51
|
Kurtovic I, Nalder TD, Cleaver H, Marshall SN. Immobilisation of Candida rugosa lipase on a highly hydrophobic support: A stable immobilised lipase suitable for non-aqueous synthesis. ACTA ACUST UNITED AC 2020; 28:e00535. [PMID: 33088731 PMCID: PMC7566202 DOI: 10.1016/j.btre.2020.e00535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Lipase from Candida rugosa (CrL) was immobilised on highly hydrophobic, octadecyl methacrylate resin (Lifetech™ ECR8806M) via interfacial adsorption. The aim was to produce a stable biocatalyst suitable for use in a range of lipid-modifying reactions. Immobilisation was carried out in 10 mM phosphate buffer (pH 6.0) over 24 h at 21 °C. High protein binding of 58.7 ± 4.9 mg/g dry support accounted for ∼53 % of the applied protein. The activity recovery against tributyrin was 74.0 ± 1.1 %. The specific activity of immobilised CrL against tributyrin was considerably higher than that of Novozym® 435, at 1.79 ± 0.05 and 1.08 ± 0.04 U/mg bound protein, respectively. Incubation with high concentrations (10 % w/v) of both Triton X-100 and SDS resulted in only a small reduction in immobilised lipase activity. Solvent-free synthesis of glycerides by the FFA-saturated immobilised CrL was successful over 6 reaction cycles, with no apparent loss of activity.
Collapse
Affiliation(s)
- Ivan Kurtovic
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Tim D Nalder
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand.,School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Victoria, Australia
| | - Helen Cleaver
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Susan N Marshall
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| |
Collapse
|
52
|
Rivero‐Pino F, Padial‐Dominguez M, Guadix EM, Morales‐Medina R. Novozyme 435 and Lipozyme RM IM Preferably Esterify Polyunsaturated Fatty Acids at the sn‐2 Position. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Emilia M. Guadix
- Department of Chemical Engineering University of Granada Granada 18071 Spain
| | | |
Collapse
|
53
|
Gérard D, Méline T, Muzard M, Deleu M, Plantier-Royon R, Rémond C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr Res 2020; 495:108090. [PMID: 32807358 DOI: 10.1016/j.carres.2020.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023]
Abstract
Lipase-catalyzed synthesis of xylo-oligosaccharides esters from pure xylobiose, xylotriose and xylotetraose in the presence of vinyl laurate was investigated. The influence of different experimental parameters such as the loading of lipase, the reaction duration or the use of a co-solvent was studied and the reaction conditions were optimized with xylobiose. Under the best conditions, a regioselective esterification occurred to yield a monoester with the acyl chain at the OH-4 of the xylose unit at the non-reducing end. Surface-active properties of these pure xylo-oligosaccharides fatty esters have been evaluated. They display interesting surfactant activities that differ according to the degree of polymerization (DP) of the glycone moiety.
Collapse
Affiliation(s)
- D Gérard
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - T Méline
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - M Deleu
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire de Biophysique Moléculaire Aux Interfaces, 2 Passage des Déportés, B-5030, Gembloux, Belgium
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - C Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France.
| |
Collapse
|
54
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
55
|
Comparative study of enzyme-catalyzed biodegradation and crystallization behavior of PCL-PTEGMA amphiphilic hypergraft copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
56
|
Bohr SSR, Thorlaksen C, Kühnel RM, Günther-Pomorski T, Hatzakis NS. Label-Free Fluorescence Quantification of Hydrolytic Enzyme Activity on Native Substrates Reveals How Lipase Function Depends on Membrane Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6473-6481. [PMID: 32437165 DOI: 10.1021/acs.langmuir.0c00787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipases are important hydrolytic enzymes used in a spectrum of technological applications, such as the pharmaceutical and detergent industries. Because of their versatile nature and ability to accept a broad range of substrates, they have been extensively used for biotechnological and industrial applications. Current assays to measure lipase activity primarily rely on low-sensitivity measurements of pH variations or visible changes of material properties, like hydration, and often require high amounts of proteins. Fluorescent readouts, on the other hand, offer high contrast and even single-molecule sensitivity, albeit they are reliant on fluorogenic substrates that structurally resemble the native ones. Here we present a method that combines the highly sensitive readout of fluorescent techniques while reporting enzymatic lipase function on native substrates. The method relies on embedding the environmentally sensitive fluorescent dye pHrodo and native substrates into the bilayer of liposomes. The charged products of the enzymatic hydrolysis alter the local membrane environment and thus the fluorescence intensity of pHrodo. The fluorescence can be accurately quantified and directly assigned to product formation and thus enzymatic activity. We illustrated the capacity of the assay to report the function of diverse lipases and phospholipases both in a microplate setup and at the single-particle level on individual nanoscale liposomes using total internal reflection fluorescence (TIRF). The parallelized sensitive readout of microscopy combined with the inherent polydispersity in sizes of liposomes allowed us to screen the effect of membrane curvature on lipase function and identify how mutations in the lid region control the membrane curvature-dependent activity. We anticipate this methodology to be applicable for sensitive activity readouts for a spectrum of enzymes where the product of the enzymatic reaction is charged.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Camilla Thorlaksen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Biophysics, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev 2760, Denmark
