51
|
Kiyokawa H, Katori Y, Cho KH, Murakami G, Kawase T, Cho BH. Reconsideration of the Autonomic Cranial Ganglia: An Immunohistochemical Study of Mid-Term Human Fetuses. Anat Rec (Hoboken) 2011; 295:141-9. [DOI: 10.1002/ar.21516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/04/2011] [Indexed: 02/02/2023]
|
52
|
Abstract
Ischaemic stroke results from acute arterial occlusion leading to focal hypoperfusion. Thrombolysis is the only proven treatment. Advanced neuroimaging techniques allow a detailed assessment of the cerebral circulation in patients with acute stroke, and provide information about the status of collateral vessels and collateral blood flow, which could attenuate the effects of arterial occlusion. Imaging of the brain and vessels has shown that collateral flow can sustain brain tissue for hours after the occlusion of major arteries to the brain, and the augmentation or maintenance of collateral flow is therefore a potential therapeutic target. Several interventions that might augment collateral blood flow are being investigated.
Collapse
|
53
|
Bar-Shir A, Shemesh N, Nossin-Manor R, Cohen Y. Late stimulation of the sphenopalatine-ganglion in ischemic rats: improvement in N-acetyl-aspartate levels and diffusion weighted imaging characteristics as seen by MR. J Magn Reson Imaging 2010; 31:1355-63. [PMID: 20512887 DOI: 10.1002/jmri.22110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To assess, by MR spectroscopy (MRS) and diffusion weighted imaging (DWI), the ability of electrical stimulation of the sphenopalatine ganglion (SPG) to augment stroke recovery in transient middle cerebral artery occluded (t-MCAO) rats, when treatment is started 18 +/- 2 h post-occlusion. MATERIALS AND METHODS (1)H-MRS imaging ((1)H-MRSI) and DWI were used to evaluate ischemic brain tissue after SPG stimulation in rats subjected to 2 h of t-MCAO. Rats were examined by (1)H-MRSI, DWI, and behavioral tests at 16 +/- 2 h, 8 days, and 28 days post-MCAO. RESULTS N-Acetyl-aspartate (NAA) levels of the stimulated and control rats were the same 16 +/- 2 h post-MCAO (0.52 +/- 0.03, 0.54 +/- 0.03). At 28 days post-occlusion, NAA levels were significantly higher in the treated group (0.60 +/- 0.04) compared with those of the untreated animals (0.50 +/- 0.04; P < 0.05). This effect was more pronounced for regions with low NAA values (0.16 +/- 0.03) that changed to 0.32 +/- 0.03 (P = 0.04) for the treated group and to 0.10 +/- 0.03 (P = 0.20) for the controls. DWI data showed better ischemic tissue condition for the treated rats, but the measured parameters showed only a trend of improvement. The MR results were corroborated by behavioral examinations. CONCLUSION Our findings suggest that SPG stimulation may ameliorate MR tissue characteristics following t-MCAO even if treatment is started 18 h post-occlusion.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW This review presents what we have learnt from triggering migraine. RECENT FINDINGS Experimental studies have shown that glyceryl trinitrate (GTN), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide-38 (PACAP38) and prostaglandin I2 (PGI2) induce migraine-like attacks in migraine suffers indistinguishable from their spontaneous attacks. These studies point to two key pathways to play an important role in migraine pathophysiology: cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP). At present, no valid experimental model exists to reproduce aura episodes in migraine with aura patients. Familiar hemiplegic migraine patients seem to be less sensitive to GTN and CGRP provocation compared with common types of migraine. Advances in recent imaging studies suggest neuronal mechanisms to be behind migraine attacks. The experimental headache models have resulted in development and an ongoing search of new migraine targets. SUMMARY Human models of migraine offer unique possibilities to study mechanisms responsible for different migraine subtypes and to explore the mechanisms of action of existing and future antimigraine drugs. Adding advanced imaging techniques to the models may lead to a better understanding of the complex events that constitutes a migraine attack and thereby more targeted ways of intervention.
Collapse
|
55
|
Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 2010; 7:191-6. [PMID: 20430318 PMCID: PMC5084100 DOI: 10.1016/j.nurt.2010.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022] Open
Abstract
The origin of migraine pain has not yet been clarified, but accumulating data point to neuropeptides present in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in sensory trigeminal neurons and may modulate nociception at different levels of the nervous system. Human experimental studies have shown that PACAP-38 infusion induces marked dilatation of extracerebral vessels and delayed migraine-like attacks in migraine patients. PACAP selectively activates the PAC(1) receptor, which suggests a possible signaling pathway implicated in migraine pain. This review summarizes the current evidence supporting the involvement of PACAP in migraine pathophysiology and the PAC(1) receptor as a possible novel target for migraine treatment.
