51
|
Repetitive live sporozoites inoculation under arteether chemoprophylaxis confers protection against subsequent sporozoite challenge in rodent malaria model. Acta Trop 2016; 158:130-138. [PMID: 26925772 DOI: 10.1016/j.actatropica.2016.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 02/14/2016] [Accepted: 02/22/2016] [Indexed: 01/06/2023]
Abstract
Inoculation with live sporozoites under prophylactic antimalarial cover (CPS-immunization) represents an alternate approach to develop sterile, reproducible, and long-term protection against malaria. Here, we have employed arteether (ART), a semi synthetic derivative of artemisinin to explore its potential as a chemoprophylaxis candidate in CPS approach and systematically compared the protective potential of arteether with mefloquine, azithromycin and primaquine. Blood stage patency and quantitative RT-PCR of liver stage parasite load were monitored as primary key end-points for protection against malaria challenge infection. For this purpose, sequential exposures of Plasmodium yoelii sporozoites under prophylactic treatment with arteether (ART), mefloquine (MFQ), azithromycin (AZ) or primaquine (PQ) was conducted in experimental Swiss mice. Our results show that during the first three sequential exposures (1st, 2nd and 3rd challenge) no marked difference in the blood stage patency was observed between control and CPS-ART group. However, delayed patency was recorded following 4th sporozoite challenge and mice enjoyed sterile protection after 5th sporozoite challenge. A similar response was observed in CPS-MFQ group, whereas earlier protection was recorded in CPS-AZ group i.e., after 4th sprozoite challenge. However, mice under PQ cover did not show any protection/delay in patency even after five sequential sporozoite inoculations, possibly due to inhibition of liver stage development. Furthermore, protection acquired by CPS-immunization is stage-specific as the protected mice remained susceptible to challenge with blood stage parasites. In short, the present study demonstrates that sporozoite administration under ART, MFQ or AZ treatment confers strong protection against subsequent sporozoite infection and the acquired response is dependent on the presence of liver stage parasites.
Collapse
|
52
|
Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 2016; 6:20177. [PMID: 26858127 PMCID: PMC4746575 DOI: 10.1038/srep20177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.
Collapse
|
53
|
Dynamic control of hepatic Plasmodium numbers by hepcidin despite elevated liver iron during iron supplementation. Microbes Infect 2015; 18:48-56. [PMID: 26384816 DOI: 10.1016/j.micinf.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Treatment of iron deficiency anemia in malaria endemic areas is complicated as iron supplementation increases malaria risk while malaria decreases iron absorption. Here we measured the influence of hepcidin expression and non-heme iron during iron supplementation on hepatic Plasmodium berghei numbers in anemic and non-anemic mice. Despite elevated hepatic non-heme iron on the high iron diet, elevated hepcidin expression is associated with less parasite bioavailable iron and lower hepatic parasite loads in anemic, iron deficient mice after both two and six weeks of supplementation. A marginal trend to lower parasite hepatic numbers was seen in non-anemic, iron replete mice. In a transgenic model of severe anemia, mice with a deletion in Sec15l1, which reportedly have normal liver iron and normal hepcidin expression, there were no changes in liver parasite numbers or blood stage numbers or outcome in the lethal Plasmodium yoelii model. In summary during iron supplementation the lower hepatic malaria numbers are regulated more by hepcidin than the absolute level of non-heme hepatic iron.
Collapse
|
54
|
Siddiqui AJ, Bhardwaj J, Goyal M, Prakash K, Soni A, Tiwari V, Puri SK. Assessment of real-time method to detect liver parasite burden under different experimental conditions in mice infected with Plasmodium yoelii sporozoites. Microb Pathog 2015; 89:35-42. [PMID: 26341953 DOI: 10.1016/j.micpath.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Use of highly specific, sensitive and quantitative Real-Time PCR (qRT-PCR) based methods greatly facilitate the monitoring of experimental drug intervention and vaccination efficacy targeting liver stage malaria parasite. Here, in this study we have used qRT-PCR to detect the growing liver stage parasites following inoculation of Plasmodium yoelii sporozoite. Route of sporozoite administration and size of the sporozoite inoculums are two major determinants that affect the liver stage parasite load and therefore its detection and quantification. Thus, these factors need to be addressed to determine the accuracy of detection and quantification of Real-Time PCR method. Furthermore, applicability of quantitative RT-PCR system needs to be confirmed by analyzing the effect of different antimalarials on liver stage parasite burden. We have observed that parasite burden in mice infected via intravenous route was higher compared to that in subcutaneous, intradermal and intraperitoneal route infected mice. Moreover, this method detected liver stage parasite load with as low as 50 sporozoites. The inhibition studies with primaquine and atovaquone revealed inhibition of liver stage parasite and well correlated with patency and course of blood stage infection. This study characterized the simplicity, accuracy, and quantitative analysis of liver stage parasite development by real time PCR under different experimental conditions. Use of real time PCR method greatly improves the reproducibility and applicability to estimate the efficacy and potency of vaccine or drug candidates targeting liver stage parasite.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Jyoti Bhardwaj
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Manish Goyal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Kirtika Prakash
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Awakash Soni
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| | - Sunil K Puri
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
55
|
Nemetski SM, Cardozo TJ, Bosch G, Weltzer R, O'Malley K, Ejigiri I, Kumar KA, Buscaglia CA, Nussenzweig V, Sinnis P, Levitskaya J, Bosch J. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex. Malar J 2015; 14:324. [PMID: 26289816 PMCID: PMC4545932 DOI: 10.1186/s12936-015-0834-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. METHODS Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. RESULTS A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. CONCLUSION This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the presence of the small molecule stabilizer compound 24.
Collapse
Affiliation(s)
- Sondra Maureen Nemetski
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Department of Pediatrics, Phyllis and David Komansky Center for Children's Health, New York-Presbyterian Hospital-Weill Cornell Medical College, New York, USA.