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ronja Marie Kühnel
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
| | - Thomas Günther-Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
57
|
The Effectively Simultaneous Production of Cello-oligosaccharide and Glucose Mono-decanoate from Lignocellulose by Enzymatic Esterification. Appl Biochem Biotechnol 2020; 192:600-615. [PMID: 32500429 DOI: 10.1007/s12010-020-03356-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Cello-oligosaccharide has drawn an increasing attention as the nutritional ingredients of dietary supplements, whose quality is affected by the concentration of monosaccharide. In the present study, an effective process was developed for the simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose by enzymatic esterification. During the process, the excessive glucose in cello-oligosaccharide was converted into glucose mono-decanoate, which is a well-known biodegradable nonionic surfactant. The filter paper was initially used as the model to investigate the feasibility of the process, in which the purity of resultant cello-oligosaccharide was increased from 33.3% to 74.3%, simultaneously producing glucose mono-decanoate with a purity of 92.3%. Further verification of 3 kinds of lignocelluloses (switchgrass, cornstalk, and reed) also indicated a good performance of the process. The present process provided an effective strategy to increase the purity of resultant cello-oligosaccharide with the simultaneous production of high value-added products of sugar monoester. Graphical Abstract Simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose.
Collapse
|
58
|
Abouhmad A, Korany AH, Grey C, Dishisha T, Hatti-Kaul R. Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes. Int J Mol Sci 2020; 21:ijms21093176. [PMID: 32365915 PMCID: PMC7246905 DOI: 10.3390/ijms21093176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities. Examination of the kinetic parameters for the hydrolysis of para-nitrophenyl ester substrates, shows LysB-His6 enzymes to be active against a range of substrates (C4–C16), with a catalytic preference towards p-nitrophenyl laurate (C12). With p-nitrophenyl butyrate as substrate, LysB-His6 enzymes showed highest activity at 37 °C. LysB-His6 enzymes also hydrolyzed different Tween substrates with highest activity against Tween 20 and 80. Metal ions like Ca2+ and Mn2+ enhanced the enzymatic activity of LysB-His6 enzymes, while transition metal ions like Zn2+ and Cu2+ inhibited the enzymatic activity. The mycolylarabinogalactan esterase activity of LysB-His6 enzymes against mAGP complex was confirmed by LC-MS. LysB-His6 enzymes showed marginal antibacterial activity when tested alone against Mycobacterium smegmatis, however a synergetic activity was noticed when combined with outer membrane permealizers. These results confirm that LysB enzymes are lipolytic enzymes with potential application as antimycobacterials.
Collapse
Affiliation(s)
- Adel Abouhmad
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed H. Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Carl Grey
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
- Correspondence: ; Tel.: +46-462-224-840
| |
Collapse
|
59
|
Moharana TR, Rao NM. Substrate structure and computation guided engineering of a lipase for omega-3 fatty acid selectivity. PLoS One 2020; 15:e0231177. [PMID: 32271820 PMCID: PMC7145112 DOI: 10.1371/journal.pone.0231177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
Enrichment of omega-3 fatty acids (ɷ-3 FAs) in natural oils is important to realize their health benefits. Lipases are promising catalysts to perform this enrichment, however, fatty acid specificity of lipases is poor. We attempted to improve the fatty acid selectivity of a lipase from Geobacillus thermoleovorans (GTL) by two approaches. In a semi-rational approach, amino acid positions critical for binding were identified by docking the substrate to the GTL and best substitutes at these positions were identified by site saturation mutagenesis followed by screening to obtain a variant of GTL (CM-GTL). In the second approach based on rational design, a variant of GTL was designed (DM-GTL) wherein the active site was narrowed by incorporating two heavier amino acids in the lining of acyl-binding pocket to hinder access to bulky ɷ-3 FAs. The affinities DM-GTL with designed substrates were evaluated in silico. Both, CM-GTL and DM-GTL have shown excellent ability to discriminate against the ɷ-3 FAs during hydrolysis of oils. Engineering the binding pocket of an enzyme of a complex substrate, such as a triglyceride, by incorporating the information on substrate structure and computationally derived binding modes, has resulted in designing two efficient lipase variants with improved substrate selectivity.
