptor, chemokine receptor type-4 (CXCR-4). Most AFMSCs were distributed to the lung during early or late administration. Significant deposition of AFMSCs in nerve and muscle only occurred in the late administration group. Significantly enhanced neurobehavior, electrophysiological function, nerve myelination, and expression of neurotrophic factors and acetylcholine receptor were demonstrated in the late administration group. CONCLUSIONS Amniotic fluid-derived mesenchymal stem cells can be recruited by expression of SDF-1α in muscle and nerve after nerve crush injury. The increased deposition of AFMSCs paralleled the expression profiles of SDF-1α and its receptor CXCR-4 in either muscle or nerve. Administration of AFMSCs led to improvements in neurobehavior and expression of regeneration markers. Intravenous administration of AFMSCs may be a promising alternative treatment strategy in peripheral nerve disorder.
Collapse
Affiliation(s)
- Dar-Yu Yang
- Department of Neurosurgery, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, Constantin G, Bedogni G, Bedogni A, Bonetti B. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 2012; 18:1264-72. [PMID: 22332955 DOI: 10.1089/ten.tea.2011.0491] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising therapeutic approach in nerve tissue engineering. To date, the local implantation of MSC in injured nerves has been the only route of administration used. In case of multiple sites of injury, the systemic administration of cells capable of reaching damaged nerves would be advisable. In this regard, we found that an intravenous administration of adipose-derived MSC (ASC) 1 week after sciatic nerve crush injury, a murine model of acute axonal damage, significantly accelerated the functional recovery. Sciatic nerves from ASC-treated mice showed the presence of a restricted number of undifferentiated ASC together with a significant improvement in fiber sprouting and the reduction of inflammatory infiltrates for up to 3 weeks. Besides the immune modulatory effect, our results show that ASC may contribute to peripheral nerve regeneration because of their ability to produce in culture neuroprotective factors such as insulin-like growth factor I, brain-derived neurotrophic factor, or basic fibroblast growth factor. In addition to this production in vitro, we interestingly found that the concentration of glial-derived neurotrophic factor (GDNF) was significantly increased in the sciatic nerves in mice treated with ASC. Since no detectable levels of GDNF were observed in ASC cultures, we hypothesize that ASC induced the local production of GDNF by Schwann cells. In conclusion, we show that systemically injected ASC have a clear therapeutic potential in an acute model of axonal damage. Among the possible mechanisms promoting nerve regeneration, our results rule out a process of trans-differentiation and rather suggest the relevance of a bystander effect, including the production of in situ molecules, which, directly or indirectly through a cross-talk with local glial cells, may modulate the local environment with the down-regulation of inflammation and the promotion of axonal regeneration.
Collapse
Affiliation(s)
- Silvia Marconi
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Yang L, Fang JS, Wang W, Chen RK, Shen CF. Transplantation of Schwann cells differentiated from adipose-derived stem cells modifies reactive gliosis after contusion brain injury in rats. J Int Med Res 2012; 39:1344-57. [PMID: 21986135 DOI: 10.1177/147323001103900421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study investigated whether transplantation of Schwann cells differentiated from adipose-derived stem cells (ADSC-SCs) of rats could promote functional improvement after contusion brain injury, with a focus on the effect on reactive gliosis. ADSCs were isolated and expanded from groin adipose tissue of Sprague-Dawley rats and then differentiated into Schwann cells. ADSCSCs were transplanted into the contused rat brain. Immunofluorescence and Western blotting were used to analyse reactive gliosis, and locomotor function of the rats was assessed. Hemiparalysed rats transplanted with ADSC-SCs showed significant locomotor function recovery compared with rats transplanted with undifferentiated ADSCs or control rats injected with medium alone. Transplanted ADSC-SCs significantly reduced glial scar formation and neurocan protein levels compared with transplanted undifferentiated ADSCs. In conclusion, transplantation of ADSC-SCs can effectively promote locomotor functional recovery and reduce reactive gliosis after contusion brain injury in rats.
Collapse
Affiliation(s)
- L Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
68
|
Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig. Stem Cells Int 2012; 2012:128732. [PMID: 22448170 PMCID: PMC3289924 DOI: 10.1155/2012/128732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy.
Collapse
|
69
|
Sheu ML, Cheng FC, Su HL, Chen YJ, Chen CJ, Chiang CM, Chiu WT, Sheehan J, Pan HC. Recruitment by SDF-1α of CD34-positive cells involved in sciatic nerve regeneration. J Neurosurg 2012; 116:432-44. [PMID: 21854116 DOI: 10.3171/2011.3.jns101582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Object
Increased integration of CD34+ cells in injured nerve significantly promotes nerve regeneration, but this effect can be counteracted by limited migration and short survival of CD34+ cells. SDF-1α and its receptor mediate the recruitment of CD34+ cells involved in the repair mechanism of several neurological diseases. In this study, the authors investigate the potentiation of CD34+ cell recruitment triggered by SDF-1α and the involvement of CD34+ cells in peripheral nerve regeneration.
