51
|
Hagan MM, Benoit SC, Rushing PA, Pritchard LM, Woods SC, Seeley RJ. Immediate and prolonged patterns of Agouti-related peptide-(83--132)-induced c-Fos activation in hypothalamic and extrahypothalamic sites. Endocrinology 2001; 142:1050-6. [PMID: 11181518 DOI: 10.1210/endo.142.3.8018] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several lines of evidence substantiate the important role of the central nervous system melanocortin 3- and 4-receptor (MC3/4-R) system in the control of food intake and energy balance. Agouti-related peptide (AgRP), an endogenous antagonist of these receptors, produces a robust and unique pattern of increased food intake that lasts up to 7 days after a single injection. Little is known about brain regions that may mediate this powerful effect of AgRP on food intake. To this end we compared c-Fos-like immunoreactivity (c-FLI) in several brain sites of rats injected intracerebroventricularly with 1 nmol AgRP-(83--132) 2 and 24 h before death and compared c-FLI patterns to those induced by another potent orexigenic peptide, neuropeptide Y (NPY). Although both NPY and AgRP induced c-FLI in hypothalamic areas, AgRP also produced increased c-FLI in the accumbens shell and lateral septum. Although NPY elicited no changes in c-FLI 24 h after administration, AgRP induced c-FLI in the accumbens shell, nucleus of the solitary tract, central amygdala, and lateral hypothalamus. These results indicate that an NPY-like hypothalamic circuit mediates the short-term effects of AgRP, but that the unique sustained effect of AgRP on food intake involves a complex circuit of key extrahypothalamic reward and feeding regulatory nuclei.
Collapse
Affiliation(s)
- M M Hagan
- Department of Psychology, University of Alabama, Birmingham, Alabama 35294-1170, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol 2001; 280:R814-21. [PMID: 11171662 DOI: 10.1152/ajpregu.2001.280.3.r814] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.
Collapse
Affiliation(s)
- M M Hagan
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA
| | | | | | | | | |
Collapse
|
53
|
Small CJ, Kim MS, Stanley SA, Mitchell JR, Murphy K, Morgan DG, Ghatei MA, Bloom SR. Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 2001; 50:248-54. [PMID: 11272133 DOI: 10.2337/diabetes.50.2.248] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The melanocortin receptor (MC3-R and MC4-R) antagonist, agouti-related protein (AGRP), is a potent stimulant of food intake. We examined the effect of chronic intracerebroventricular (ICV) AGRP treatment on energy metabolism and pituitary function in ad libitum fed rats and rats administered AGRP and then pair-fed to a saline control group. Chronic ICV AGRP (83-132) administration (1 nmol/day for 7 days) significantly increased food intake and body weight in ad libitum fed animals compared with saline-treated controls (body weight on day 7: 272 +/- 6 [saline] vs. 319 +/- 8 g [AGRP ad libitum fed]; P < 0.001). A significant increase in the epididymal fat pad weight, interscapular brown adipose tissue (BAT) weight, and plasma leptin was also observed in the ad libitum fed group. In the AGRP pair-fed group, a significant increase in the epididymal fat pad weight, BAT weight, and plasma leptin was again observed, suggesting that AGRP caused metabolic changes independent of increased food intake. BAT uncoupling protein 1 (UCP-1) content was significantly decreased compared with saline controls in both the AGRP ad libitum fed (21 +/- 8% of saline control; P < 0.01) and AGRP pair-fed groups (24 +/- 7% of saline control; P < 0.01). Plasma thyroid-stimulating hormone (TSH) was significantly suppressed compared with saline controls in both the AGRP ad libitum fed and AGRP pair-fed groups (3.5 +/- 0.3 [saline] vs. 2.7 +/- 0.4 [AGRP ad libitum fed] vs. 2.1 +/- 0.2 ng/ml [AGRP pair-fed]; P < 0.01). This study demonstrates that independent of its orexigenic effects, chronic AGRP treatment decreased BAT UCP-1, suppressed plasma TSH, and increased fat mass and plasma leptin, suggesting that it may play a role in energy expenditure.
Collapse
Affiliation(s)
- C J Small
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Nijenhuis WA, Oosterom J, Adan RA. AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 2001; 15:164-71. [PMID: 11145747 DOI: 10.1210/mend.15.1.0578] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises alpha-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83-132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83-132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83-132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of alpha-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.