Collapse
Affiliation(s)
- Henrik W. Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| |
Collapse
|
56
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
57
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
58
|
Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen Inhibits Neuronal Activation in the Trigeminocervical Complex After Stimulation of Trigeminal Autonomic Reflex, But Not During Direct Dural Activation of Trigeminal Afferents. Headache 2009; 49:1131-43. [DOI: 10.1111/j.1526-4610.2009.01501.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 2008; 132:16-25. [DOI: 10.1093/brain/awn307] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
60
|
Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, Messlinger K. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008; 507:1277-99. [DOI: 10.1002/cne.21607] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
61
|
Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M. Vasoactive Intestinal Peptide Causes Marked Cephalic Vasodilation, but does not Induce Migraine. Cephalalgia 2008; 28:226-36. [DOI: 10.1111/j.1468-2982.2007.01497.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We hypothesized that intravenous infusion of the parasympathetic transmitter, vasoactive intestinal peptide (VIP), might induce migraine attacks in migraineurs. Twelve patients with migraine without aura were allocated to receive 8 pmol kg-1 min-1 VIP or placebo in a randomized, double-blind crossover study. Headache was scored on a verbal rating scale (VRS), mean blood flow velocity in the middle cerebral artery ( Vmean mca) was measured by transcranial Doppler ultrasonography, and diameter of the superficial temporal artery (STA) by high-frequency ultrasound. None of the subjects reported a migraine attack after VIP infusion. VIP induced a mild immediate headache (maximum 2 on VRS) compared with placebo ( P = 0.005). Three patients reported delayed headache (3-11 h after infusion) after VIP and two after placebo ( P = 0.89). Vmean mca decreased (16.3 ± 5.9%) and diameter of STA increased significantly after VIP (45.9 ± 13.9%). VIP mediates a marked dilation of cranial arteries, but does not trigger migraine attacks in migraineurs. These data provide further evidence against a purely vascular origin of migraine.
Collapse
Affiliation(s)
- A Rahmann
- Danish Headache Centre, Department of Neurology, Glostrup Hospital
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - T Wienecke
- Danish Headache Centre, Department of Neurology, Glostrup Hospital
| | - JM Hansen
- Danish Headache Centre, Department of Neurology, Glostrup Hospital
| | - J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | - J Olesen
- Danish Headache Centre, Department of Neurology, Glostrup Hospital
| | - M Ashina
- Danish Headache Centre, Department of Neurology, Glostrup Hospital
| |
Collapse
|
62
|
Lenti L, Domoki F, Kis D, Hegyi O, Toth GK, Busija DW, Bari F. Pituitary adenylate cyclase-activating polypeptide induces pial arteriolar vasodilation through cyclooxygenase-dependent and independent mechanisms in newborn pigs. Brain Res 2007; 1165:81-8. [PMID: 17658492 DOI: 10.1016/j.brainres.2007.06.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/13/2007] [Accepted: 06/19/2007] [Indexed: 11/21/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a cerebrovascular dilator and was found neuroprotective in numerous in vitro and in vivo models of cerebral ischemia. However, the mechanism of its cerebrovascular action is poorly known, especially in newborns. Therefore, we tested pial arteriolar responses to the two naturally occurring forms PACAP27 and 38 as well as to shorter sequences (PACAP6-27, 6-38, 1-15, 6-15, 20-31). We also investigated the involvement of nitric oxide synthase (NOS), cyclooxygenase-1 and -2 (COX-1 and -2) activity in PACAP-induced pial arteriolar responses using the NOS inhibitor N-omega-nitro-l-arginine methyl ester (L-NAME 15 mg/kg iv), the non-selective COX inhibitor indomethacin (5 mg/kg iv), and the selective COX-1 and COX-2 inhibitors SC-560 (1 mg/kg iv) and NS-398 (1 mg/kg iv), respectively. Anesthetized, ventilated piglets (n=127) were equipped with closed cranial windows, and pial arteriolar diameters were determined via intravital microscopy. Topical application of both natural PACAPs, but none of the PACAP segments, resulted in prominent, repeatable, dose-dependent vasodilation. Percentage changes ranged 5+/-1-29+/-6 (n=7) and 4+/-1-36+/-7 (n=9) to 10(-)(8) to 10(-)(6) M PACAP27 and 38 (mean+/-SEM), respectively. Vasodilation to both natural PACAPs was significantly reduced by co-application with PACAP6-27 or 6-38, but not by L-NAME. Indomethacin abolished PACAP38 but not PACAP27-induced vasodilation. Arteriolar responses to PACAP38 were also sensitive to SC-560 but not to NS-398 suggesting the unique involvement of COX-1 activity in this response. In summary, PACAP27 and 38 are potent vasodilators in the neonatal cerebral circulation with at least two distinct mechanisms of action: a COX-dependent and a COX-independent pathway.