Methods
Peripheral nerve injury was induced in 147 Sprague-Dawley rats by crushing the left sciatic nerve with a vessel clamp. The animals were allocated to 3 groups: Group 1, crush injury (controls); Group 2, crush injury and local application of SDF-1α recombinant proteins; and Group 3, crush injury and local application of SDF-1α antibody. Electrophysiological studies and assessment of regeneration markers were conducted at 4 weeks after injury; neurobehavioral studies were conducted at 1, 2, 3, and 4 weeks after injury. The expression of SDF-1α, accumulation of CD34+ cells, immune cells, and angiogenesis factors in injured nerves were evaluated at 1, 3, 7, 10, 14, 21, and 28 days after injury.
Results
Application of SDF-1α increased the migration of CD34+ cells in vitro, and this effect was dose dependent. Crush injury induced the expression of SDF-1α, with a peak of 10–14 days postinjury, and this increased expression of SDF-1α paralleled the deposition of CD34+ cells, expression of VEGF, and expression of neurofilament. These effects were further enhanced by the administration of SDF-1α recombinant protein and abolished by administration of SDF-1α antibody. Furthermore, these effects were consistent with improvement in measures of neurological function such as sciatic function index, electrophysiological parameters, muscle weight, and myelination of regenerative nerve.
Conclusions
Expression of SDF-1α facilitates recruitment of CD34+ cells in peripheral nerve injury. The increased deposition of CD34+ cells paralleled significant expression of angiogenesis factors and was consistent with improvement of neurological function. Utilization of SDF-1α for enhancing the recruitment of CD34+ cells involved in peripheral nerve regeneration may be considered as an alternative treatment strategy in peripheral nerve disorders.
Collapse
Affiliation(s)
| | - Fu-Chou Cheng
- 4Stem Cell Center, Taichung Veterans General Hospital, Taichung
- 6Education and Medical Research, and
| | - Hong-Lin Su
- 2Life Sciences, National Chung-Hsing University
| | - Ying-Ju Chen
- 4Stem Cell Center, Taichung Veterans General Hospital, Taichung
| | | | | | - Wen-Ta Chiu
- 7Department of Neurosurgery, Taipei Medical University–Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; and
| | - Jason Sheehan
- 8Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia
| | - Hung-Chuan Pan
- 1Institutes of Biomedical Sciences and
- 3Departments of Neurosurgery,
| |
Collapse
|
70
|
Byun JH, Kang EJ, Park SC, Kang DH, Choi MJ, Rho GJ, Park BW. Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.6.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jun-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Eun-Ju Kang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Seong-Cheol Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Dong-Ho Kang
- Department of Neurosurgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Mun-Jeong Choi
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
71
|
Mohammadi R, Azizi S, Delirezh N, Hobbenaghi R, Amini K, Malekkhetabi P. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Int J Oral Maxillofac Surg 2011; 41:650-6. [PMID: 22154576 DOI: 10.1016/j.ijom.2011.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022]
Abstract
In recent years, cell transplantation has become a focus of attention and reliable outcomes have been achieved in regeneration of the sciatic nerve. The effect of undifferentiated bone marrow stromal cells (BMSCs) on peripheral nerve regeneration was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using an inside-out vein graft (IOVG) filled with undifferentiated BMSCs (2 × 10(7)cells/ml). In the control group, the vein was filled with phosphate buffer saline alone. The regenerated fibres were studied 4, 8 and 12 weeks after surgery. Assessment of nerve regeneration was based on functional (walking track analysis), histomorphometric and immunohistochemical (Schwann cell detection by S100 expression) criteria. The functional study confirmed significant recovery of regenerated axons in the IOVG/BMSC group (P<0.05). Quantitative morphometric analyses of regenerated fibres showed the number and diameter of myelinated fibres in the IOVG/BMSC group were significantly higher than in the control group (P<0.05). This demonstrates the potential for using undifferentiated BMSCs in peripheral nerve regeneration without the limitations of donor-site morbidity associated with isolation of Schwann cells. It also reduces costs because the interval between tissue collection and cell injection is reduced and the laboratory procedures are simpler compared to undifferentiated BMSCs.