Collapse
|
60
|
Arcens D, Grau E, Grelier S, Cramail H, Peruch F. Impact of Fatty Acid Structure on CALB‐Catalyzed Esterification of Glucose. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dounia Arcens
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629 F‐33600 Pessac France
| | - Etienne Grau
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629 F‐33600 Pessac France
| | - Stéphane Grelier
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629 F‐33600 Pessac France
| | - Henri Cramail
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629 F‐33600 Pessac France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629 F‐33600 Pessac France
| |
Collapse
|
61
|
Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors. Bioprocess Biosyst Eng 2020; 43:1391-1402. [DOI: 10.1007/s00449-020-02334-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
|
62
|
Su A, Kiokekli S, Naviwala M, Shirke AN, Pavlidis IV, Gross RA. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs. Enzyme Microb Technol 2020; 133:109467. [PMID: 31874689 DOI: 10.1016/j.enzmictec.2019.109467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
The specific activity and enantioselectivity of immobilized cutinases from Aspergillus oryzae (AoC) and Humicola insolens (HiC) were compared with those of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Lipase B from Candida antarctica (CALB) for menthol and its analogs that include isopulegol, trans-2-tert-butylcyclohexanol (2TBC), and dihydrocarveol (DHC). Common features of these alcohols are two bulky substituents: a cyclohexyl ring and an alkyl substituent. Dissimilarities are that the alkyl group reside at different positions or have dissimilar structures. The aim was to develop an understanding at a molecular level of similarities and differences in the catalytic behavior of the selected cutinases and lipases as a function of substrate structural elements. The experimental results reflect the (-)-enantioselectivity for AoC, HiC, TLL, and RML, while CALB is only active on DHC with (+)-enantioselectivity. In most cases, AoC has the highest activity while HiC is significantly more active than other enzymes on 2TBC. The E values of AoC, HiC, TLL, and RML for menthol are 27.8, 16.5, 155, and 125, respectively. HiC has a higher activity (>10-fold) on (-)-2TBC than AoC while they exhibit similar activities on menthol. Docking results reveal that the bulky group adjacent to the hydroxyl group determines the enantioselectivity of AoC, HiC, TLL, and RML. Amino acid residues that dominate the enantioselectivity of these enzymes are AoC's Phe195 aromatic ring; HiC's hydrophobic Leu 174 and Ile 169 groups; TLL's ring structures of Trp89, His258 and Tyr21; and Trp88 for RML. Results of this study highlight that cutinases can provide important advantages relative to lipases for enantioselective transformation, most notably with bulky and sterically hindered substrates.
Collapse
Affiliation(s)
- An Su
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Serpil Kiokekli
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Mariam Naviwala
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Abhijit N Shirke
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Richard A Gross
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
63
|
Korany AH, Abouhmad A, Bakeer W, Essam T, Amin MA, Hatti-Kaul R, Dishisha T. Comparative Structural Analysis of Different Mycobacteriophage-Derived Mycolylarabinogalactan Esterases (Lysin B). Biomolecules 2019; 10:E45. [PMID: 31892223 PMCID: PMC7022511 DOI: 10.3390/biom10010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 01/14/2023] Open
Abstract
Mycobacteriophage endolysins have emerged as a potential alternative to the current antimycobacterial agents. This study focuses on mycolylarabinogalactan hydrolase (LysB) enzymes of the α/β-hydrolase family, which disrupt the unique mycolic acid layer of mycobacterium cell wall. Multiple sequence alignment and structural analysis studies showed LysB-D29, the only enzyme with a solved three-dimensional structure, to share several common features with esterases (lacking lid domain) and lipases (acting on long chain lipids). Sequence and structural comparisons of 30 LysB homology models showed great variation in domain organizations and total protein length with major differences in the loop-5 motif harboring the catalytic histidine residue. Docking of different p-nitrophenyl ligands (C4-C18) to LysB-3D models revealed that the differences in length and residues of loop-5 contributed towards wide diversity of active site conformations (long tunnels, deep and superficial funnels, shallow bowls, and a narrow buried cave) resembling that of lipases, cutinases, and esterases. A set of seven LysB enzymes were recombinantly produced; their activity against p-nitrophenyl esters could be related to their active site conformation and acyl binding site. LysB-D29 (long tunnel) showed the highest activity with long chain p-nitrophenyl palmitate followed by LysB-Omega (shallow bowl) and LysB-Saal (deep funnel).