Collapse
Affiliation(s)
- Laura Lenti
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Dom ter 10, Hungary
| | | | | | | | | | | | | |
Collapse
|
63
|
Margas W, Ruiz-Velasco V. Electrophysiological and immunofluorescence characterization of Ca(2+) channels of acutely isolated rat sphenopalatine ganglion neurons. Neurosci Lett 2007; 419:207-12. [PMID: 17507162 PMCID: PMC1945817 DOI: 10.1016/j.neulet.2007.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/18/2022]
Abstract
The sphenopalatine ganglion (SPG) is the main parasympathetic ganglion that is involved in regulating cerebral vascular tone and gland secretion. SPG neurons have been implicated in some types of migraine headaches but their precise role has yet to be determined. In addition, very little information is available regarding ion channel modulation by neurotransmitters that are involved in the parasympathetic drive of SPG neurons. In this study, acute isolation of adult rat SPG neurons was developed in order to begin the electrophysiological characterization of this ganglion. Under our dissociation conditions, the average number of neurons obtained per ganglion was greater than 1200. Immunofluorescence imaging results showed positive labeling with acetylcholinesterase (AChE), confirming the parasympathetic nature of SPG neurons. On the other hand, weak tyrosine hydroxylase immunostaining was observed in these neurons. Whole-cell patch-clamp recordings revealed that most of the Ca(2+) current is carried by N-type (53%) and SNX-482 resistant R-type (30%) Ca(2+) channels. In addition, Ca(2+) currents were inhibited in a voltage-dependent manner following exposure to oxotremorine-M (Oxo-M), norepinephrine and ATP via muscarinic acetylcholine receptor 2 (M(2) AChR) subtype, adrenergic and P2Y purinergic receptors, respectively. The peptides VIP and angiotensin II failed to modulate Ca(2+) currents, suggesting that these receptors are not present on the SPG soma or do not couple to Ca(2+) channels. In summary, our data suggest that the Ca(2+) current inhibition mediated by Oxo-M, NE and ATP in adult rat SPG neurons plays an integral part in maintaining parasympathetic control of cranial functions.
Collapse
Affiliation(s)
- Wojciech Margas
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| |
Collapse
|
64
|
Goadsby PJ. Neuromodulatory approaches to the treatment of trigeminal autonomic cephalalgias. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:99-110. [PMID: 17691295 DOI: 10.1007/978-3-211-33081-4_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The trigeminal autonomic cephalalgias (TACs) are a group of primary headache syndromes characterised by intense pain and associated activation of cranial parasympathetic autonomic outflow pathways out of proportion to the pain. The TACs include cluster headache, paroxysmal hemicrania and SUNCT (short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing). The pathophysiology of these syndromes involves activation of the trigeminal-autonomic reflex, whose afferent limb projects into the trigeminocervical complex in the caudal brainstem and upper cervical spinal cord. Functional brain imaging has shown activations in the posterior hypothalamic grey matter in TACs. This paper reviews the anatomy and physiology of these conditions and the brain imaging findings. Current treatments are summarised and the role of neuromodulation procedures, such as occipital nerve stimulation and deep brain stimulation in the posterior hypothalamus are reviewed. Neuromodulatory procedures are a promising avenue for these highly disabled patients with treatment refractory TACs.
Collapse
Affiliation(s)
- P J Goadsby
- The National Hospital for Neurology and Neurosurgery, Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
65
|
Murabayashi H, Kuramoto H, Kawano H, Sasaki M, Kitamura N, Miyakawa K, Tanaka K, Oomori Y. Immunohistochemical features of substance P-immunoreactive chromaffin cells and nerve fibers in the rat adrenal gland. ACTA ACUST UNITED AC 2007; 70:183-96. [DOI: 10.1679/aohc.70.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroshi Murabayashi
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of Nursing
| | - Hirofumi Kuramoto
- Division of Applied Biological Science, Kyoto Institute of Technology
| | - Hitoshi Kawano
- Division of Function and Morphology for Nursing, Faculty of Medicine, Saga University
| | - Motoki Sasaki
- Laboratory of Anatomy, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuo Kitamura
- Laboratory of Anatomy, Obihiro University of Agriculture and Veterinary Medicine
| | - Kiyoshi Miyakawa
- Central Laboratory for Research and Education, Asahikawa Medical College
| | - Kunio Tanaka
- Central Laboratory for Research and Education, Asahikawa Medical College
| | - Yukio Oomori
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of Nursing
| |
Collapse
|
66
|
Arulmani U, Maassenvandenbrink A, Villalón CM, Saxena PR. Calcitonin gene-related peptide and its role in migraine pathophysiology. Eur J Pharmacol 2005; 500:315-30. [PMID: 15464043 DOI: 10.1016/j.ejphar.2004.07.035] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
Migraine is a common neurological disorder that is associated with an increase in plasma calcitonin gene-related peptide (CGRP) levels. CGRP, a neuropeptide released from activated trigeminal sensory nerves, dilates intracranial blood vessels and transmits vascular nociception. Therefore, it is propounded that: (i) CGRP may have an important role in migraine pathophysiology, and (ii) inhibition of trigeminal CGRP release or CGRP-induced cranial vasodilatation may abort migraine. In this regard, triptans ameliorate migraine headache primarily by constricting the dilated cranial blood vessels and by inhibiting the trigeminal CGRP release. In order to explore the potential role of CGRP in migraine pathophysiology, the advent of a selective CGRP receptor antagonist was obligatory. The introduction of di-peptide CGRP receptor antagonists, namely BIBN4096BS (1-piperidinecarboxamide, N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl] pentyl] amino]-1-[(3,5-dibromo-4-hydroxyphenyl) methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-, [R-(R*,S*)]-), is a breakthrough in CGRP receptor pharmacology and can be used as a tool to investigate the role of CGRP in migraine headaches. Preclinical investigations in established migraine models that are predictive of antimigraine activity have shown that BIBN4096BS is a potent CGRP receptor antagonist and that it has antimigraine potential. Indeed, a recently published clinical study has reported that BIBN409BS is effective in treating acute migraine attacks without significant side effects. The present review will discuss mainly the potential role of CGRP in the pathophysiology of migraine and the various treatment modalities that are currently available to target this neuropeptide.