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Institute for Systems Genetics, New York University School of Medicine, New York, USA.
| | - Gundula Bosch
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ryan Weltzer
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Kevin O'Malley
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ijeoma Ejigiri
- Department of Medical Parasitology, New York University School of Medicine, New York, USA.
| | - Kota Arun Kumar
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA. .,Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martín-CONICET, 1650, San Martín, Buenos Aires, Argentina.
| | - Victor Nussenzweig
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Department of Medical Parasitology, New York University School of Medicine, New York, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jelena Levitskaya
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| |
Collapse
|
56
|
Hopp CS, Chiou K, Ragheb DRT, Salman AM, Khan SM, Liu AJ, Sinnis P. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. eLife 2015; 4. [PMID: 26271010 PMCID: PMC4594146 DOI: 10.7554/elife.07789] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022] Open
Abstract
Malaria infection starts with injection of Plasmodium sporozoites by an Anopheles mosquito into the skin of the mammalian host. How sporozoites locate and enter a blood vessel is a critical, but poorly understood process. In this study, we examine sporozoite motility and their interaction with dermal blood vessels, using intravital microscopy in mice. Our data suggest that sporozoites exhibit two types of motility: in regions far from blood vessels, they exhibit ‘avascular motility’, defined by high speed and less confinement, while in the vicinity of blood vessels their motility is more constrained. We find that curvature of sporozoite tracks engaging with vasculature optimizes contact with dermal capillaries. Imaging of sporozoites with mutations in key adhesive proteins highlight the importance of the sporozoite's gliding speed and its ability to modulate adhesive properties for successful exit from the inoculation site. DOI:http://dx.doi.org/10.7554/eLife.07789.001 Malaria remains a devastating disease in many parts of the world. Malaria parasites enter the host via the skin, where they are deposited by infected mosquitoes as they look for blood. The parasites must exit the skin to reach the liver, where they multiply and ultimately infect red blood cells, where they cause the symptoms of the disease. In the skin, the parasites must move to find blood vessels that they enter to travel via the blood circulation to the liver. Only about 10–20% of parasites make it out of the skin, making this a bottleneck for the parasite. Scientists have been working to develop vaccines that would protect people against malaria. One way these could work would be to stop malaria parasites from leaving the skin and entering the blood vessels. But to do that, more needs to be learnt about how the parasites move in the skin and enter the blood vessels. Hopp et al., using a mouse model of malaria, created malaria parasites that produce a fluorescent protein that allows the parasites to be tracked after they have been injected into the skin of a mouse's ear. This revealed that the parasites have two ways of moving. After first being injected, the parasites move quickly and freely. The parasites slow down when they come close to a blood vessel and move on or around the vessel for some time before entering it. During this stage of movement, the parasites tend to move in paths that follow the curvature of the blood vessels, which may improve how well they make contact with the blood vessel surface and may enable them to find the areas of the vessels best suited for entry. Next, Hopp et al. investigated how two parasite mutants move through mouse skin. Both mutants had previously been found to be less likely than wild-type parasites to exit the inoculation site. Hopp et al. found that one of the mutants moves slowly after being injected and so explores a smaller tissue volume than normal and encounters fewer blood vessels. The second mutant parasite spends more time than normal moving on the surface of the blood vessels, but finds it difficult to enter them. Continuing this work will allow us to learn more about the interactions between the parasite and the blood vessels, which in turn could reveal key events that could be targeted by a vaccine. Furthermore, the significant amount of time that the parasites spend moving and looking for blood vessels in the skin could be a good time to target them with antibodies and prevent malaria infection. DOI:http://dx.doi.org/10.7554/eLife.07789.002
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Kevin Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
| | - Daniel R T Ragheb
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Ahmed M Salman
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
57
|
Cha SJ, Park K, Srinivasan P, Schindler CW, van Rooijen N, Stins M, Jacobs-Lorena M. CD68 acts as a major gateway for malaria sporozoite liver infection. ACTA ACUST UNITED AC 2015. [PMID: 26216124 PMCID: PMC4548058 DOI: 10.1084/jem.20110575] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cha et al. use a phage display library screen to identify a peptide, P39, that binds to CD68 on the surface of Kupffer cells to inhibit malaria sporozoite cell entry. Thus, P39 may represent a therapeutic strategy for malaria by limiting hepatic infection. After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver.
Collapse
Affiliation(s)
- Sung-Jae Cha
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Kiwon Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Christian W Schindler
- Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032 Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VUmc, 1081 BT Amsterdam, Netherlands
| | - Monique Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
58
|
Whitacre DC, Espinosa DA, Peters CJ, Jones JE, Tucker AE, Peterson DL, Zavala FP, Milich DR. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections. PLoS One 2015; 10:e0124856. [PMID: 25933001 PMCID: PMC4416889 DOI: 10.1371/journal.pone.0124856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hepatitis B Virus, Woodchuck/immunology
- Immunity
- Immunization
- Life Cycle Stages
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protozoan Proteins/immunology
- Rabbits
- Repetitive Sequences, Amino Acid
- Reproducibility of Results
- Virion/immunology
Collapse
Affiliation(s)
- David C. Whitacre
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cory J. Peters
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Joyce E. Jones
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Amy E. Tucker
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Darrell L. Peterson
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fidel P. Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David R. Milich
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
59
|
Sahu T, Lambert L, Herrod J, Conteh S, Orr-Gonzalez S, Carter D, Duffy PE. Chloroquine neither eliminates liver stage parasites nor delays their development in a murine Chemoprophylaxis Vaccination model. Front Microbiol 2015; 6:283. [PMID: 25914686 PMCID: PMC4391028 DOI: 10.3389/fmicb.2015.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/22/2015] [Indexed: 11/13/2022] Open
Abstract
Chemoprophylaxis Vaccination (CVac) confers long lasting sterile protection against homologous parasite strains in humans, and involves inoculation of infectious sporozoites (SPZ) under drug cover. CVac using the drug chloroquine (CQ) induces pre-erythrocytic immunity in humans that includes antibody to SPZ and T-cell responses to liver stage (LS) parasites. The mechanism by which CVac with CQ induces strong protective immunity is not understood as untreated infections do not confer protection. CQ kills blood stage parasites, but its effect on LS parasites is poorly studied. Here we hypothesized that CQ may prolong or perturb LS development of Plasmodium, as a potential explanation for enhanced pre-erythrocytic immune responses. Balb/c mice with or without CQ prophylaxis were infected with sporozoite forms of a luciferase-expressing rodent parasite, Plasmodium yoelii-Luc (Py-Luc). Mice that received primaquine, a drug that kills LS parasites, served as a positive control of drug effect. Parasite burden in liver was measured both by bioluminescence and by qRT-PCR quantification of parasite transcript. Time to appearance of parasites in the blood was monitored by microscopic analysis of Giemsa-stained thick and thin blood smears. The parasite load in livers of CQ-treated and untreated mice did not significantly differ at any of the time points studied. Parasites appeared in the blood smears of both CQ-treated and untreated mice 3 days after infection. Taken together, our findings confirm that CQ neither eliminates LS parasites nor delays their development. Further investigations into the mechanism of CQ-induced protection after CVac are required, and may give insights relevant to drug and vaccine development.