Collapse
Affiliation(s)
- Ahmed H. Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.H.K.); (W.B.)
| | - Adel Abouhmad
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Walid Bakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.H.K.); (W.B.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 26511, Egypt;
| | - Tamer Essam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (T.E.); (M.A.A.)
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (T.E.); (M.A.A.)
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 26511, Egypt;
| |
Collapse
|
64
|
Ma G, Dai L, Liu D, Du W. Integrated Production of Biodiesel and Concentration of Polyunsaturated Fatty Acid in Glycerides Through Effective Enzymatic Catalysis. Front Bioeng Biotechnol 2019; 7:393. [PMID: 31921803 PMCID: PMC6933295 DOI: 10.3389/fbioe.2019.00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) contained in glycerides have been reported to be more advantageous for their intake than their counterpart in the form of free fatty acid or fatty acid esters. This work attempts to achieve the flexible concentration of DHA and EPA in glycerides as well as biodiesel production via a two-step process catalyzed by lipases. In the first step, several commercial lipases were investigated and Novozym ET2.0 demonstrated the highest potential in selective concentration of DHA and EPA. Over 85% of EPA and other fatty acids were converted to its corresponding FAEEs (fatty acid ethyl esters), while over 80% of DHA remained in glycerides under the optimized conditions. After the first step ethanolysis, the oil phase was subject to molecular distillation and a 97.5% biodiesel (FAEE) content could be obtained. Further flexible enrichment of DHA and EPA in glycerides was realized by immobilized lipase Novozym 435-mediated transesterification of glycerides (remaining in the heavy phase after molecular distillation) with DHA- or EPA-rich EE, and glycerides with 67.1% DHA and 13.1% EPA, or glycerides with 41.1% EPA and 38.0% DHA could be obtained flexibly. This work demonstrated an effective approach for DHA and EPA enrichment combined with biodiesel production through enzymatic catalysis.
Collapse
Affiliation(s)
- Gaojian Ma
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Lingmei Dai
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Tsinghua Innovation Center in Dongguan, Dongguan, China
| | - Wei Du
- Department of Chemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Tsinghua Innovation Center in Dongguan, Dongguan, China
| |
Collapse
|
65
|
|
66
|
Zieniuk B, Fabiszewska A, Białecka-Florjańczyk E. Screening of solvents for favoring hydrolytic activity of Candida antarctica Lipase B. Bioprocess Biosyst Eng 2019; 43:605-613. [PMID: 31734716 DOI: 10.1007/s00449-019-02252-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/08/2019] [Indexed: 02/04/2023]
Abstract
Lipases are a group of enzymes of considerable significance in organic synthesis, among which Candida antarctica lipase B (CALB) is one of the most widely studied enzymes. The activity of the biocatalyst has been intensively characterized in many organic media, but this paper aimed to compare the effect of 20 different solvents on the activity of CALB in the hydrolysis of p-nitrophenyl laurate. Nonpolar, polar aprotic, and polar protic solvents were used for enzyme pretreatment and then entered the composition of mixed solvents reaction medium. An impact of solvents on solvation processes affecting the catalysis steps, protein denaturation, and changes of its conformation was discussed. Moreover the hydrolytic activity of CALB with partition coefficient (logP) of the solvent used was correlated. It was emphasized that the substrate solubility plays an important role in solvent selection. In the presence of hydrophobic solvents, hydration layer becomes more hydrophobic facilitating the substrate access to the enzyme surface. In turn, polar compounds are good solvents for organic substrates facilitating the penetration of the aqueous layer that surrounds the surface of the enzyme. Two variants proved to be favorable for ester hydrolysis reaction: isooctane or polar solvent such as acetone, tert -butyl methyl ether, tert-butanol or acetonitrile.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776, Warsaw, Poland.