Collapse
Affiliation(s)
- R Mohammadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | | | | | | | |
Collapse
|
72
|
Dadon-Nachum M, Melamed E, Offen D. Stem cells treatment for sciatic nerve injury. Expert Opin Biol Ther 2011; 11:1591-7. [DOI: 10.1517/14712598.2011.628933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
|
74
|
Saceda J, Isla A, Santiago S, Morales C, Odene C, Hernández B, Deniz K. Effect of recombinant human growth hormone on peripheral nerve regeneration: Experimental work on the ulnar nerve of the rat. Neurosci Lett 2011; 504:146-150. [DOI: 10.1016/j.neulet.2011.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/29/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022]
|
75
|
Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: assessment using MRI. AJR Am J Roentgenol 2011; 196:1381-7. [PMID: 21606303 DOI: 10.2214/ajr.10.5495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of our study was to monitor neural stem cells (NSCs) transplanted in acute peripheral nerve traction injury and to use MRI to assess the ability of NSCs to promote nerve regeneration. MATERIALS AND METHODS After labeling with gadolinium-diethylene triamine pentaacetic acid (gadopentetate dimeglumine) and fluorescent dye (PKH26), 5 × 10(5) NSCs were grafted to acutely distracted sciatic nerves in 21 New Zealand White rabbits. In addition, 5 × 10(5) unlabeled NSCs (n = 21) and vehicle alone (n = 21) subjects were injected as a control. Serial MRI was performed with a 1.5-T scanner to determine the distribution of grafted cells. Sequential T1 and T2 values of the nerves and functional recovery were measured over a 70-day follow-up period, with histologic assessments performed at regular intervals. RESULTS The distribution and migration of labeled NSCs could be tracked with MRI until 10 days after transplantation. Compared with vehicle control, nerves grafted with labeled or unlabeled NSCs had better functional recovery and showed improved nerve regeneration but exhibited a sustained increase of T1 and T2 values during the phase of regeneration. CONCLUSION Gadopentetate dimeglumine-based labeling allowed short-term in vivo MRI tracking of NSCs grafted in injured nerves. NSCs transplantation could promote nerve regeneration in acute peripheral nerve traction injury as shown by a prolonged increase of nerve T1 and T2 values.
Collapse
|
76
|
Duan XH, Cheng LN, Zhang F, Liu J, Guo RM, Zhong XM, Wen XH, Shen J. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction injury following mesenchymal stem cell transplantation. Eur J Radiol 2011; 81:2154-60. [PMID: 21726973 DOI: 10.1016/j.ejrad.2011.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/09/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the continuous process of nerve regeneration in acute peripheral nerve traction injury treated with mesenchymal stem cells (MSCs) transplantation using MRI. MATERIALS AND METHODS 1 week after acute nerve traction injury was established in the sciatic nerve of 48 New Zealand white rabbits, 5×10(5) MSCs and vehicle alone were grafted to the acutely distracted sciatic nerves each in 24 animals. Serial MRI and T1 and T2 measurements of the injured nerves were performed with a 1.5-T scanner and functional recovery was recorded over a 10-week follow-up period, with histological assessments performed at regular intervals. RESULTS Compared with vehicle control, nerves grafted with MSCs had better functional recovery and showed improved nerve regeneration, with a sustained increase of T1 and T2 values during the phase of regeneration. CONCLUSION MRI could be used to monitor the enhanced nerve regeneration in acute peripheral nerve traction injury treated with MSC transplantation, reflected by a prolonged increase in T1 and T2 values of the injured nerves.
Collapse
Affiliation(s)
- Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 2011; 193:334-40. [DOI: 10.1016/j.aanat.2011.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/13/2022]
|
78
|
di Summa PG, Kalbermatten DF, Pralong E, Raffoul W, Kingham PJ, Terenghi G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 2011; 181:278-91. [PMID: 21371534 DOI: 10.1016/j.neuroscience.2011.02.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 12/12/2022]
Abstract
Although autologous nerve graft is still the first choice strategy in nerve reconstruction, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to improve nerve regeneration. Nerve fibrin conduits were seeded with various cell types: primary Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC). Two further control groups were fibrin conduits without cells and autografts. Conduits were used to bridge a 1 cm rat sciatic nerve gap in a long term experiment (16 weeks). Functional and morphological properties of regenerated nerves were investigated. A reduction in muscle atrophy was observed in the autograft and in all cell-seeded groups, when compared with the empty fibrin conduits. SC showed significant improvement in axon myelination and average fiber diameter of the regenerated nerves. dASC were the most effective cell population in terms of improvement of axonal and fiber diameter, evoked potentials at the level of the gastrocnemius muscle and regeneration of motoneurons, similar to the autografts. Given these results and other advantages of adipose derived stem cells such as ease of harvest and relative abundance, dASC could be a clinically translatable route towards new methods to enhance peripheral nerve repair.