Collapse
Affiliation(s)
- Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Jessica Herrod
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Dariyen Carter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD, USA
| |
Collapse
|
60
|
Espinosa DA, Gutierrez GM, Rojas-López M, Noe AR, Shi L, Tse SW, Sinnis P, Zavala F. Proteolytic Cleavage of the Plasmodium falciparum Circumsporozoite Protein Is a Target of Protective Antibodies. J Infect Dis 2015; 212:1111-9. [PMID: 25762791 DOI: 10.1093/infdis/jiv154] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 11/13/2022] Open
Abstract
Studies in animals and human volunteers demonstrate that antibodies against the repeat-region of the Plasmodium circumsporozoite protein (CSP) abrogate sporozoite infection. However, the realization that the N- and C- terminal regions flanking the repeats play essential roles in parasite infectivity raised the possibility that they could be targeted by protective antibodies. We characterized a monoclonal antibody (mAb5D5) specific for the N-terminus of the P. falciparum CSP, which inhibits the proteolytic cleavage of the CSP, a key requirement for parasite infection of hepatocytes. Adoptive transfer of mAb5D5 strongly inhibits the in vivo infection of sporozoites expressing the N-terminus of P. falciparum CSP, and this protection is greatly enhanced when combined with antirepeat antibodies. Our results show that antibodies interfering with molecular processes required for parasite infectivity can exert a strong in vivo protective activity and indicate that pre-erythrocytic vaccines against Plasmodium should include the CSP N-terminal region.
Collapse
Affiliation(s)
- Diego A Espinosa
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| | | | - Maricarmen Rojas-López
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| | | | - Lirong Shi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| | - Sze-Wah Tse
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore
| |
Collapse
|
61
|
Zhou C, Chen X, Zhang Q, Wang J, Wu MX. Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines. J Control Release 2015; 204:30-7. [PMID: 25725360 DOI: 10.1016/j.jconrel.2015.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Immunization with radiation-attenuated sporozoites (RAS) via mosquito bites has been shown to induce sterile immunity against malaria in humans, but this route of vaccination is neither practical nor ethical. The importance of delivering RAS to the liver through circulation in eliciting immunity against this parasite has been recently verified by human studies showing that high-level protection was achieved only by intravenous (IV) administration of RAS, not by intradermal (ID) or subcutaneous (SC) vaccination. Here, we report in a murine model that ID inoculation of RAS into laser-illuminated skin confers immune protection against malarial infection almost as effectively as IV immunization. Brief illumination of the inoculation site with a low power 532 nm Nd:YAG laser enhanced the permeability of the capillary beneath the skin, owing to hemoglobin-specific absorbance of the light. The increased blood vessel permeability appeared to facilitate an association of RAS with blood vessel walls by an as-yet-unknown mechanism, ultimately promoting a 7-fold increase in RAS entering circulation and reaching the liver over ID administration. Accordingly, ID immunization of RAS at a laser-treated site stimulated much stronger sporozoite-specific antibody and CD8(+)IFN-γ(+) T cell responses than ID vaccination and provided nearly full protection against malarial infection, whereas ID immunization alone was ineffective. This novel, safe, and convenient strategy to augment efficacy of ID sporozoite-based vaccines warrants further investigation in large animals and in humans.
Collapse
Affiliation(s)
- Chang Zhou
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Xinyuan Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Qi Zhang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States; Affiliated faculty member of the Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02115, United States.
| |
Collapse
|
62
|
Radtke AJ, Kastenmüller W, Espinosa DA, Gerner MY, Tse SW, Sinnis P, Germain RN, Zavala FP, Cockburn IA. Lymph-node resident CD8α+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses. PLoS Pathog 2015; 11:e1004637. [PMID: 25658939 PMCID: PMC4450069 DOI: 10.1371/journal.ppat.1004637] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/19/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria infection begins when a female Anopheles mosquito injects Plasmodium sporozoites into the skin of its host during blood feeding. Skin-deposited sporozoites may enter the bloodstream and infect the liver, reside and develop in the skin, or migrate to the draining lymph nodes (DLNs). Importantly, the DLN is where protective CD8+ T cell responses against malaria liver stages are induced after a dermal route of infection. However, the significance of parasites in the skin and DLN to CD8+ T cell activation is largely unknown. In this study, we used genetically modified parasites, as well as antibody-mediated immobilization of sporozoites, to determine that active sporozoite migration to the DLNs is required for robust CD8+ T cell responses. Through dynamic in vivo and static imaging, we show the direct uptake of parasites by lymph-node resident DCs followed by CD8+ T cell-DC cluster formation, a surrogate for antigen presentation, in the DLNs. A few hours after sporozoite arrival to the DLNs, CD8+ T cells are primed by resident CD8α+ DCs with no apparent role for skin-derived DCs. Together, these results establish a critical role for lymph node resident CD8α+ DCs in CD8+ T cell priming to sporozoite antigens while emphasizing a requirement for motile sporozoites in the induction of CD8+ T cell-mediated immunity. Malaria is responsible for the deaths of 0.5–2 million people each year. A safe and effective vaccine is likely needed for the control or eradication of malaria. Immunization with irradiated sporozoites, the infectious stage of the parasite transmitted by mosquitoes, protects people against malaria through the activation of specialized effector cells called CD8+ T cells, which can eliminate live parasites. The induction of such malaria-specific CD8+ T cells is critically dependent on dendritic cells, a diverse population of antigen-presenting cells. It was previously unclear how dendritic cells acquire sporozoite antigens to induce the protective CD8+ T cell response. Using a combination of functional studies and high-resolution imaging, we report here that live sporozoites access skin-draining lymph nodes after infection and directly provide antigens to resident dendritic cells that in turn activate CD8+ T cells. These results underscore the importance of live, motile sporozoites in the induction of protective CD8+ T cell responses and provide a mechanistic understanding for the superior immunogenicity of whole parasite vaccines.