Collapse
Affiliation(s)
- W A Nijenhuis
- Molecular Neuroscience Rudolf Magnus Institute for Neurosciences University Medical Center Utrecht Utrecht, the Netherlands 3584 CG
| | | | | |
Collapse
|
55
|
Bicknell AB, Lomthaisong K, Gladwell RT, Lowry PJ. Agouti related protein in the rat adrenal cortex: implications for novel autocrine mechanisms modulating the actions of pro-opiomelanocortin peptides. J Neuroendocrinol 2000; 12:977-82. [PMID: 11012838 DOI: 10.1046/j.1365-2826.2000.00543.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agouti related protein (AgRP) is a recently discovered melanocortin receptors (MCR) antagonist implicated in the control of feeding behaviour. Expression of AgRP has been shown to be localized by in situ hybridization to the arcuate nucleus and median eminence of the brain, where it acts as an antagonist to the MC3 and MC4 receptors, while in the periphery the only significant expression was located in the adrenal medulla. As AgRP is only a weak antagonist of the MC2 and MC5 receptors, which are expressed principally by adipocytes and in the adrenal cortex, the question arizes as to the function of peripheral AgRP. In this study, we investigated the expression of AgRP in the rat adrenal and suggest that it is expressed in the adrenal cortex and not as previously described in the medulla. We also show that AgRP mRNA expression is upregulated in the adrenal during fasting and in the contralateral gland following unilateral adrenalectomy but not during chronic stress. These results indicate an as yet undefined role for AgRP in the periphery and are supportive of the suggestion that a further melanocortin receptor exists.
Collapse
Affiliation(s)
- A B Bicknell
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, Reading, Berkshire, UK.
| | | | | | | |
Collapse
|
56
|
Hagan MM, Rushing PA, Pritchard LM, Schwartz MW, Strack AM, Van Der Ploeg LH, Woods SC, Seeley RJ. Long-term orexigenic effects of AgRP-(83---132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol 2000; 279:R47-52. [PMID: 10896863 DOI: 10.1152/ajpregu.2000.279.1.r47] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of agouti-related peptide (AgRP), an endogenous melanocortin (MC) 3 and 4 receptor antagonist (MC3/4-R), causes obesity. Exogenous AgRP-(83---132) increases food intake, but its duration and mode of action are unknown. We report herein that doses as low as 10 pmol can have a potent effect on food intake of rats over a 24-h period after intracerebroventricular injection. Additionally, a single third ventricular dose as low as 100 pmol in rats produces a robust increase in food intake that persists for an entire week. AgRP-(83---132) completely blocks the anorectic effect of MTII (MC3/4-R agonist), given simultaneously, consistent with a competitive antagonist action. However, when given 24 h prior to MTII, AgRP-(83---132) is ineffective at reversing the anorectic effects of the agonist. These results support a critical role of MC tone in limiting food intake and indicate that the orexigenic effects of AgRP-(83---132) are initially mediated by competitive antagonism at MC receptors but are sustained by alternate mechanisms.
Collapse
Affiliation(s)
- M M Hagan
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0559, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Haskell-Luevano C, Monck EK, Wan YP, Schentrup AM. The agouti-related protein decapeptide (Yc[CRFFNAFC]Y) possesses agonist activity at the murine melanocortin-1 receptor. Peptides 2000; 21:683-9. [PMID: 10876051 DOI: 10.1016/s0196-9781(00)00194-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AGRP) is a naturally occurring antagonist of the brain melanocortin receptors (MC3R and MC4R) and is physiologically implicated as participating in feeding behavior and energy homeostasis. The human AGRP decapeptide Yc[CRFFNAFC]Y has been previously reported as binding to the human MC3 and MC4 receptors and antagonizing the MC4 receptor. We have synthesized this decapeptide and pharmacologically characterized it at the murine melanocortin receptors and found it to possess MC4R antagonist activity (pA(2) = 6.8) and, unexpectedly, MC1R agonist activity (EC(50) = 2.89 microM). This study characterizes the first AGRP-based peptide agonist at the melanocortin receptors.
Collapse
Affiliation(s)
- C Haskell-Luevano
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
58
|
Takeuchi S, Teshigawara K, Takahashi S. Widespread expression of Agouti-related protein (AGRP) in the chicken: a possible involvement of AGRP in regulating peripheral melanocortin systems in the chicken. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:261-9. [PMID: 10771094 DOI: 10.1016/s0167-4889(00)00022-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Agouti-related protein (AGRP) is a naturally occurring antagonist of melanocortin action. It is expressed mainly in the arcuate nucleus where it plays an important role in the hypothalamic control of feeding and energy homeostasis by antagonism of central melanocortin 4 receptors in mammals. Besides in the brain, the melanocortin 4 receptor is expressed in numerous peripheral tissues in the chicken. To examine whether or not the peripheral melanocortin 4 receptor signaling could be regulated by AGRP, we cloned and localized the expression of the AGRP gene in the chicken. The chicken AGRP gene was found to encode a 154 or 165 amino acid protein, depending on the usage of two alternative translation initiation sites. The coding sequence consisted of three exons, like that of mammalian species. The C-terminal cysteine-rich region of the predicted AGRP displayed high levels of identity to mammalian counterparts (78-84%) and all 10 cysteine residues conferring functional conformation of AGRP were conserved; however, other regions showed apparently no homology, suggesting that biological activities of AGRP are located in its C-terminal region. RT-PCR analysis detected the AGRP mRNA in all tissues examined: the brain, adrenal gland, heart, liver, spleen, gonads, kidney, uropygial gland, skeletal muscle and adipose tissues. Interestingly, the skin also expressed the AGRP mRNA, where Agouti, another melanocortin receptor antagonist regulating hair pigmentation, is expressed in rodents. Most of those AGRP-expressing tissues have been demonstrated to express melanocortin 4 receptors and/or other subtypes of melanocortin receptor whose mammalian counterparts can bind AGRP. These results imply the possibility that some peripheral melanocortin systems could be regulated by the functional interaction between melanocortins and AGRP at melanocortin receptors in the chicken.