Collapse
Affiliation(s)
- Udayasankar Arulmani
- Department of Pharmacology, Cardiovascular Research Institute "COEUR", Erasmus MC, University Medical Centre Rotterdam, P.O. Box 1738, Rotterdam 3000 DR, The Netherlands
| | | | | | | |
Collapse
|
67
|
Affiliation(s)
- Ralph Z Kern
- University of Toronto, Neurology, Toronto, Ontario, Canada
| | | |
Collapse
|
68
|
Gottanka J, Kirch W, Tamm ER. The origin of extrinsic nitrergic axons supplying the human eye. J Anat 2005; 206:225-9. [PMID: 15733293 PMCID: PMC1571474 DOI: 10.1111/j.1469-7580.2005.00391.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 11/30/2022] Open
Abstract
Nitrergic nerve fibres of intrinsic and extrinsic origin constitute an important component of the autonomic innervation in the human eye. The intrinsic source of nitrergic nerves are the ganglion cells in choroid and ciliary muscle. In order to obtain more information on the origin of extrinsic nitrergic nerves in the human eye, we obtained superior cervical, ciliary, pterygopalatine and trigeminal ganglia from six human donors, and stained them for neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-D). In the superior cervical ganglia, nNOS/NADPH-D-positive varicose axons were observed whereas perikarya were consistently negative. Fewer than 1% of perikarya in the ciliary ganglia were labelled for nNOS/NADPH-D. The diameter of nNOS/NADPH-D-positive ciliary perikarya was between 8 and 10 microm, which was markedly smaller than the diameter of the vast majority of negative perikarya in the ciliary ganglion. More than 70% of perikarya in the pterygopalatine ganglia were intensely labelled for both nNOS and NADPH-D. In trigeminal ganglia, 18% of perikarya were nNOS/NADPH-D-positive. The average diameter of trigeminal nNOS/NADPH-D perikarya was between 25 and 45 microm. Pterygopalatine and trigeminal ganglia are the most likely sources for extrinsic nerve fibres to the human eye.
Collapse
Affiliation(s)
- Johannes Gottanka
- Department of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
69
|
Edvinsson L, Uddman R. Neurobiology in primary headaches. ACTA ACUST UNITED AC 2004; 48:438-56. [PMID: 15914251 DOI: 10.1016/j.brainresrev.2004.09.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 08/17/2004] [Accepted: 09/08/2004] [Indexed: 11/23/2022]
Abstract
Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT(1B/1D) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Internal Medicine, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
70
|
Shah RV, Racz GB. Long-term relief of posttraumatic headache by sphenopalatine ganglion pulsed radiofrequency lesioning: a case report11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil 2004; 85:1013-6. [PMID: 15179659 DOI: 10.1016/j.apmr.2003.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Posttraumatic headache is a common and disabling pain syndrome in patients who sustain a head injury. Unfortunately, conventional treatments may fail or cause intolerable side effects. Because chronic headache may be mediated by central and peripheral neural processes, these structures may be therapeutic targets. One target, the sphenopalatine ganglion (SPG), is implicated in several headache disorders and has been lesioned for headache relief. Because of the risks of neurolytic procedures, nonablative procedures that provide pain relief would be useful. We present a case wherein a man in his late twenties with posttraumatic headache obtained more than 17 months of relief with SPG pulsed-mode radiofrequency lesioning. SPG pulsed-mode radiofrequency is a nonablative, neural lesioning method that may be useful in the treatment of posttraumatic headache.
Collapse
Affiliation(s)
- Rinoo V Shah
- Department of Anesthesiology, Pain Division, Texas Tech University Health Sciences Center, Lubbock, TX 79414, USA.
| | | |
Collapse
|
71
|
Baeres FMM, Møller M, Martin F, Baeres M. Origin of PACAP-immunoreactive nerve fibers innervating the subarachnoidal blood vessels of the rat brain. J Cereb Blood Flow Metab 2004; 24:628-35. [PMID: 15181370 DOI: 10.1097/01.wcb.0000121234.42748.f6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The subarachnoidal cerebral blood vessels of the rat are innervated by nerve fibers containing different neuropeptides, e.g. pituitary adenylatecyclase activating polypeptide (PACAP). PACAP dilates brain arterioles and immunohistochemical studies of the rat have indicated that PACAP binds to a VPAC1-receptor in the cerebral vasculature of this species. We have investigated the perikaryal origin of the nerve fibers innervating the subarachnoidal blood vessels of the rat by combined retrograde tracing with Fluorogold and immunohistochemistry. The in vivo neuronal retrograde tracings were done by injection of 2% Fluorogold in water into the subarachnoidal space in the area of the middle cerebral artery. The retrograde transported tracer was detected by use of an antibody against Fluorogold. One week after the injections, the animals were vascularly perfused with Stephanini's fixative and labeled perikarya were found bilaterally in the trigeminal, sphenopalatine, and otic ganglia. The retrograde Fluorogold tracings were combined with immunohistochemistry for PACAP using a mouse monoclonal antibody and the biotinylated tyramide amplification system. Double labeled perikarya containing both Fluoro-gold and PACAP were found predominantly in the trigeminal ganglion, and only rarely in the otic and sphenopalatine ganglion. Summarizing, our retrograde tracings combined with immunohistochemistry indicate that the perikarya in the trigeminal ganglion are the main origin of PACAPergic nerve fibers projecting to the cerebral vasculature of the rat.