Collapse
Affiliation(s)
- Andrea J. Radtke
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wolfgang Kastenmüller
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diego A. Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Michael Y. Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sze-Wah Tse
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fidel P. Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (FPZ); (IAC)
| | - Ian A. Cockburn
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (FPZ); (IAC)
| |
Collapse
|
63
|
Salman AM, Mogollon CM, Lin JW, van Pul FJA, Janse CJ, Khan SM. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins. Methods Mol Biol 2015; 1325:257-286. [PMID: 26450395 DOI: 10.1007/978-1-4939-2815-6_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different types of transgenic parasites can be exploited to examine interactions of drugs/inhibitors or immune factors with HMP molecules in vivo. Mice either immunized with HMP-vaccines or treated with specific drugs can be infected/challenged with these transgenic mutants to evaluate drug or vaccine efficacy in vivo.
Collapse
Affiliation(s)
- Ahmed M Salman
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Jing-Wen Lin
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Fiona J A van Pul
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands.
| |
Collapse
|
64
|
Detection of Plasmodium berghei and Plasmodium yoelii Liver-Stage Parasite Burden by Quantitative Real-Time PCR. Methods Mol Biol 2015; 1325:81-9. [PMID: 26450381 DOI: 10.1007/978-1-4939-2815-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Direct detection and quantification of liver-stage Plasmodium parasites became possible with the development of quantitative real-time PCR (qPCR). Here we describe the measurement of parasite burden in the livers of mice infected with the rodent malaria species, Plasmodium berghei and Plasmodium yoelii. This method is based on detection of expression of parasite ribosomal 18S RNA and can serve as an endpoint to accurately evaluate the efficacy of vaccines targeting the preerythrocytic stages of malaria. This approach is fast and highly reproducible and allows quantification of liver-stage parasite burden in different mouse strains and different Plasmodium species after infection with a range of sporozoite challenge doses.
Collapse
|
65
|
A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys. Infect Immun 2014; 83:268-75. [PMID: 25368113 DOI: 10.1128/iai.02626-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.
Collapse
|
66
|
Noe AR, Espinosa D, Li X, Coelho-dos-Reis JGA, Funakoshi R, Giardina S, Jin H, Retallack DM, Haverstock R, Allen JR, Vedvick TS, Fox CB, Reed SG, Ayala R, Roberts B, Winram SB, Sacci J, Tsuji M, Zavala F, Gutierrez GM. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate. PLoS One 2014; 9:e107764. [PMID: 25247295 PMCID: PMC4172688 DOI: 10.1371/journal.pone.0107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.
Collapse
Affiliation(s)
- Amy R. Noe
- Leidos Inc., Frederick, Maryland, United States of America
| | - Diego Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Ryota Funakoshi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Steve Giardina
- Leidos Inc., Frederick, Maryland, United States of America
| | - Hongfan Jin
- Pfenex Inc., San Diego, California, United States of America
| | | | - Ryan Haverstock
- Pfenex Inc., San Diego, California, United States of America
| | | | - Thomas S. Vedvick
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ramses Ayala
- Leidos Inc., Frederick, Maryland, United States of America
| | - Brian Roberts
- Leidos Inc., Frederick, Maryland, United States of America
| | | | - John Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
67
|
Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci U S A 2014; 111:12528-32. [PMID: 25114213 DOI: 10.1073/pnas.1407362111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malaria caused by Plasmodium falciparum kills nearly one million children each year and imposes crippling economic burdens on families and nations worldwide. No licensed vaccine exists, but infection can be prevented by antibodies against the circumsporozoite protein (CSP), the major surface protein of sporozoites, the form of the parasite injected by mosquitoes. We have used vectored immunoprophylaxis (VIP), an adeno-associated virus-based technology, to introduce preformed antibody genes encoding anti-P. falciparum CSP mAb into mice. VIP vector-transduced mice exhibited long-lived mAb expression at up to 1,200 µg/mL in serum, and up to 70% were protected from both i.v. and mosquito bite challenge with transgenic Plasmodium berghei rodent sporozoites that incorporate the P. falciparum target of the mAb in their CSP. Serum antibody levels and protection from mosquito bite challenge were dependent on the dose of the VIP vector. All individual mice expressing CSP-specific mAb 2A10 at 1 mg/mL or more were completely protected, suggesting that in this model system, exceeding that threshold results in consistent sterile protection. Our results demonstrate the potential of VIP as a path toward the elusive goal of immunization against malaria.
Collapse
|
68
|
Chen L, Keitany GJ, Peng X, Gibson C, Mohar I, Vignali M, Crispe IN, Huang F, Wang R. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination. PLoS One 2014; 9:e102225. [PMID: 25025375 PMCID: PMC4099202 DOI: 10.1371/journal.pone.0102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP) have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f−, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f− induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Gladys J. Keitany
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Xiaohong Peng
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Claire Gibson
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Isaac Mohar
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Marissa Vignali
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ian N. Crispe
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Fusheng Huang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- * E-mail: (FH); (RW)
| | - Ruobing Wang
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (FH); (RW)
| |
Collapse
|
69
|
Haussig JM, Burgold J, Hafalla JCR, Matuschewski K, Kooij TWA. Signatures of malaria vaccine efficacy in ageing murine immune memory. Parasite Immunol 2014; 36:199-206. [PMID: 24495208 DOI: 10.1111/pim.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
Malaria transmission occurs by mosquito bite. Thereafter, Plasmodium sporozoites specifically invade the liver, where they develop into thousands of merozoites that initiate blood-stage infection and clinical malaria. The pre-erythrocytic phase of a Plasmodium infection is the target of experimental whole-parasite vaccines against malaria. Repeated immunizations with high doses of live, metabolically active sporozoites can induce protracted protection against Plasmodium reinfection. Parasites lacking a Plasmodium-specific apicoplast protein, termed PALM, arrest very late during intrahepatic development just prior to liver merozoite release and can elicit sterile protection with two immunization doses only. In this report, we show in the robust Plasmodium berghei-C57BL/6 model that partial protection extends beyond 1 year after the last immunization. In ageing mice, intracellular cytokine staining of Plasmodium peptide-stimulated intrahepatic CD8+ T cells revealed elevated levels of interferon gamma in vaccinated mice. We conclude that antigen-specific T cells persist in the target organ and are critical signatures of lasting protection. Our data also support the notions that memory T-cell responses generated early in life remain largely intact well into old age and that murine Plasmodium vaccination and infection models are suitable to study the mechanisms of maintenance and efficiency of adaptive immunity during immunosenescence.