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776, Warsaw, Poland
| | - Ewa Białecka-Florjańczyk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776, Warsaw, Poland
| |
Collapse
|
67
|
Budhwani AAA, Maqbool A, Hussain T, Syed MN. Production of biodiesel by enzymatic transesterification of non-edible Salvadora persica (Pilu) oil and crude coconut oil in a solvent-free system. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0275-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
It is becoming imperative to develop renewable fuels such as biodiesel which are sustainable and environmentally friendly. Exploiting non-edible oils is more necessary to reduce dependency of edible oils for biodiesel production. The current study investigated biodiesel production from non-edible Salvadora persica seed oil (SPSO) and crude coconut oil (CCO) by Burkholderia cepacia lipase acting as a biocatalyst in a solvent-free system. The biodiesel yield produced from these feedstocks was compared and the effect of ethanol (acyl acceptor) vs. SPSO and CCO in various ratios on biodiesel production was determined.
Results
The presence of medium-chain fatty acids in majority was confirmed for SPSO and CCO while the average molecular weight was calculated as 749.53 g/mol and 664.57 g/mol, respectively. Thin Layer Chromatography indicated ethyl esters in the produced Salvadora and coconut biodiesel samples. Maximum biodiesel yield (around 70%) was obtained at 1:4 oil-to-ethanol molar ratio from both oils followed by a decline at higher ratios. The gas chromatographic analysis of Salvadora biodiesel at 1:4 molar ratio showed that the yield of individual esters was mostly of medium- and long-chain fatty acids. The analysis of coconut biodiesel at 1:4 molar ratio revealed that it consists mainly of the esters of medium-chain fatty acids. A comparison of estimated properties of biodiesel from both the parent oils with the international standard showed that it meets most of the requirements.
Conclusion
The study paves the way for a green route for biodiesel production and would promote the use of non-edible vegetable oils over edible ones to produce biodiesel. Further, it is a right step to use lipases in biodiesel production as compared to chemical catalysts. Ethanol, which can also be produced from biomass fermentation, can be used as acyl acceptor to produce biodiesel and this makes the process eco-friendly. Moreover, Burkholderia cepacia lipase is a good choice among lipases to get high biodiesel yields successfully from SPSO and CCO at low oil-to-ethanol molar ratios.
Collapse
|
68
|
Xin X, Zhang M, Li XF, Zhao G. Biocatalytic Synthesis of Lipophilic Baicalin Derivatives as Antimicrobial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11684-11693. [PMID: 31564105 DOI: 10.1021/acs.jafc.9b04667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymatic acylation is commonly used to increase the lipophilicity of flavonoids. However, the absence of primary hydroxyl groups makes it challenging to acylate baicalin using traditional acylation methods. In this study, an enzymatic esterification strategy was developed to introduce fatty-acid chains into baicalin at its carboxyl group, hence successfully synthesizing a new series of baicalin ester derivatives in nonaqueous media. Under the optimal reaction conditions, up to 95% conversion of baicalin was achieved. Antimicrobial evaluation of the baicalin ester derivatives indicated a corresponding increase to that of C log P values, with a cutoff effect at C log P = 5.2. Baicalin ester derivatives with C log P values of 4.9-5.2 exhibited the most potent antimicrobial activity. Interestingly, the introduction of medium-length fatty alcohol chains not only increased lipophilicity but also endowed them with membrane-disrupting properties. This study, therefore, provides an understanding of the esterification of flavonoid glycosides and a prospective application of the ester derivatives.