Collapse
Affiliation(s)
- P G di Summa
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
79
|
Park BW, Kang DH, Kang EJ, Byun JH, Lee JS, Maeng GH, Rho GJ. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J Tissue Eng Regen Med 2011; 6:113-24. [PMID: 21337707 DOI: 10.1002/term.404] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/30/2010] [Indexed: 12/23/2022]
Abstract
Porcine skin-derived mesenchymal stem cells (pSMSCs) were evaluated on their biological MSC characterizations and differentiation into mesenchymal lineages, along with in vitro and in vivo neural inductions. Isolated pSMSCs showed plate-adherent growth, expression of various MSC-marker proteins and transcriptional factors, and differentiation potential into mesenchymal lineages. Neuron-like cell morphology and various neural markers were highly detected at 6 h and 24 h after in vitro neural induction of pSMSCs, but their neuron-like characteristics disappeared as induction time extended to 48 and 72 h. To evaluate the in vivo peripheral nerve regeneration potential of pSMSCs, a total of 5 × 10(6) autologous pSMSCs labelled with tracking dye, supplemented with fibrin glue scaffold and collagen tubulization, were transplanted into the peripheral nerve defected miniature pigs. At 2 and 4 weeks after cell transplantation, well-preserved transplanted cells and remarkable in vivo nerve regeneration, including histologically complete nerve bundles, were observed in the regenerated nerve tissues. Moreover, S-100 protein and p75 nerve growth factor receptor were more highly detected in regenerated nerve fibres compared to non-cell grafted control fibres. These results suggest that autologous pSMSCs transplanted with fibrin glue scaffold can induce prominent nerve regeneration in porcine peripheral nerve defect sites.
Collapse
Affiliation(s)
- Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
80
|
Fu KY, Dai LG, Chiu IM, Chen JR, Hsu SH. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif Organs 2011; 35:363-72. [PMID: 21314831 DOI: 10.1111/j.1525-1594.2010.01105.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurotrophic factors such as the glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) promote nerve cell survival and regeneration, but their efficacy in repairing a longer gap defect of rat sciatic nerve (15 mm) has not been established. In this study, two recombinant mammalian vectors containing either rat GDNF gene or BDNF gene were constructed and each was transfected into neural stem cells (NSCs). It was found that the transfection of GDNF or BDNF gene into NSCs led to significantly enhanced expression of GDNF or BDNF mRNA. The amount of GDNF or BDNF protein secreted from the transfected NSCs showed a 3.3-fold or 2.5-fold increase than that from nontransfected NSCs, respectively. The regeneration capacity of rat sciatic nerve in a poly(D,L-lactide) conduit seeded with GDNF or BDNF-transfected NSCs was evaluated by the histology, functional gait, and electrophysiology after 8 weeks of implantation. It was observed that the degree of myelination and the size of regenerated tissue in the conduits seeded with GDNF- and BDNF-transfected NSCs were higher than those seeded with the nontransfected NSCs. Conduits seeded with GDNF-transfected NSCs had the greatest number of blood vessels. The functional recovery assessed by the functional gait and electrophysiology was significantly improved for conduits seeded with GDNF or BDNF-transfected NSCs. It was concluded that the genetically modified NSCs may have potential applications in promoting nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Keng-Yen Fu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
81
|
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 2011; 5:823-30. [PMID: 22002926 DOI: 10.1002/term.387] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 10/21/2010] [Indexed: 12/13/2022]
Abstract
A number of recent studies have shown the effectiveness of tubulation, using neural progenitor cells or Schwann cells, for promoting nerve regeneration. However, the use of neural cells from other neural donor tissues has potentially serious clinical complications. Therefore, we focused on dental pulp as a new cell source for use in such artificial conditions. Previously, we showed that silicone tubes filled with dental pulp cells (DPCs) promoted facial nerve regeneration in rats. However, the use of silicone tubes requires a secondary removal operation because they may give rise to chronic inflammation and pain. Therefore, to avoid this procedure, a new artificial device was prepared from a degradable poly-DL-lactide-co-glycolide (PLGA) tube containing DPCs, and its effectiveness for repairing gaps in the facial nerves of rats was investigated. A PLGA tube containing rat DPCs embedded in a collagen gel was transplanted into a gap in a rat facial nerve. Five days after transplantation, the facial nerves connected by the PLGA tubes containing DPCs were repaired more quickly than the control nerves. The PLGA tubes were resorbed in vivo and nerve regeneration was observed 2 months after the transplantation. Immunostaining showed that Tuj1-positive axons were present in the regenerated nerves 2 months after transplantation, and osmium-toluidine blue staining showed no mineralization of the regenerated nerves in those tubes containing myelinated fibres after 9 weeks. PLGA tubes filled with DPCs promoted nerve regeneration and were readily resorbed in vivo.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Petrova ES. Studies of histogenetic and neurodegenerative processes in the nervous system using heterotopic neurotransplantation. ACTA ACUST UNITED AC 2010; 40:823-32. [PMID: 20680478 DOI: 10.1007/s11055-010-9333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Indexed: 12/25/2022]
Abstract
The aim of the present article is to summarize our own experimental and published data on neurotransplantation into ectopic sites such as peripheral nerves (mainly) and the anterior chamber of the eye in rats. The review addresses questions touching on the following problems: the histogenesis and survival of nervous tissue after transplantation, the interaction between transplanted tissues with recipient tissues, assessment of long-term living transplants, simultaneous transplantation of different embryonic rudiments, transplantation of spinal cord ganglia, and the effects of trophic factors on the development of transplants. New data on stem cell transplantation into peripheral nerves are discussed.