Collapse
|
72
|
Kowacs F, Williamson DJ, Goadsby PJ. Neurogenic vasodilation of dural blood vessels is not mediated by cholinergic transmission in the anaesthetised rat. Eur J Pharmacol 2004; 493:133-7. [PMID: 15189774 DOI: 10.1016/j.ejphar.2004.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/07/2004] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
Dural vessel dilation induced by activation of trigeminal sensory fibres may be responsible for some component of the migraine attack. The presence in some patients with migraine and cluster headache of clinical features, such as lacrimation, suggests cranial parasympathetic activation and poses the question as to whether neurogenic meningeal dilatation has a cholinergic component. Rats were prepared in order to record on-line the diameter of a middle meningeal artery branch through a closed cranial window using an intravital microscope coupled to a video dimension analyser. Acetylcholine (1 microg, intravenously, i.v.) was administered before and after muscarinic receptor inhibition (n=5) with scopolamine (2 mg/kg, i.v.) or nicotinic receptor inhibition (n=6) with mecamylamine (4 mg/kg, i.v.). Further vasodilation was induced by electrical stimulation of the cranial window surface before and after muscarinic receptor inhibition with i.v. scopolamine (n=8). The mean dural vessel percentage increase caused by acetylcholine stimulation was significantly different before and after muscarinic receptor inhibition (P=0.045). Moreover, there was no difference between the post receptor inhibition values and those obtained after vehicle infusion (P=0.431). In contrast, no difference was detected in the effect of acetylcholine before and after nicotinic receptor inhibition (P=0.688). In the second experiment, where the effect of muscarinic receptor inhibition on the neurogenic dilation model was assessed, no significant difference was demonstrated (P=0.538). Cholinergic dilation of the rat dural arteries is mediated by muscarinic receptors, but this mechanism does not play a significant role in the rat dural vessel dilation induced by closed cranial window electrical stimulation.
Collapse
MESH Headings
- Acetylcholine/administration & dosage
- Acetylcholine/pharmacokinetics
- Animals
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/physiology
- Drug Administration Schedule
- Dura Mater/blood supply
- Dura Mater/drug effects
- Dura Mater/physiology
- Electric Stimulation
- Injections, Intravenous
- Male
- Mecamylamine/administration & dosage
- Mecamylamine/pharmacokinetics
- Meningeal Arteries/anatomy & histology
- Meningeal Arteries/drug effects
- Meningeal Arteries/physiology
- Microscopy/instrumentation
- Microscopy/methods
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/physiology
- Scopolamine/administration & dosage
- Scopolamine/pharmacokinetics
- Trigeminal Nerve/drug effects
- Trigeminal Nerve/physiology
- Vasodilation/physiology
Collapse
Affiliation(s)
- Fernando Kowacs
- Headache Group, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
73
|
Brehmer A, Schrödl F, Neuhuber W, Tooyama I, Kimura H. Co-expression pattern of neuronal nitric oxide synthase and two variants of choline acetyltransferase in myenteric neurons of porcine ileum. J Chem Neuroanat 2004; 27:33-41. [PMID: 15036361 DOI: 10.1016/j.jchemneu.2003.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 08/11/2003] [Accepted: 09/07/2003] [Indexed: 10/26/2022]
Abstract
Cholinergic enteric neurons were demonstrated immunohistochemically so far by using antibodies staining the common choline acetyltransferase (cChAT) in neurons of the central nervous system. The results of staining in the enteric nervous system of various species were, however, not satisfactory. We describe here findings obtained with a newly raised antibody against a peripheral variant of choline acetyltransferase (pChAT) in myenteric neurons of the pig small intestine. Triple labelling for pChAT/cChAT/neuronal nitric oxide synthase (nNOS) revealed 19.7% of 1664 neurons (within 40 ganglia) to be immunoreactive exclusively for pChAT whereas 29.6% were positive for cChAT alone and 18.8% were reactive only for nNOS. Colocalization of pChAT and cChAT was found in 22.4%, of pChAT and nNOS in 8.1% and of cChAT and nNOS in 1.4%. All three markers were simultaneously found in only 1 of 1664 neurons. To investigate the presence and possible colocalization of the above markers within morphologically defined neuron types, triple labelling of cChAT or nNOS with pChAT and a neurofilament (NF) antibody pool was applied and the coexpression patterns of pChAT and cChAT as well as of pChAT and nNOS in 120 neurons of each type were recorded. All type I, II, IV and V neurons displayed immunoreactivity either for one or both cholinergic markers. These neuron types were considered to be cholinergic. All type VI neurons, a descending neuron population, were negative for cChAT but positive for nNOS. However, 95% were immunoreactive for both pChAT and nNOS. The physiological significance of the possible co-existence of acetylcholine and nitric oxide within type VI neurons remains to be clarified. It is concluded that the pChAT and cChAT antibodies used here recognize partly different populations of enteric neurons in the pig. Thus, for total immunohistochemical characterization of cholinergic enteric neurons both forms of choline acetyltransferase have to be considered.