Collapse
Affiliation(s)
- J M Haussig
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
| | | | | | | | | |
Collapse
|
70
|
Tse SW, Radtke AJ, Espinosa DA, Cockburn IA, Zavala F. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8⁺ T cells specific for infectious pathogens. J Infect Dis 2014; 210:1508-16. [PMID: 24823625 DOI: 10.1093/infdis/jiu281] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver.
Collapse
Affiliation(s)
- Sze-Wah Tse
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrea J Radtke
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego A Espinosa
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ian A Cockburn
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Canberra
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
71
|
da Fonseca Pires S, Fialho LC, Silva SO, Melo MN, de Souza CC, Tafuri WL, Bruna Romero O, de Andrade HM. Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 2014; 13:1860-72. [PMID: 24617796 DOI: 10.1021/pr400923g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of Leishmania virulence is essential for understanding how the contact between the pathogen and host cells can lead to pathogenesis. Virulence in two L. infantum strains was characterized using macrophages and hamsters. Next, we used difference gel electrophoresis (DIGE) and mass spectrometry to identify the differentially expressed proteins. A total of 63 spots were identified corresponding to 36 proteins; 20 were up-regulated, in which 16 had been previously associated with Leishmania virulence. Considering our results and what has been reported before, we suggest the hypothesis that L. infatum virulence could be a result of the increased expression of KMP-11 and metallopeptidase, associated with an improved parasite-host interacting efficiency and degradation of the protective host proteins and peptides, respectively. Other factors are tryparedoxin peroxidase and peroxidoxin, which protect the parasite against the stress response, and 14-3-3 protein-like, which can prolong infected host cell lifetime. Proteins as chaperones and endoribonuclease L-PSP can increase parasite survival. Enolase is able to perform versatile functions in the cell, acting as a chaperone or in the transcription process, or as a plasminogen receptor or in cell migration events. As expected in more invasive cells with high replication rates, energy consumption and protein synthesis are higher, with up-regulation of Rieske iron-sulfur protein precursor, EF-2, S-adenosylhomocysteine, and phosphomannomutase.
Collapse
Affiliation(s)
- Simone da Fonseca Pires
- Departamento de Parasitologia, ‡Departamento de Patologia, and §Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , 31270-910, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
72
|
CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun 2014; 82:1460-4. [PMID: 24421043 DOI: 10.1128/iai.01500-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunization with attenuated Plasmodium sporozoites or viral vectored vaccines can induce protective CD8(+) T cells that can find and eliminate liver-stage malaria parasites. A key question is whether CD8(+) T cells must recognize and eliminate each parasite in the liver or whether bystander killing can occur. To test this, we transferred antigen-specific effector CD8(+) T cells to mice that were then coinfected with two Plasmodium berghei strains, only one of which could be recognized directly by the transferred T cells. We found that the noncognate parasites developed normally in these mice, demonstrating that bystander killing of parasites does not occur during the CD8(+) T cell response to malaria parasites. Rather, elimination of infected parasites is likely mediated by direct recognition of infected hepatocytes by antigen-specific CD8(+) T cells.
Collapse
|
73
|
Plasmodium berghei sporozoites acquire virulence and immunogenicity during mosquito hemocoel transit. Infect Immun 2013; 82:1164-72. [PMID: 24379288 DOI: 10.1128/iai.00758-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Malaria is a vector-borne disease caused by the single-cell eukaryote Plasmodium. The infectious parasite forms are sporozoites, which originate from midgut-associated oocysts, where they eventually egress and reach the mosquito hemocoel. Sporozoites actively colonize the salivary glands in order to be transmitted to the mammalian host. Whether residence in the salivary glands provides distinct and vital cues for the development of infectivity remains unsolved. In this study, we systematically compared the infectivity of Plasmodium berghei sporozoites isolated from the mosquito hemocoel and salivary glands. Hemocoel sporozoites display a lower proportion of gliding motility but develop into liver stages when added to cultured hepatoma cells or after intravenous injection into mice. Mice infected by hemocoel sporozoites had blood infections similar to those induced by sporozoites liberated from salivary glands. These infected mice display indistinguishable systemic inflammatory cytokine responses and develop experimental cerebral malaria. When used as metabolically active, live attenuated vaccine, hemocoel sporozoites elicit substantial protection against sporozoite challenge infections. Collectively, these findings show that salivary gland colonization does not influence parasite virulence in the mammalian host when sporozoites are administered intravenously. This conclusion has important implications for in vitro sporozoite production and manufacturing of whole-sporozoite vaccines.
Collapse
|
74
|
Doll KL, Butler NS, Harty JT. CD8 T cell independent immunity after single dose infection-treatment-vaccination (ITV) against Plasmodium yoelii. Vaccine 2013; 32:483-91. [PMID: 24321740 DOI: 10.1016/j.vaccine.2013.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/30/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
Abstract
Sporozoite vaccination of both humans and rodents elicits potent anti-malarial immunity, but the dose of sporozoites and the number of immunizations required varies with vaccination approach. Here we examine the immunological basis for superior protection afforded from single-dose vaccination with virulent sporozoites administered under prophylatic chloroquine-cover, referred to as infection-treatment-vaccination (ITV), compared to the well-studied approach of administering radiation-attenuated Plasmodium sporozoites (RAS). Earlier rodent studies utilizing ITV and RAS vaccination suggested a major role of CD8 T cells in reducing liver parasite burden after sporozoite challenge in a BALB/c mouse model. Consistent with this, we find that in C57Bl/6 mice ITV elicits substantially higher parasite-specific CD8 T cell responses than RAS vaccination and enhances immunity against P. yoelii infection. However, we show ITV-induced CD8 T cells are not necessary for protection following liver-stage sporozoite or blood-stage parasite challenge. Mechanistically, we found protection afforded from single-dose ITV is associated with low grade, transient parasitemia shortly following cessation of chloroquine treatment and generation of potent antibody responses to blood-stage parasites. Collectively, our data show the mechanistic basis for enhanced protective immunity against P. yoelli elicited by ITV in highly susceptible C57Bl/6 mice is independent of CD8 T cells. These studies may be relevant in understanding the potent immunity observed with ITV in humans.