Collapse
Affiliation(s)
- E S Petrova
- Department of General and Specific Morphology, Research Institute of Experimental Medicine, North West Branch, Russian Academy of Medical Sciences, St. Petersburg, Russia
| |
Collapse
|
83
|
Blong CC, Jeon CJ, Yeo JY, Ye EA, Oh J, Callahan JM, Law WD, Mallapragada SK, Sakaguchi DS. Differentiation and behavior of human neural progenitors on micropatterned substrates and in the developing retina. J Neurosci Res 2010; 88:1445-56. [PMID: 20029967 DOI: 10.1002/jnr.22324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study we investigated the differentiation of human neural progenitor cells (hNPCs) in vitro to evaluate their differentiation potential and in vivo to explore their viability and behavior following transplantation. Progenitors were maintained as neurospheres in media containing basic fibroblast growth factor and epidermal growth factor. Micropatterned polystyrene substrates were fabricated and coated with ECL (entactin, collagen, and laminin) to provide physical and chemical guidance during the differentiation of the hNPCs. The hNPCs growing on the micropatterned substrates showed no differences in proliferation or differentiation potential compared with those hNPCs growing on the nonpatterned substrates. However, hNPCs cultured on the micropatterned substrates were aligned in the direction of the micropattern compared with those cells growing on the nonpatterned substrates. Furthermore, hNPC migration was directed in alignment with the micropatterned substrates. Transplantation of the hNPCs into the developing retina was used to evaluate their behavior in vivo. Cells displayed extensive survival, differentiation, and morphological integration following xenotransplant into the retina, even in the absence of immunosuppression. Taken together, our results show that these multipotent hNPCs are a neurogenic progenitor population that can be maintained in culture for extended periods. Although the micropatterned substrates have no major effect on the proliferation or differentiation of the hNPCs, they clearly promoted alignment and directed neurite outgrowth along the pattern as well as directing migration of the cells. These approaches may provide important strategies to guide the growth and differentiation of NPCs in vitro and in vivo.
Collapse
|
84
|
Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, Ho SP, Lai SZ, Pan HC. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 2010; 112:868-79. [PMID: 19817545 DOI: 10.3171/2009.8.jns09850] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Human amniotic fluid-derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration, and the local delivery of neurotrophic factors may additionally enhance nerve regeneration capacity. The present study evaluates whether the transplantation of glia cell line-derived neurotrophic factor (GDNF)-modified human AFMSCs may enhance regeneration of sciatic nerve after a crush injury. METHODS Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. Either GDNF-modified human AFMSCs or human AFMSCs were embedded in Matrigel and delivered to the injured nerve. Motor function and electrophysiological studies were conducted after 1 and 4 weeks. Early or later nerve regeneration markers were used to evaluate nerve regeneration. The expression of GDNF in the transplanted human AFMSCs and GDNF-modified human AFMSCs was monitored at 7-day intervals. RESULTS Human AFMSCs were successfully transfected with adenovirus, and a significant amount of GDNF was detected in human AFMSCs or the culture medium supernatant. Increases in the sciatic nerve function index, the compound muscle action potential ratio, conduction latency, and muscle weight were found in the groups treated with human AFMSCs or GDNF-modified human AFMSCs. Importantly, the GDNF-modified human AFMSCs induced the greatest improvement. Expression of markers of early nerve regeneration, such as increased expression of neurofilament and BrdU and reduced Schwann cell apoptosis, as well as late regeneration markers, consisting of reduced vacuole counts, increased expression of Luxol fast blue and S100 protein, paralleled the results of motor function. The expression of GDNF in GDNF-modified human AFMSCs was demonstrated up to 4 weeks; however, the expression decreased over time. CONCLUSIONS The GDNF-modified human AFMSCs appeared to promote nerve regeneration. The consecutive expression of GDNF was demonstrated in GDNF-modified human AFMSCs up to 4 weeks. These findings support a nerve regeneration scenario involving cell transplantation with additional neurotrophic factor secretion.