Collapse
Affiliation(s)
- Axel Brehmer
- Department of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
74
|
Akerman S, Williamson DJ, Goadsby PJ. Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br J Pharmacol 2003; 140:558-66. [PMID: 12970082 PMCID: PMC1574049 DOI: 10.1038/sj.bjp.0705456] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amissense mutation of the CACNA1A gene that encodes the alpha1A subunit of the voltage-dependent P/Q-type calcium channel has been discovered in patients suffering from familial hemiplegic migraine. This suggested that calcium channelopathies may be involved in migraine more broadly, and established the importance of genetic mechanisms in migraine. Channelopathies share many clinical characteristics with migraine, and thus exploring calcium channel functions in the trigeminovascular system may give insights into migraine pathophysiology. It is also known that drugs blocking the P/Q- and N-type calcium channels have been successful in other animal models of trigeminovascular activation and head pain. In the present study, we used intravital microscopy to examine the effects of specific calcium channel blockers on neurogenic dural vasodilatation and calcitonin gene-related peptide (CGRP)-induced dilation. The L-type voltage-dependent calcium channel blocker calciseptine significantly attenuated (20 microg kg(-1), n=7) the dilation brought about by electrical stimulation, but did not effect CGRP-induced dural dilation. The P/Q-type voltage-dependent calcium channel blocker omega-agatoxin-IVA (20 microg kg-1, n=7) significantly attenuated the dilation brought about by electrical stimulation, but did not effect CGRP-induced dural dilation. The N-type voltage-dependent calcium channel blocker omega-conotoxin-GVIA (20 microg kg(-1), n=8 and 40 microg kg(-1), n=7) significantly attenuated the dilation brought about by electrical stimulation, but did not effect CGRP-induced dural dilation. It is thought that the P/Q-, N- and L-type calcium channels all exist presynaptically on trigeminovascular neurons, and blockade of these channels prevents CGRP release, and, therefore, dural blood vessel dilation. These data suggest that the P/Q-, N- and L-type calcium channels may be involved in trigeminovascular nociception.
Collapse
Affiliation(s)
- S Akerman
- Headache Group, Institute of Neurology, Queen Square, London
| | - D J Williamson
- Merck Sharp and Dohme, Neuroscience Research Centre, Terlings Park, Harlow
| | - P J Goadsby
- Headache Group, Institute of Neurology, Queen Square, London
- Author for correspondence:
| |
Collapse
|
75
|
Møller M, Baeres FMM. PACAP-containing intrapineal nerve fibers originate predominantly in the trigeminal ganglion: a combined retrograde tracing- and immunohistochemical study of the rat. Brain Res 2003; 984:160-9. [PMID: 12932850 DOI: 10.1016/s0006-8993(03)03127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pituitary adenylate-cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated from the hypothalamus and located in many neuronal systems in both the central and peripheral nervous system. PACAP is also found in nerve fibers innervating the pineal gland, where it stimulates the secretion of the pineal hormone, melatonin, by binding to specific PACAP-receptors located on the cell membrane of the pinealocyte. In this study we have investigated the origin of PACAP-containing nerve fibers innervating the rat pineal gland by combined retrograde tracing with Fluorogold and immunohistochemistry for PACAP. A solution of 2% Fluorogold was injected iontophoretically into the superficial pineal gland of Wistar rats, and the animals were allowed to survive for 1 week. After perfusion fixation of the rats, the location of the tracer was investigated in the brain and the sphenopalatine, otic, and trigeminal ganglia. The tracer was found in all the investigated ganglia. However, colocalization with PACAP was predominantly found in the trigeminal ganglion and only occasionally in the sphenopalatine and otic ganglia. Due to the stimulatory function of PACAP on pineal melatonin secretion, the PACAP-containing neurons of this ganglion could be considered a subset of the parasympathetic nervous system. The presence of neurons with a parasympathetic function in a ganglion that has been considered a purely sensory ganglion, is a new concept in neuroanatomy.