Collapse
Affiliation(s)
- S Takeuchi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1, Tsushimanaka, Okayama, Japan.
| | | | | |
Collapse
|
59
|
Young Y, Zeni L, Rosenfeld RD, Stark KL, Rohde MF, Haniu M. Disulfide assignment of the C-terminal cysteine knot of agouti-related protein (AGRP) by direct sequencing analysis. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:514-21. [PMID: 10604596 DOI: 10.1034/j.1399-3011.1999.00126.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have assigned the disulfide structure of Md-65 agouti-related protein (Md65-AGRP) using differential reduction and alkylation followed by direct sequencing analysis. The mature human AGRP is a single polypeptide chain of 112 amino acid residues, consisting of an N-terminal acidic region and a unique C-terminal cysteine-rich domain. The C-terminal domain, a 48 amino acid peptide named Md65-AGRP, was expressed in Escherichia coil cells and refolded under different conditions from the mature recombinant protein. The disulfide bonds in the cystine knot structure of Md65-AGRP were partially reduced using tris(2-carboxyethyl) phosphine (TCEP) under acidic conditions, followed by alkylation with N-ethylmaleimide (NEM). The procedure generated several isoforms with varying degrees of NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduction and NEM modification were then completely reduced and carboxymethylated to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were directly sequenced and analyzed by MALDI mass spectrometry. The results confirmed that Md65-AGRP contained the same disulfide structure as that of Md5-AGRP reported previously [Bures, E. J., Hui, J. O., Young, Y. et al. (1998) Biochemistry 37, 12172-12177].
Collapse
Affiliation(s)
- Y Young
- Department of Protein Structure, Amgen, Inc, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | |
Collapse
|
60
|
Miltenberger RJ, Mynatt RL, Bruce BD, Wilkison WO, Woychik RP, Michaud EJ. An agouti mutation lacking the basic domain induces yellow pigmentation but not obesity in transgenic mice. Proc Natl Acad Sci U S A 1999; 96:8579-84. [PMID: 10411918 PMCID: PMC17559 DOI: 10.1073/pnas.96.15.8579] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic antagonism of melanocortin receptors by the paracrine-acting agouti gene product induces both yellow fur and a maturity-onset obesity syndrome in mice that ubiquitously express wild-type agouti. Functional analysis of agouti mutations in transgenic mice indicate that the cysteine-rich C terminus, signal peptide, and glycosylation site are required for agouti activity in vivo. In contrast, no biological activity has been ascribed to the conserved basic domain. To examine the functional significance of the agouti basic domain, the entire 29-aa region was deleted from the agouti cDNA, and the resulting mutation (agoutiDeltabasic) was expressed in transgenic mice under the control of the beta-actin promoter (BAPaDeltabasic). Three independent lines of BAPaDeltabasic transgenic mice all developed some degree of yellow pigment in the fur, indicating that the agoutiDeltabasic protein was functional in vivo. However, none of the BAPaDeltabasic transgenic mice developed completely yellow fur, obesity, hyperinsulinemia, or hyperglycemia. High levels of agoutiDeltabasic expression in relevant tissues exceeded the level of agouti expression in obese viable yellow mice, suggesting that suboptimal activity or synthesis of the agoutiDeltabasic protein, rather than insufficient RNA synthesis, accounts for the phenotype of the BAPaDeltabasic transgenic mice. These findings implicate a functional role for the agouti basic domain in vivo, possibly influencing the biogenesis of secreted agouti protein or modulating protein-protein interactions that contribute to effective antagonism of melanocortin receptors.