Collapse
Affiliation(s)
- Katherine L Doll
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
75
|
Carapau D, Mitchell R, Nacer A, Shaw A, Othoro C, Frevert U, Nardin E. Protective humoral immunity elicited by a needle-free malaria vaccine comprised of a chimeric Plasmodium falciparum circumsporozoite protein and a Toll-like receptor 5 agonist, flagellin. Infect Immun 2013; 81:4350-62. [PMID: 24042110 PMCID: PMC3837993 DOI: 10.1128/iai.00263-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Immunization with Plasmodium sporozoites can elicit high levels of sterile immunity, and neutralizing antibodies from protected hosts are known to target the repeat region of the circumsporozoite (CS) protein on the parasite surface. CS-based subunit vaccines have been hampered by suboptimal immunogenicity and the requirement for strong adjuvants to elicit effective humoral immunity. Pathogen-associated molecular patterns (PAMPs) that signal through Toll-like receptors (TLRs) can function as potent adjuvants for innate and adaptive immunity. We examined the immunogenicity of recombinant proteins containing a TLR5 agonist, flagellin, and either full-length or selected epitopes of the Plasmodium falciparum CS protein. Mice immunized with either of the flagellin-modified CS constructs, administered intranasally (i.n.) or subcutaneously (s.c.), developed similar levels of malaria-specific IgG1 antibody and interleukin-5 (IL-5)-producing T cells. Importantly, immunization via the i.n. but not the s.c. route elicited sporozoite neutralizing antibodies capable of inhibiting >90% of sporozoite invasion in vitro and in vivo, as measured using a transgenic rodent parasite expressing P. falciparum CS repeats. These findings demonstrate that functional sporozoite neutralizing antibody can be elicited by i.n. immunization with a flagellin-modified P. falciparum CS protein and raise the potential of a scalable, safe, needle-free vaccine for the 40% of the world's population at risk of malaria.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Epitopes, T-Lymphocyte/immunology
- Flagellin/immunology
- Humans
- Immunity, Humoral/immunology
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Interleukin-5/biosynthesis
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/immunology
- Recombinant Proteins/immunology
- Sporozoites/immunology
- Toll-Like Receptor 5/agonists
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Daniel Carapau
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Robert Mitchell
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Alan Shaw
- Vaxinnate Corporation, Cranbury, New Jersey, USA
| | - Caroline Othoro
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Elizabeth Nardin
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
76
|
Zou X, House BL, Zyzak MD, Richie TL, Gerbasi VR. Towards an optimized inhibition of liver stage development assay (ILSDA) for Plasmodium falciparum. Malar J 2013; 12:394. [PMID: 24191920 PMCID: PMC3831258 DOI: 10.1186/1475-2875-12-394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Experimental vaccines targeting Plasmodium falciparum have had some success in recent years. These vaccines use attenuated parasites, recombinant sporozoite proteins, or DNA and virus combinations to induce cell-mediated immune responses and/or antibodies targeting sporozoite surface proteins. To capitalize on the success of these vaccines and understand the mechanisms by which these vaccines function, it is important to develop assays that measure correlates of protection in volunteers. The inhibition of liver stage development assay (ILSDA) tests antibodies for the ability to block sporozoite development in hepatocytes. As such the ILSDA is an excellent candidate assay to identify correlates of humoral protection, particularly against the liver stage of malaria infection. In addition, the ILSDA can be used as a tool to evaluate novel sporozoite antigens for future vaccine development. Historically the ILSDA has suffered from low sporozoite infection rates, absence of standardized reagents, and the subjectivity associated with the traditional primary outcome measures, which depend on microscopy of stained hepatocyte cultures. This study worked to significantly improve sporozoite infection rates in hepatocytes, modify key steps in the assay protocol to reduce experimental variability, and demonstrate the utility of the ILSDA in testing antibodies targeting the circumsporozoite protein. METHODS Cryopreserved primary human hepatocytes, Plasmodium falciparum sporozoites, and circumsporozoite antibodies were used to optimize the ILSDA. RESULTS Inoculation of cryopreserved primary human hepatocytes with Plasmodium falciparum sporozoites improved liver stage development in the ILSDA compared to HCO4 cells. In the ILSDA, circumsporozoite antibodies suppressed liver stage development in cryopreserved primary human hepatocytes in a concentration-dependent manner. Antibody-mediated suppression of parasite development in the ILSDA at a 96-hour endpoint was more robust than the 24-hour endpoint. CONCLUSIONS ILSDA performance is improved by the use of cryopreserved primary human hepatocytes, expediting interactions between sporozoites and hepatocytes, and extending the assay endpoint.
Collapse
Affiliation(s)
| | | | | | | | - Vincent R Gerbasi
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, USA.
| |
Collapse
|
77
|
Highly sensitive quantitative real-time PCR for the detection of Plasmodium liver-stage parasite burden following low-dose sporozoite challenge. PLoS One 2013; 8:e77811. [PMID: 24098596 PMCID: PMC3788780 DOI: 10.1371/journal.pone.0077811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
The pre-erythrocytic stages of Plasmodiumspp. are increasingly recognised as ideal targets for prophylactic vaccines and drug treatments. Intense research efforts in the last decade have been focused on in vitro culture and in vivo detection and quantification of liver stage parasites to assess the effects of candidate vaccines or drugs. Typically, the onset of blood stage parasitaemia is used as a surrogate endpoint to estimate the efficacy of vaccines and drugs targeting pre-erythrocytic parasite stages in animal models. However, this provides no information on the parasite burden in the liver after vaccination or treatment and therefore does not detect partial efficacy of any vaccine or drug candidates. Herein, we describe a quantitative RT-PCR method adapted to detect and quantitate Plasmodium yoelii liver stages in mice with increased sensitivity even after challenge with as few as 50 cryopreserved sporozoites (corresponding to approximately 5-10 freshly isolated sporozoites). We have validated our quantitative RT-PCR assay according to the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and established high reproducibility and accuracy. Our assay provides a rapid and reproducible assessment of liver stage parasite burden in rodent malaria models, thereby facilitating the evaluation of the efficacy of anti-malarial drugs or prophylactic vaccines with high precision and efficacy.