Collapse
Affiliation(s)
- M Møller
- Institute of Medical Anatomy, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| | | |
Collapse
|
76
|
Hamel E, Vaucher E, Tong XK, St-Georges M. Neuronal messengers as mediators of microvascular tone in the cerebral cortex. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0531-5131(02)00193-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
77
|
Knutsson M, Edvinsson L. Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia. Neuroreport 2002; 13:507-9. [PMID: 11930171 DOI: 10.1097/00001756-200203250-00030] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The distribution of mRNA for pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 (PAC1) and vasoactive intestinal polypeptide (VIP) types 1 and 2 (VPAC1 and VPAC2, respectively) receptors was examined by reverse transcriptase polymerase chain reaction (RT-PCR) in human cerebral arteries and in trigeminal, otic, sphenopalatine and superior cervical ganglia. RT-PCR products of the expected sizes were detected in the arteries, in both the presence and absence of endothelium. In the majority (80%) of the trigeminal, otic and superior cervical ganglia, mRNA for all three receptors were found (n = 5). However, in the sphenopalatine ganglion neither VPAC2 nor PAC1 was detected (n = 2). This finding indicates the occurrence of both prejunctional (ganglia) and postjunctional (vessels) location of VIP and PACAP receptors.
Collapse
MESH Headings
- Adult
- Cerebral Arteries/metabolism
- Endothelium, Vascular/metabolism
- Humans
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/biosynthesis
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/biosynthesis
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Superior Cervical Ganglion/metabolism
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Mikael Knutsson
- Department of Internal Medicine, University Hospital of Lund, S-221 85 Lund, Sweden
| | | |
Collapse
|
78
|
Abstract
Vasoactive intestinal polypeptide (VIP) is one of the most abundant, biologically active peptides found in the human lung. VIP is a likely neurotransmitter or neuromodulator of the inhibitory non-adrenergic non-cholinergic airway nervous system and influences many aspects of pulmonary biology. In human airways VIP-immunoreactive nerve fibres are present in the tracheobronchial airway smooth muscle layer, the walls of pulmonary and bronchial vessels and around submucosal glands. Next to its prominent bronchodilatory effects, VIP potently relaxes pulmonary vessels. The precise role of VIP in the pathogenesis of asthma is still uncertain. Although a therapy using the strong bronchodilatory effects of VIP would offer potential benefits, the rapid inactivation of the peptide by airway peptidases has prevented effective VIP-based drugs so far and non-peptide VIP-agonists did not reach clinical use.
Collapse
Affiliation(s)
- D A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Humboldt-University, Berlin, Germany.
| | | | | |
Collapse
|
79
|
Abstract
The sensory innervation of intracranial vessels originate in the trigeminal ganglion and comprise the following signal substances; calcitonin gene-related peptide (CGRP), substance P, neurokinin A, pituitary adenylate cyclase activating peptide (PACAP) and nitric oxide (NO). Studies in patients have revealed a clear association between head pain and the release of CGRP. In cluster headache and in a case of chronic paroxysmal headache there is in addition release of vasoactive intestinal peptide (VIP), which was associated with the facial symptoms (nasal congestion, rhinorrhea). In parallel with triptan administration, acting via 5-HT(1B/1D) receptors, head pain subside and neuropeptide release normalise. These data show the involvement of sensory and parasympathetic mechanisms in the pathophysiology of primary headaches.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, University Hospital of Lund, Sweden.
| |
Collapse
|
80
|
Shimizu T, Morris JL, Gibbins IL. Expression of immunoreactivity to neurokinin-1 receptor by subsets of cranial parasympathetic neurons: correlation with neuropeptides, nitric oxide synthase, and pathways. Exp Neurol 2001; 172:293-306. [PMID: 11716554 DOI: 10.1006/exnr.2001.7799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the patterns of coexistence of immunoreactivity to the neurokinin-1 (NK(1)) tachykinin receptor, nitric oxide synthase, and neuropeptides in the sphenopalatine and otic ganglia of guinea pigs using a combination of multiple-labeling immunohistochemistry and pathway tracing in vitro. Most neurons had immunoreactivity to vasoactive intestinal peptide (85-96%) and neuropeptide Y (60%). Subpopulations of vasoactive intestinal peptide-immunoreactive neurons also had immunoreactivity to nitric oxide synthase (37-48%) or enkephalin (25-35%), but these formed mutually exclusive populations. Almost all neurons expressing NK(1) receptor immunoreactivity contained immunoreactivity to enkephalin, vasoactive intestinal peptide, and neuropeptide Y, but not nitric oxide synthase. Using a combination of retrograde axonal tracing and axonal crushing, we found that most neurons with immunoreactivity to nitric oxide synthase projected along the nasopalatine and ethmoidal nerves to the nasal mucosa. In contrast, most neurons with immunoreactivity to enkephalin followed the zygomatic nerve to the facial skin and lacrimal gland. Based on their peptide content, we conclude that the neurons with immunoreactivity to enkephalin and NK(1) receptor projected selectively to the skin. In both the sphenopalatine and the otic ganglia, about half of the neurons with NK(1) receptor immunoreactivity were surrounded by varicose nerve fibers with substance P immunoreactivity. Many of these fibers are likely to have originated in the trigeminal ganglion. Taken together, these observations establish a strong anatomical basis for a range of interactions between trigeminal and cranial parasympathetic pathways that may underlie pathophysiological conditions such as trigeminal neuralgia.