Collapse
Affiliation(s)
- R J Miltenberger
- Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2009, MS 8077, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
61
|
Bolin KA, Anderson DJ, Trulson JA, Thompson DA, Wilken J, Kent SB, Gantz I, Millhauser GL. NMR structure of a minimized human agouti related protein prepared by total chemical synthesis. FEBS Lett 1999; 451:125-31. [PMID: 10371151 DOI: 10.1016/s0014-5793(99)00553-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the chemically synthesized C-terminal region of the human agouti related protein (AGRP) was determined by 2D 1H NMR. Referred to as minimized agouti related protein, MARP is a 46 residue polypeptide containing 10 Cys residues involved in five disulfide bonds that retains the biological activity of full length AGRP. AGRP is a mammalian signaling molecule, involved in weight homeostasis, that causes adult onset obesity when overexpressed in mice. AGRP was originally identified by homology to the agouti protein, another potent signaling molecule involved in obesity disorders in mice. While AGRP's exact mechanism of action is unknown, it has been identified as a competitive antagonist of melanocortin receptors 3 and 4 (MC3r, MC4r), and MC4r in particular is implicated in the hypothalamic control of feeding behavior. Full length agouti and AGRP are only 25% homologous, however, their active C-terminal regions are approximately 40% homologous, with nine out of the 10 Cys residues spatially conserved. Until now, 3D structures have not been available for either agouti, AGRP or their C-terminal regions. The NMR structure of MARP reported here can be characterized as three major loops, with four of the five disulfide bridges at the base of the structure. Though its fold is well defined, no canonical secondary structure is identified. While previously reported structural models of the C-terminal region of AGRP were attempted based on Cys homology between AGRP and certain toxin proteins, we find that Cys spacing is not sufficient to correctly determine the 3D fold of the molecule.
Collapse
Affiliation(s)
- K A Bolin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Haskell-Luevano C, Chen P, Li C, Chang K, Smith MS, Cameron JL, Cone RD. Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology 1999; 140:1408-15. [PMID: 10067869 DOI: 10.1210/endo.140.3.6544] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related protein (AGRP) is a recently described homolog of the skin agouti protein. AGRP is transcribed primarily in the adrenal and hypothalamus and is a high affinity antagonist of the neural melanocortin-3 and melanocortin-4 receptors. The perikarya expressing AGRP messenger RNA are found in the arcuate nucleus of the rat and rhesus monkey. Using a polyclonal antibody against the pharmacologically active domain of AGRP (amino acids 83-132), we have also characterized the distribution of AGRP-immunoreactive neurons in both species. The major fiber tracts are conserved in both species, with dense projections originating in the arcuate nucleus and proceeding along the third ventricle. Dense fiber bundles are also visible in the paraventricular, dorsomedial, and posterior nuclei in the hypothalamus, in the bed nucleus of the stria terminalis, and in the lateral septal nucleus of the septal region. AGRP-containing neurons are not visualized in a number of areas, including portions of the amygdala, thalamus, and brain stem, that express MC3-R and MC4-R messenger RNA and receive innervation from POMC neurons that serve as the source of melanocortin agonists. Thus, AGRP is most likely to be involved in modulating a conserved subset of the physiological functions of central melanocortin peptides. Based on the particular distribution of AGRP neurons, those functions are likely to include the central control of energy homeostasis.
Collapse
Affiliation(s)
- C Haskell-Luevano
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Tota MR, Smith TS, Mao C, MacNeil T, Mosley RT, Van der Ploeg LH, Fong TM. Molecular interaction of Agouti protein and Agouti-related protein with human melanocortin receptors. Biochemistry 1999; 38:897-904. [PMID: 9893984 DOI: 10.1021/bi9815602] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agouti protein and the Agouti-related protein (AGRP) are antagonists of the melanocortin-3 receptor and melanocortin-4 receptor. Both proteins contain 10 cysteines in the C-terminal domain arranged in five disulfide bonds. One possible arrangement of the disulfide bonds predicts an octapeptide loop, and the chemical properties of four residues within this loop (residues 111-114 in human AGRP) bear striking resemblance to those of several melanocortin peptides, including alpha-MSH, MT-II, and SHU-9119. We showed that cyclic synthetic octapeptides based on the sequence of this loop from Agouti protein or human AGRP are functional antagonists of the human melanocortin-4 receptor. All peptides had a lower affinity for the melanocortin-3 receptor than for the melanocortin-4 receptor. Substitution of serines for cysteines resulted in linear peptides which had reduced binding affinities for both receptors. Mutational analysis of human AGRP indicated that its C-terminal domain is functionally equivalent to the intact human AGRP. The RFF111-113 triplet appears to be the most critical portion of AGRP in determining the binding affinity for both melanocortin-3 and melanocortin-4 receptors. These data strongly suggest that the loop defined by Cys-110 and Cys-117 is critical in determining the antagonist activity of human AGRP. Our data provide indirect evidence for the suggestion that the Cys-110 to Cys-117 octapeptide loop of human AGRP mimics the conformation of alpha-MSH, MT-II, and SHU-9119.
Collapse
Affiliation(s)
- M R Tota
- Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | |
Collapse
|