Collapse
Affiliation(s)
- Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Shi W, Yao J, Chen X, Lin W, Gu X, Wang X. The Delayed Repair of Sciatic Nerve Defects with Tissue-engineered Nerve Grafts in Rats. ACTA ACUST UNITED AC 2010; 38:29-37. [DOI: 10.3109/10731190903495751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Wang L, Wang ZH, Shen CY, You ML, Xiao JF, Chen GQ. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 2009; 31:1691-8. [PMID: 19962755 DOI: 10.1016/j.biomaterials.2009.11.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/18/2009] [Indexed: 12/18/2022]
Abstract
Polyhydroxyalkanoates, abbreviated as PHA, have been studied for medical applications due to their suitable mechanical properties, blood and tissue tolerance and in vivo biodegradability. As a new member of PHA family, terpolyester of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate, abbreviated as PHBVHHx, was compared with polylactic acid (PLA), copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) for their respective functions leading to differentiation of human bone marrow mesenchymal stem cell (hBMSC) into nerve cells. Results indicated that 3D scaffolds promoted the differentiation of hBMSC into nerve cells more intensively compared with 2D films. Smaller pore sizes of scaffolds increased differentiation of hBMSC into nerve cells, whereas decreased cell proliferation. PHBVHHx scaffolds with pore sizes of 30-60 microm could be used in nerve tissue engineering for treatment of nerve injury. The above results were supported by scanning electron microscope (SEM) and confocal microscopy observation on attachment and growth of hBMSCs on PLA, PHBHHx and PHBVHHx, and by CCK-8 evaluation of cell proliferation. In addition, expressions of nerve markers nestin, GFAP and beta-III tubulin of nerve cells differentiated from hBMSC grown in PHBVHHx scaffolds were confirmed by real-time PCR.
Collapse
Affiliation(s)
- Lei Wang
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | | | | | | | | | | |
Collapse
|
87
|
Satar B, Karahatay S, Kurt B, Ural AU, Safali M, Avcu F, Oztas E, Kucuktag Z. Repair of transected facial nerve with mesenchymal stromal cells: histopathologic evidence of superior outcome. Laryngoscope 2009; 119:2221-5. [PMID: 19688843 DOI: 10.1002/lary.20610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Despite advanced surgical techniques, clinical results of the transected facial nerve are still far from the desired outcome. Mesenchymal stromal cells (MSCs) were shown to transdifferentiate into Schwann cells and express some growth factors beneficial in peripheral nerve injury. We aimed to document histopathological improvement obtained from application of the homograft bone marrow-derived MSCs immediately after conventional anastomosis of a transected facial nerve branch in rats, and to compare the results with those nerves anastomosed only. STUDY DESIGN Animal, prospective, and controlled study. METHODS The study was performed in 15 rats. The right buccal branch was completely transected and repaired with epineural sutures. The right-side anastomosis was additionally treated with MSCs thereafter. The right marginal mandibular branch was kept intact, but in contact with MSCs. The left buccal branch was transected and repaired in a similar fashion except for MSC application. The left-side marginal mandibular branch was left intact. Rats were sacrificed at month 1, 3, and 6. Four branches of each rat were sampled, and nerve segments distal to the anastomosis were histopathologically examined. RESULTS The examination revealed that intact nerve segments and nerve segments in contact with MSCs had completely normal appearance regardless of the time interval. Samples from the nerves anastomosed and treated with MSCs did better than those nerves anastomosed only in terms of axonal organization and myelin thickness. CONCLUSIONS This preliminary report witnessed beneficial effects of MSCs application onto the injured facial nerve as evidenced by the histopathological examination.
Collapse
Affiliation(s)
- Bulent Satar
- Department of Otolaryngology, Head and Neck Surgery, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
89
|
Walsh S, Biernaskie J, Kemp SWP, Midha R. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience 2009; 164:1097-107. [PMID: 19737602 DOI: 10.1016/j.neuroscience.2009.08.072] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/04/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
Abstract
Introduction of autologous stem cells into the site of a nerve injury presents a promising therapy to promote axonal regeneration and remyelination following peripheral nerve damage. Given their documented ability to differentiate into Schwann cells (SCs) in vitro, we hypothesized that skin-derived precursor cells (SKPs) could represent a clinically-relevant source of transplantable cells that would enhance nerve regeneration following peripheral nerve injury. In this study, we examined the potential for SKP-derived Schwann cells (SKP-SCs) or nerve-derived SCs to improve nerve regeneration across a 12 mm gap created in the sciatic nerve of Lewis rats bridged by a freeze-thawed nerve graft. Immunohistology after 4 weeks showed survival of both cell types and early regeneration in SKP seeded grafts was comparable to those seeded with SCs. Histomorphometrical and electrophysiological measurements of cell-treated nerve segments after 8 weeks survival all showed significant improvement as compared to diluent controls. A possible mechanistic explanation for the observed results of improved regenerative outcomes lies in SKP-SCs' ability to secrete bioactive neurotrophins. We therefore conclude that SKPs represent an easily accessible, autologous source of stem cells for transplantation therapies which act as functional Schwann cells and show great promise in improving regeneration following nerve injury.