Collapse
|
69
|
Rós PCM, Menezes TK, Bredda EH, Silva MB, Castro HF. Microalgae as a Feedstock for Sustainable Fatty Acids: Factorial Design Study. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patrícia Caroline Molgero Rós
- University of São PauloEngineering School of Lorena, Chemical Engineering Department Campinho Municipal Road w/n, Lorena 12.602-810 São Paulo Brazil
| | - Talitha Kühn Menezes
- University of São PauloEngineering School of Lorena, Chemical Engineering Department Campinho Municipal Road w/n, Lorena 12.602-810 São Paulo Brazil
| | - Eduardo Henrique Bredda
- State University Julio Mesquita FilhoEngineering Faculty of Guaratinguetá, Production Engineering Department Dr. Ariberto Pereira da Cunha Avenue, 333, Guaratinguetá 12.516-410 São Paulo Brazil
| | - Messias Borges Silva
- University of São PauloEngineering School of Lorena, Chemical Engineering Department Campinho Municipal Road w/n, Lorena 12.602-810 São Paulo Brazil
- State University Julio Mesquita FilhoEngineering Faculty of Guaratinguetá, Production Engineering Department Dr. Ariberto Pereira da Cunha Avenue, 333, Guaratinguetá 12.516-410 São Paulo Brazil
| | - Heizir Ferreira Castro
- University of São PauloEngineering School of Lorena, Chemical Engineering Department Campinho Municipal Road w/n, Lorena 12.602-810 São Paulo Brazil
| |
Collapse
|
70
|
Lakshmanan M, Foong CP, Abe H, Sudesh K. Biosynthesis and characterization of co and ter-polyesters of polyhydroxyalkanoates containing high monomeric fractions of 4-hydroxybutyrate and 5-hydroxyvalerate via a novel PHA synthase. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
72
|
Weltz JS, Kienle DF, Schwartz DK, Kaar JL. Dramatic Increase in Catalytic Performance of Immobilized Lipases by Their Stabilization on Polymer Brush Supports. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- James S. Weltz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel F. Kienle
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
73
|
Gacemi S, Benarous K, Imperial S, Yousfi M. Lepidine B & E as New Target Inhibitors from Lepidium Sativum Seeds Against Four Enzymes of the Pathogen Candida albicans: In Vitro and In Silico Studies. Endocr Metab Immune Disord Drug Targets 2019; 20:127-138. [PMID: 30987578 DOI: 10.2174/1871530319666190415141520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. METHODS In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). RESULTS The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. CONCLUSION Through this work, we propose Lepidine B & E as potent antifungal drugs.
Collapse
Affiliation(s)
- Safia Gacemi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Khedidja Benarous
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Santiago Imperial
- Department of biochemistry, Molecular Biomedicine, Faculty of Biology. University of Barcelona, Avenue de Diagonal, 643 08028 Barcelona, Spain
| | - Mohamed Yousfi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| |
Collapse
|
74
|
Zorn K, Oroz-Guinea I, Bornscheuer UT. Strategies for enriching erucic acid from Crambe abyssinica oil by improved Candida antarctica lipase A variants. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
75
|
Chen Y, Liu J, Geng S, Liu Y, Ma H, Zheng J, Liu B, Liang G. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chem 2019; 277:186-194. [DOI: 10.1016/j.foodchem.2018.10.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
76
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
77
|
Zorn K, Oroz‐Guinea I, Brundiek H, Dörr M, Bornscheuer UT. Alteration of Chain Length Selectivity of Candida antarctica Lipase A by Semi-Rational Design for the Enrichment of Erucic and Gondoic Fatty Acids. Adv Synth Catal 2018; 360:4115-4131. [PMID: 30555288 PMCID: PMC6283244 DOI: 10.1002/adsc.201800889] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/07/2022]
Abstract
Biotechnological strategies using renewable materials as starting substrates are a promising alternative to traditional oleochemical processes for the isolation of different fatty acids. Among them, long chain mono-unsaturated fatty acids are especially interesting in industrial lipid modification, since they are precursors of several economically relevant products, including detergents, plastics and lubricants. Therefore, the aim of this study was to develop an enzymatic method in order to increase the percentage of long chain mono-unsaturated fatty acids from Camelina and Crambe oil ethyl ester derivatives, by using selective lipases. Specifically, the focus was on the enrichment of gondoic (C20:1 cisΔ11) and erucic acid (C22:1 cisΔ13) from Camelina and Crambe oil derivatives, respectively. The pursuit of this goal entailed several steps, including: (i) the choice of a suitable lipase scaffold to serve as a protein engineering template (Candida antarctica lipase A); (ii) the identification of potential amino acid targets to disrupt the binding tunnel at the adequate location; (iii) the design, creation and high-throughput screening of lipase mutant libraries; (iv) the study of the selectivity towards different chain length p-nitrophenyl fatty acid esters of the best hits found, as well as the analysis of the contribution of each amino acid change and the outcome of combining several of the aforementioned residue alterations and, finally, (v) the selection and application of the most promising candidates for the fatty acid enrichment biocatalysis. As a result, enrichment of C22:1 from Crambe ethyl esters was achieved either, in the free fatty acid fraction (wt, 78%) or in the esterified fraction (variants V1, 77%; V9, 78% and V19, 74%). Concerning the enrichment of C20:1 when Camelina oil ethyl esters were used as substrate, the best variant was the single mutant V290W, which doubled its content in the esterified fraction from approximately 15% to 34%. A moderately lower increase was achieved by V9 and its two derived triple mutant variants V19 and V20 (27%).