Collapse
|
78
|
Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy. Infect Immun 2013; 81:2882-7. [PMID: 23716612 DOI: 10.1128/iai.00461-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.
Collapse
|
79
|
Kastenmüller K, Espinosa DA, Trager L, Stoyanov C, Salazar AM, Pokalwar S, Singh S, Dutta S, Ockenhouse CF, Zavala F, Seder RA. Full-length Plasmodium falciparum circumsporozoite protein administered with long-chain poly(I·C) or the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion elicits potent antibody and CD4+ T cell immunity and protection in mice. Infect Immun 2013; 81:789-800. [PMID: 23275094 PMCID: PMC3584875 DOI: 10.1128/iai.01108-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
The Plasmodium falciparum circumsporozoite (CS) protein (CSP) is a major vaccine target for preventing malaria infection. Thus, developing strong and durable antibody and T cell responses against CSP with novel immunogens and potent adjuvants may improve upon the success of current approaches. Here, we compare four distinct full-length P. falciparum CS proteins expressed in Escherichia coli or Pichia pastoris for their ability to induce immunity and protection in mice when administered with long-chain poly(I · C) [poly(I · C)LC] as an adjuvant. CS proteins expressed in E. coli induced high-titer antibody responses against the NANP repeat region and potent CSP-specific CD4(+) T cell responses. Moreover, E. coli-derived CS proteins in combination with poly(I · C)LC induced potent multifunctional (interleukin 2-positive [IL-2(+)], tumor necrosis factor alpha-positive [TNF-α(+)], gamma interferon-positive [IFN-γ(+)]) CD4(+) effector T cell responses in blood, in spleen, and particularly in liver. Using transgenic Plasmodium berghei expressing the repeat region of P. falciparum CSP [Pb-CS(Pf)], we showed that there was a 1- to 4-log decrease in malaria rRNA in the liver following a high-dose challenge and ~50% sterilizing protection with a low-dose challenge compared to control levels. Protection was directly correlated with high-level antibody titers but not CD4(+) T cell responses. Finally, protective immunity was also induced using the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) as the adjuvant, which also correlated with high antibody titers yet CD4(+) T cell immunity that was significantly less potent than that with poly(I · C)LC. Overall, these data suggest that full-length CS proteins and poly(I · C)LC or GLA-SE offer a simple vaccine formulation to be used alone or in combination with other vaccines for preventing malaria infection.
Collapse
Affiliation(s)
- Kathrin Kastenmüller
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Diego A. Espinosa
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Lauren Trager
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Cristina Stoyanov
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Sheetij Dutta
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Christian F. Ockenhouse
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert A. Seder
- Vaccine Research Center and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
80
|
Hobbs CV, Voza T, De La Vega P, Vanvliet J, Conteh S, Penzak SR, Fay MP, Anders N, Ilmet T, Li Y, Borkowsky W, Krzych U, Duffy PE, Sinnis P. HIV nonnucleoside reverse transcriptase inhibitors and trimethoprim-sulfamethoxazole inhibit plasmodium liver stages. J Infect Dis 2013; 206:1706-14. [PMID: 23125449 DOI: 10.1093/infdis/jis602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although nonnucleoside reverse transcriptase inhibitors (NNRTIs) are usually part of first-line treatment regimens for human immunodeficiency virus (HIV), their activity on Plasmodium liver stages remains unexplored. Additionally, trimethoprim-sulfamethoxazole (TMP-SMX), used for opportunistic infection prophylaxis in HIV-exposed infants and HIV-infected patients, reduces clinical episodes of malaria; however, TMP-SMX effect on Plasmodium liver stages requires further study. METHODS We characterized NNRTI and TMP-SMX effects on Plasmodium liver stages in vivo using Plasmodium yoelii. On the basis of these results, we conducted in vitro studies assessing TMP-SMX effects on the rodent parasites P. yoelii and Plasmodium berghei and on the human malaria parasite Plasmodium falciparum. RESULTS Our data showed NNRTI treatment modestly reduced P. yoelii liver stage parasite burden and minimally extended prepatent period. TMP-SMX administration significantly reduced liver stage parasite burden, preventing development of patent parasitemia in vivo. TMP-SMX inhibited development of rodent and P. falciparum liver stage parasites in vitro. CONCLUSIONS NNRTIs modestly affect liver stage Plasmodium parasites, whereas TMP-SMX prevents patent parasitemia. Because drugs that inhibit liver stages target parasites when they are present in lower numbers, these results may have implications for eradication efforts. Understanding HIV drug effects on Plasmodium liver stages will aid in optimizing treatment regimens for HIV-exposed and HIV-infected infected patients in malaria-endemic areas.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- NIH/NIAID/Laboratory of Malaria Immunology and Vaccinology, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
LaCrue AN, Sáenz FE, Cross RM, Udenze KO, Monastyrskyi A, Stein S, Mutka TS, Manetsch R, Kyle DE. 4(1H)-Quinolones with liver stage activity against Plasmodium berghei. Antimicrob Agents Chemother 2013; 57:417-24. [PMID: 23129047 PMCID: PMC3535941 DOI: 10.1128/aac.00793-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/27/2012] [Indexed: 11/20/2022] Open
Abstract
With the exception of primaquine, tafenoquine, and atovaquone, there are very few antimalarials that target liver stage parasites. In this study, a transgenic Plasmodium berghei parasite (1052Cl1; PbGFP-Luc(con)) that expresses luciferase was used to assess the anti-liver stage parasite activity of ICI 56,780, a 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), as well as two 3-phenyl-4(1H)-quinolones (P4Q), P4Q-146 and P4Q-158, by using bioluminescent imaging (BLI). Results showed that all of the compounds were active against liver stage parasites; however, ICI 56,780 and P4Q-158 were the most active, with low nanomolar activity in vitro and causal prophylactic activity in vivo. This potent activity makes these compounds ideal candidates for advancement as novel antimalarials.