Collapse
Affiliation(s)
- S Walsh
- Department of Clinical Neuroscience and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Heritage Medical Research Building 109-3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| | | | | | | |
Collapse
|
90
|
Neville CM, Huang AY, Shyu JY, Snyder EY, Hadlock TA, Sundback CA. Neural Precursor Cell Lines Promote Neurite Branching. Int J Neurosci 2009; 119:15-39. [DOI: 10.1080/00207450802480218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
91
|
Pan HC, Yang DY, Ho SP, Sheu ML, Chen CJ, Hwang SM, Chang MH, Cheng FC. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci 2009; 16:75. [PMID: 19698158 PMCID: PMC2739514 DOI: 10.1186/1423-0127-16-75] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/23/2009] [Indexed: 12/16/2022] Open
Abstract
Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Shi Y, Zhou L, Tian J, Wang Y. Transplantation of neural stem cells overexpressing glia-derived neurotrophic factor promotes facial nerve regeneration. Acta Otolaryngol 2009; 129:906-14. [PMID: 18932045 DOI: 10.1080/00016480802468153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONCLUSION Combining neurotrophic factor support and neural stem cell (NSC) transplantation may improve regeneration of the peripheral nervous system. Objectives. We constructed a biodegradable nerve conduit (NC) filled with NSCs overexpressing glia-derived neurotrophic factor (GDNF), which is known to protect facial motoneurons, and tested the effect of this NC on facial nerve regeneration. MATERIALS AND METHODS Primary cultured NSCs were transduced with a lentiviral vector encoding enhanced green fluorescent protein (EGFP) and GDNF. GDNF expression was confirmed by Western blotting and ELISA. Sprague Dawley (SD) rats were subjected to right facial nerve transection, and polyglycolic/polyglycolic acid (PLGA) NCs filled with NSCs-GDNF were used to bridge the nerve gap (n=24). In vivo GDNF expression was confirmed by real-time PCR. NCs containing NSCs, transgenic Schwann cells (SCs-GDNF), or empty NCs served as controls (n=24 per group). Facial nerve regeneration was assessed 2-12 weeks after surgery, by electrophysiological testing, immunohistochemical staining, and morphometric analysis of axons. RESULTS NSCs exhibited sustained and robust GDNF expression in culture and following implantation. Nerve action potential amplitude, axonal area, and axonal number were significantly greater in the NSCs-GDNF group than in the NSCs or empty NC groups. Axonal area and number were also greater in the NSCs-GDNF group than the SCs-GDNF group, although this was not statistically significant. The enhanced regeneration observed in the NSCs-GDNF group was accompanied by increased labeling for S100, NF, and βIII tubulin.
Collapse
|
93
|
Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 2009; 26:E2. [PMID: 19435443 DOI: 10.3171/foc.2009.26.2.e2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review the authors intend to demonstrate the need for supplementing conventional repair of the injured nerve with alternative therapies, namely transplantation of stem or progenitor cells. Although peripheral nerves do exhibit the potential to regenerate axons and reinnervate the end organ, outcome following severe nerve injury, even after repair, remains relatively poor. This is likely because of the extensive injury zone that prevents axon outgrowth. Even if outgrowth does occur, a relatively slow growth rate of regeneration results in prolonged denervation of the distal nerve. Whereas denervated Schwann cells (SCs) are key players in the early regenerative success of peripheral nerves, protracted loss of axonal contact renders Schwann cells unreceptive for axonal regeneration. Given that denervated Schwann cells appear to become effete, one logical approach is to support the distal denervated nerve environment by replacing host cells with those derived exogenously. A number of different sources of stem/precursor cells are being explored for their potential application in the scenario of peripheral nerve injury. The most promising candidate, transplant cells are derived from easily accessible sources such as the skin, bone marrow, or adipose tissue, all of which have demonstrated the capacity to differentiate into Schwann cell-like cells. Although recent studies have shown that stem cells can act as promising and beneficial adjuncts to nerve repair, considerable optimization of these therapies will be required for their potential to be realized in a clinical setting. The authors investigate the relevance of the delivery method (both the number and differentiation state of cells) on experimental outcomes, and seek to clarify whether stem cells must survive and differentiate in the injured nerve to convey a therapeutic effect. As our laboratory uses skin-derived precursor cells (SKPCs) in various nerve injury paradigms, we relate our findings on cell fate to other published studies to demonstrate the need to quantify stem cell survival and differentiation for future studies.