Collapse
Affiliation(s)
- Katja Zorn
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Isabel Oroz‐Guinea
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | | | - Mark Dörr
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Uwe T. Bornscheuer
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
78
|
Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity. Biotechnol Lett 2018; 41:137-146. [DOI: 10.1007/s10529-018-2620-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
79
|
Dettori L, Jelsch C, Guiavarc’h Y, Delaunay S, Framboisier X, Chevalot I, Humeau C. Molecular rules for selectivity in lipase-catalysed acylation of lysine. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
80
|
Cheng C, Jiang T, Wu Y, Cui L, Qin S, He B. Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. Int J Biol Macromol 2018; 119:1211-1217. [DOI: 10.1016/j.ijbiomac.2018.07.158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
|
81
|
Li J, Shen W, Fan G, Li X. Screening, purification and characterization of lipase from Burkholderia pyrrocinia B1213. 3 Biotech 2018; 8:387. [PMID: 30175024 DOI: 10.1007/s13205-018-1414-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
A lipase producing strain B1213 isolated from soil was identified as Burkholderia pyrrocinia based on 16S rRNA gene and recA sequeence analysis, making this the first report on the presence of a lipase from B. pyrrocinia. Under an aqueous two-phase purification strategy, which included (ATPE)-ion-exchange chromatography (IEC)-gel and filtration chromatography (GFC), the specific activity of the 35-kDa lipase was determined to be 875.7 U/mg protein. The optimum pH and temperature of this lipase was pH 8.0 and 50 °C, respectively. The lipase retained > 85% activity in isopropanol and acetone at 30 °C for 10 min but the activity was reduced to 10.6% in n-hexane. Mg2+, Al3+, Mn2+, and Fe3+ enhanced lipase activity at both 1 mM and 5 mM concentrations. p-NPP, a long-chain acyl group 4-NP ester, appeared to be a good substrate candidate.
Collapse
Affiliation(s)
- Jinlong Li
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048 People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Weijia Shen
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048 People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Guangsen Fan
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048 People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Xiuting Li
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048 People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| |
Collapse
|
82
|
Su A, Tyrikos-Ergas T, Shirke AN, Zou Y, Dooley AL, Pavlidis IV, Gross RA. Revealing Cutinases’ Capabilities as Enantioselective Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An Su
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Theodore Tyrikos-Ergas
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Abhijit N. Shirke
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yi Zou
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Abigail L. Dooley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
83
|
Poppe JK, Matte CR, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions. Appl Biochem Biotechnol 2018; 186:576-589. [DOI: 10.1007/s12010-018-2763-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
84
|
Geoffry K, Achur RN. Screening and production of lipase from fungal organisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
85
|
A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
86
|
Ding X, Zheng RC, Tang XL, Zheng YG. Engineering of Talaromyces thermophilus lipase by altering its crevice-like binding site for highly efficient biocatalytic synthesis of chiral intermediate of Pregablin. Bioorg Chem 2018; 77:330-338. [DOI: 10.1016/j.bioorg.2018.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/02/2023]
|
87
|
Kaushik S, Marques SM, Khirsariya P, Paruch K, Libichova L, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Impact of the access tunnel engineering on catalysis is strictly ligand‐specific. FEBS J 2018; 285:1456-1476. [DOI: 10.1111/febs.14418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Kamil Paruch
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Libichova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
88
|
Yang W, Kortesniemi M, Yang B, Zheng J. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2909-2916. [PMID: 29482326 DOI: 10.1021/acs.jafc.7b05924] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cyanidin-3- O-galactoside (cy-gal) isolated from alpine bearberry ( Arctostaphylos alpine L.) was enzymatically acylated with saturated fatty acids of different chain lengths with Candida antarctica lipase immobilized on acrylic resin (Novozyme 435). The acylation reaction was optimized by considering the reaction medium, acyl donor, substrate molar ratio, reaction temperature, and reaction time. The highest conversion yield of 73% was obtained by reacting cy-gal with lauric acid (molar ratio of 1:10) in tert-butanol at 60 °C for 72 h. A novel compound was synthesized, which was identified as cyanidin-3- O-(6″-dodecanoyl)galactoside by mass spectrometry and nuclear magnetic resonance. Introducing lauric acid into cy-gal significantly improved both the lipophilicity and thermostability and substantially preserved the ultraviolet-visible absorbance and antioxidant properties. The research provides important insight in expanding the application of natural anthocyanins in the cosmetic and food industries.