Collapse
Affiliation(s)
- T Shimizu
- Department of Anatomy & Histology, Flinders University of South Australia, Adelaide, South Australia, 5001, Australia
| | | | | |
Collapse
|
81
|
Melling M, Hochmeister S, Blumer R, Schilcher K, Mostler S, Behnam M, Wilde J, Karimian-Teherani D. Atomic force microscopy imaging of the human trigeminal ganglion. Neuroimage 2001; 14:1348-52. [PMID: 11707090 DOI: 10.1006/nimg.2001.0924] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper describes an investigation of gangliocytes via imaging semithin sections of two human trigeminal ganglia with an atomic force microscope (AFM). Whereas semithin sections are usually employed for transmission electron microscopy, we adopted this special type of sample preparation for our AFM studies to extract topographical data from the gangliocyte itself and from the nucleus, the nucleolus, the crystal-arranged lipofuscin granules, and the cell-surrounding mantle cells; simultaneously we characterized the samples with error signal mode. This AFM-related technique revealed no information concerning friction force and elasticity due to the presence of the embedding material (epoxy), but it gave additional topographical contrast. These are the first images of the human trigeminal ganglion by AFM.
Collapse
Affiliation(s)
- M Melling
- First Department of Anatomy, University of Vienna, A-1170 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The sensory innervation of intracranial vessels originate in the trigeminal ganglion and comprise the following signal substances; calcitonin gene-related peptide (CGRP), substance P, neurokinin A, pituitary adenylate cyclase activating peptide (PACAP) and nitric oxide (NO). Studies in patients have revealed a clear association between head pain and the release of CGRP. In cluster headache and in a case of chronic paroxysmal headache there is in addition release of vasoactive intestinal peptide (VIP), which was associated with the facial symptoms (nasal congestion, rhinorrhea). In parallel with triptan administration, acting via 5-HT(1B/1D) receptors, head pain subside and neuropeptide release normalise. These data show the involvement of sensory and parasympathetic mechanisms in the pathophysiology of primary headaches.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, University Hospital of Lund, Sweden.
| |
Collapse
|
83
|
Abstract
In recent years our knowledge of the nervous control of the cerebral circulation has increased. The use of denervations and retrograde tracing in combination with immunohistochemical techniques has demonstrated that cerebral vessels are supplied with sympathetic, parasympathetic, and sensory nerve fibers and possibly central pathways containing a multiplicity of new transmitter substances in addition to the classical transmitters. The majority of these transmitters are neuropeptides. More recently it has been suggested that a gaseous transmitter, nitric oxide (NO) also could participate in the neuronal regulation of cerebral blood flow. Although little is known about the physiological actions and inter-relationships among all these putative neurotransmitters, their presence within cerebrovascular nerve fibers will make it necessary to revise our view on the mechanisms of cerebrovascular neurotransmission.
Collapse
Affiliation(s)
- S Gulbenkian
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
84
|
Bleys RL, Thrasivoulou C, Cowen T. Cavernous sinus ganglia are sources for parasympathetic innervation of cerebral arteries in rat. J Cereb Blood Flow Metab 2001; 21:149-56. [PMID: 11176280 DOI: 10.1097/00004647-200102000-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retrograde tracing and immunohistochemistry was used in rats to investigate whether the ganglia in the cavernous sinus contribute to cerebrovascular innervation. The cavernous sinus ganglia in rat include the cavernous part of the pterygopalatine ganglion (PGC) and small cavernous ganglia (CG). The tracers, fluorogold and fast blue, were applied to the middle cerebral artery in eight rats. After 1 to 4 days, the cavernous sinuses were dissected out and studied as whole mount preparations and sections. A moderate number of labeled neurons were visible in the ipsilateral PGC and CG. Furthermore, fibers in the cavernous nerve plexus and abducens nerve were labeled, suggesting that the pathway from the cavernous sinus ganglia to the cerebral arteries runs through the cavernous plexus and then retrogradely along the abducens nerve to the internal carotid artery. Selected sections were immunohistochemically stained for the cholinergic marker, vesicular acetylcholine transporter (VAChT). Most cells in the PGC and CG were VAChT-immunoreactive, some of which also contained tracer. It is concluded that in rat, the cavernous sinus ganglia, consisting of the PGC and small CG, contribute to parasympathetic cerebrovascular innervation and that the cavernous nerve plexus and abducens nerve are involved in the pathway from these ganglia to the cerebral arteries.
Collapse
Affiliation(s)
- R L Bleys
- Department of Functional Anatomy, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
85
|
Cheng SB, Kuchiiwa S, Kuchiiwa T, Nakagawa S. Three novel neural pathways to the lacrimal glands of the cat: an investigation with cholera toxin B subunit as a retrograde tracer. Brain Res 2000; 873:160-4. [PMID: 10915825 DOI: 10.1016/s0006-8993(00)02536-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of ganglion neurons innervating the lacrimal gland (LG) was investigated following injection of cholera toxin B subunit into the LG of the cat. We report the first evidence that the otic ganglion (OG), and superior vagal and glossopharyngeal ganglia are also the sources of innervation of the LG. LG-innervating neurons in the pterygopalatine ganglion and the OG could be divided into two subpopulations: small and large neurons. They may mediate the vasodilatation and secretion, respectively.
Collapse
Affiliation(s)
- S B Cheng
- Department of Anatomy, Faculty of Medicine, Kagoshima University, Japan
| | | | | | | |
Collapse
|