Collapse
Affiliation(s)
- Sarah Walsh
- Hotchkiss Brain Institute, University of Calgary, Alberta
| | | |
Collapse
|
94
|
Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a361c6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Kijima Y, Ishikawa M, Sunagawa T, Nakanishi K, Kamei N, Yamada K, Tanaka N, Kawamata S, Asahara T, Ochi M. Regeneration of peripheral nerve after transplantation of CD133+ cells derived from human peripheral blood. J Neurosurg 2009; 110:758-67. [PMID: 19012485 DOI: 10.3171/2008.3.17571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT Despite intensive efforts in the field of peripheral nerve injury and regeneration, it remains difficult to achieve full functional recovery in humans following extended peripheral nerve lesions. In this study, the authors examined the use of blood-derived CD133(+) cells in promoting the repair of peripheral nerve defects. METHODS The authors transplanted phosphate-buffered saline (control), mononuclear cells, or CD133(+) cells embedded in atelocollagen gel into a silicone tube that was used to bridge a 15-mm defect in the sciatic nerve of athymic rats (12 animals in each group). At 8 weeks postsurgery, molecular, histological, and functional evaluations were performed in regenerated tissues. RESULTS The authors found that sciatic nerves in which a defect had been made were structurally and functionally regenerated within 8 weeks after CD133(+) cell transplantation. From macroscopic evaluation, massive nervelike tissues were confirmed only in rats with CD133(+) cell transplantation compared with the other groups. Morphological regeneration in the samples after CD133(+) cell transplantation, as assessed using toluidine blue staining, was enhanced significantly in terms of the number of myelinated fibers, axon diameter, myelin thickness, and percentage of neural tissue. Compound muscle action potentials were observed only in CD133(+) cell-treated rats. Furthermore, it was demonstrated that the transplanted CD133(+) cells differentiated into Schwann cells by 8 weeks after transplantation. CONCLUSIONS The results show that CD133(+) cells have potential for enhancement of histological and functional recovery from peripheral nerve injury. This attractive cell source could be purified easily from peripheral blood and could be a feasible autologous candidate for peripheral nerve injuries in the clinical setting.
Collapse
Affiliation(s)
- Yasumu Kijima
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Hynes SR, Rauch MF, Bertram JP, Lavik EB. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J Biomed Mater Res A 2009; 89:499-509. [PMID: 18435406 DOI: 10.1002/jbm.a.31987] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural stem cells (NSCs) have the potential to replace the major cell types of the central nervous system (CNS) and may be important in therapies for injuries to and diseases of the CNS. However, for such treatments to be safe and successful, NSCs must survive and differentiate appropriately following transplantation. A number of polymer scaffolds have shown promise in improving the survival and promoting the differentiation of NSCs. To capitalize on the interaction between scaffolds and NSCs, we need to determine the fundamental material properties that influence NSC behavior. To investigate the role of material properties on NSCs, we synthesized a library of 52 hydrogels composed of poly(ethylene glycol) and poly(L-lysine) (PLL). This library of hydrogels allows independent variation of chemical and mechanical properties across a wide range of values. By culturing NSCs on this library, we have identified a subset of gels that promotes NSC migration and a further subset that promotes NSC differentiation. By combining the material properties of these subsets with the cell behavior, we determined that mechanical properties play a critical role in NSC behavior with elastic moduli promoting NSC migration and neuronal differentiation. Amine concentration is less critical, but PLL molecular weight also plays a role in NSC differentiation.
Collapse
Affiliation(s)
- Sara R Hynes
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
97
|
Application of neural stem cells in tissue-engineered artificial nerve. Otolaryngol Head Neck Surg 2009; 140:159-64. [PMID: 19201281 DOI: 10.1016/j.otohns.2008.10.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To observe the curative effect of neural stem cells (NSCs), which are used in tissue-engineered artificial nerve, on repairing rabbit 10-mm facial nerve defects. METHODS Thirty-six Oryctolagus cuniculi were randomly divided into three groups (each group with 12 Oryctolagus cuniculi). In group A, chitosan conduit, collagen protein sponge, nerve growth factor (NGF), and NSCs were used. In group B, chitosan conduit, collagen sponge, and NGF were used. In group C, nerve autograft was performed. Electrophysiologic detection, histologic observation, and BrdU and S100 immunohistochemical examination were performed 12 weeks after operation. RESULTS All observation items in group A were better than those in group B (P < 0.01), and there were no significant differences between group A and group C (P > 0.05). CONCLUSION NSCs may be served as seed cells of peripheral nerve tissue engineering and be used in artificial nerve to repair facial nerve defects.
Collapse
|
98
|
Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem Res 2009; 34:1304-16. [PMID: 19152028 DOI: 10.1007/s11064-008-9910-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2008] [Indexed: 12/19/2022]
Abstract
PURPOSE Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. METHODS Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. RESULTS Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. CONCLUSION AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.
Collapse
|
99
|
Hsu SH, Su CH, Chiu IM. A Novel Approach to Align Adult Neural Stem Cells on Micropatterned Conduits for Peripheral Nerve Regeneration: A Feasibility Study. Artif Organs 2009; 33:26-35. [DOI: 10.1111/j.1525-1594.2008.00671.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
100
|
Lin YL, Jen JC, Hsu SH, Chiu IM. Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanocomposites. ACTA ACUST UNITED AC 2008; 70 Suppl 1:S1:9-18. [DOI: 10.1016/j.surneu.2008.01.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|