Collapse
Affiliation(s)
- Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Jie Zheng
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| |
Collapse
|
89
|
Almeida AFD, Terrasan CRF, Terrone CC, Tauk-Tornisielo SM, Carmona EC. Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
90
|
Varejão N, De-Andrade RA, Almeida RV, Anobom CD, Foguel D, Reverter D. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase. Structure 2018; 26:199-208.e3. [PMID: 29307486 DOI: 10.1016/j.str.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/28/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft.
Collapse
Affiliation(s)
- Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina and Departamento de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Rafael A De-Andrade
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Rodrigo V Almeida
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Cristiane D Anobom
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departamento de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
91
|
Casas-Godoy L, Gasteazoro F, Duquesne S, Bordes F, Marty A, Sandoval G. Lipases: An Overview. Methods Mol Biol 2018; 1835:3-38. [PMID: 30109644 DOI: 10.1007/978-1-4939-8672-9_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipases are ubiquitous enzymes, widespread in nature. They were first isolated from bacteria in the early nineteenth century, and the associated research continuously increased due to the characteristics of these enzymes. This chapter reviews the main sources, structural properties, and industrial applications of these highly studied enzymes.
Collapse
Affiliation(s)
- Leticia Casas-Godoy
- Cátedras CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
| | - Francisco Gasteazoro
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Sophie Duquesne
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Florence Bordes
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
92
|
Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters from short building blocks. Effect of the monomer length. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
93
|
Papadaki A, Mallouchos A, Efthymiou MN, Gardeli C, Kopsahelis N, Aguieiras ECG, Freire DMG, Papanikolaou S, Koutinas AA. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. BIORESOURCE TECHNOLOGY 2017; 245:274-282. [PMID: 28892702 DOI: 10.1016/j.biortech.2017.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Maria-Nefeli Efthymiou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chryssavgi Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Food Technology, Technological Educational Institute (TEI) of Ionian Islands, Argostoli 28100, Kefalonia, Greece
| | - Erika C G Aguieiras
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro, RJ, Brazil
| | - Denise M G Freire
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro, RJ, Brazil
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
94
|
Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation. J Biotechnol 2017; 262:1-10. [DOI: 10.1016/j.jbiotec.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/11/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022]
|
95
|
Katayama M, Kuroiwa T, Suzuno K, Igusa A, Matsui T, Kanazawa A. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media. Enzyme Microb Technol 2017; 105:30-37. [DOI: 10.1016/j.enzmictec.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 11/29/2022]
|
96
|
de Araújo MEMB, Franco YEM, Alberto TG, Messias MCF, Leme CW, Sawaya ACHF, Carvalho PDO. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically. J Enzyme Inhib Med Chem 2017; 32:978-985. [PMID: 28718686 PMCID: PMC6445226 DOI: 10.1080/14756366.2017.1347165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography–mass spectrometry (UHPLC–MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p < .05) between the flavonoids before and after acylation regarding Km values, whereas the values for Vmax were the same, implying the competitive nature of XO inhibition.
Collapse
Affiliation(s)
| | | | - Thiago Grando Alberto
- a Laboratory of Multidisciplinary Research , São Francisco University , Bragança Paulista , Brazil
| | | | - Camila Wielewski Leme
- b Department of Biochemistry , Institute of Biology, State University of Campinas (UNICAMP) , Campinas , Brazil
| | | | | |
Collapse
|
97
|
Regioselective Synthesis of Lactulose Esters by Candida antarctica and Thermomyces lanuginosus Lipases. Catalysts 2017. [DOI: 10.3390/catal7090263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
98
|
Jan AH, Dubreucq É, Subileau M. Revealing the Roles of Subdomains in the Catalytic Behavior of Lipases/Acyltransferases Homologous to CpLIP2 through Rational Design of Chimeric Enzymes. Chembiochem 2017; 18:941-950. [DOI: 10.1002/cbic.201600672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anne-Hélène Jan
- Montpellier Supagro; UMR 1208 IATE; 2 place Viala 34060 Montpellier cedex 2 France
| | - Éric Dubreucq
- Montpellier Supagro; UMR 1208 IATE; 2 place Viala 34060 Montpellier cedex 2 France
| | - Maeva Subileau
- Montpellier Supagro; UMR 1208 IATE; 2 place Viala 34060 Montpellier cedex 2 France
| |
Collapse
|
99
|
Sembayeva A, Berhane B, Carr JA. Lipase-mediated regioselective modifications of macrolactonic sophorolipids. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|