Collapse
Affiliation(s)
- Alexis N. LaCrue
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Fabián E. Sáenz
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - R. Matthew Cross
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Kenneth O. Udenze
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | | | - Steven Stein
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Tina S. Mutka
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Dennis E. Kyle
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
82
|
Przysiecki C, Lucas B, Mitchell R, Carapau D, Wen Z, Xu H, Wang XM, Nahas D, Wu C, Hepler R, Ottinger E, Ter Meulen J, Kaslow D, Shiver J, Nardin E. Sporozoite neutralizing antibodies elicited in mice and rhesus macaques immunized with a Plasmodium falciparum repeat peptide conjugated to meningococcal outer membrane protein complex. Front Cell Infect Microbiol 2012; 2:146. [PMID: 23226683 PMCID: PMC3510440 DOI: 10.3389/fcimb.2012.00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/06/2012] [Indexed: 11/13/2022] Open
Abstract
Antibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS) protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP)(6) peptide conjugated to an outer membrane protein complex (OMPC) derived from Neisseria meningitidis, a carrier protein used in a licensed Haemophilus influenzae pediatric vaccine. Mice immunized with (NANP)(6)-OMPC adsorbed to Merck's alum adjuvant (MAA), with or without Iscomatrix® as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P. berghei sporozoites that express P. falciparum CS repeats (PfPb). Inhibition of sporozoite invasion in vitro correlated with in vivo resistance to challenge by the bites of PfPb-infected mosquitoes. Challenged mice had >90% reduction of hepatic stage parasites as measured by real-time PCR, and either sterile immunity, i.e., no detectable blood stage parasites, or delayed prepatent periods which indicate neutralization of a majority, but not all, sporozoites. Rhesus macaques immunized with two doses of (NANP)(6)-OMPC/MAA formulated with Iscomatrix® developed anti-repeat antibodies that persisted for ~2 years. A third dose of (NANP)(6)-OMPC/MAA+ Iscomatrix® at that time elicited strong anamnestic antibody responses. Rhesus macaque immune sera obtained post second and third dose of vaccine displayed high levels of sporozoite neutralizing activity in vitro that correlated with presence of high anti-repeat antibody titers. These preclinical studies in mice of different MHC haplotypes and a non-human primate support use of CS peptide-OMPC conjugates as a highly immunogenic platform to evaluate CS protective epitopes. Potential pre-erythrocytic vaccines can be combined with sexual blood stage vaccines as a multi-antigen malaria vaccine to block invasion and transmission of Plasmodium parasites.
Collapse
Affiliation(s)
- Craig Przysiecki
- Vaccines Research, Merck Research Laboratories, West Point PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Voza T, Miller JL, Kappe SHI, Sinnis P. Extrahepatic exoerythrocytic forms of rodent malaria parasites at the site of inoculation: clearance after immunization, susceptibility to primaquine, and contribution to blood-stage infection. Infect Immun 2012; 80:2158-64. [PMID: 22431651 PMCID: PMC3370592 DOI: 10.1128/iai.00246-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 02/04/2023] Open
Abstract
Plasmodium sporozoites are inoculated into the skin of the mammalian host as infected mosquitoes probe for blood. A proportion of the inoculum enters the bloodstream and goes to the liver, where the sporozoites invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic, or liver, stage. Here, we show that a small fraction of the inoculum remains in the skin and begins to develop into exoerythrocytic forms that can persist for days. Skin exoerythrocytic forms were observed for both Plasmodium berghei and Plasmodium yoelii, two different rodent malaria parasites, suggesting that development in the skin of the mammalian host may be a common property of plasmodia. Our studies demonstrate that skin exoerythrocytic stages are susceptible to destruction in immunized mice, suggesting that their aberrant location does not protect them from the host's adaptive immune response. However, in contrast to their hepatic counterparts, they are not susceptible to primaquine. We took advantage of their resistance to primaquine to test whether they could initiate a blood-stage infection directly from the inoculation site, and our data indicate that these stages are not able to initiate malaria infection.
Collapse
Affiliation(s)
- Tatiana Voza
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | | | | | - Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
84
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
85
|
PK4, a eukaryotic initiation factor 2α(eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc Natl Acad Sci U S A 2012; 109:3956-61. [PMID: 22355110 DOI: 10.1073/pnas.1121567109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to environmental stresses, the mammalian serine threonine kinases PERK, GCN2, HRI, and PKR phosphorylate the regulatory serine 51 of the eukaryotic translation initiation factor 2α (eIF2α) to inhibit global protein synthesis. Plasmodium, the protozoan that causes malaria, expresses three eIF2α kinases: IK1, IK2, and PK4. Like GCN2, IK1 regulates stress response to amino acid starvation. IK2 inhibits development of malaria sporozoites present in the mosquito salivary glands. Here we show that the phosphorylation by PK4 of the regulatory serine 59 of Plasmodium eIF2α is essential for the completion of the parasite's erythrocytic cycle that causes disease in humans. PK4 activity leads to the arrest of global protein synthesis in schizonts, where ontogeny of daughter merozoites takes place, and in gametocytes that infect Anopheles mosquitoes. The implication of these findings is that drugs that reduce PK4 activity should alleviate disease and inhibit malaria transmission.
Collapse
|
86
|
Mishra S, Nussenzweig RS, Nussenzweig V. Antibodies to Plasmodium circumsporozoite protein (CSP) inhibit sporozoite's cell traversal activity. J Immunol Methods 2012; 377:47-52. [PMID: 22306356 DOI: 10.1016/j.jim.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/18/2022]
Abstract
Plasmodium sporozoites are deposited in the skin of the mammalian host by Anopheles mosquitoes. To continue the life cycle, the sporozoites have to invade the host's hepatocytes, where they transform into exoerythrocytic forms (EEFs) inside a parasitophorous vacuole. During their route from the skin to the liver, the parasites traverse the capillary epithelium in the dermis to enter the blood circulation, and cross the endothelium of liver sinusoids to enter the parenchyma. Cell traversal by sporozoites is usually measured by quantifying dyes that enter or are released from cells during incubation with salivary gland sporozoites. These methods do not distinguish cell traversal from cell wounding. Here we validate an assay that quantifies cell traversal of sporozoites through monolayers of MDCK cells that form tight junctions. We compared cell traversal of wt sporozoites and of parasites lacking the Type I membrane protein TLP (TRAP-like protein) previously implicated in cell traversal. We provide direct evidence that TLP ko sporozoites are defective in cell traversal and that they are retained inside the MDCK cytoplasm. We then used the MDCK assay to study the effect of a monoclonal antibody (3D11) to the circumsporozoite protein (CSP) on the parasite's cell traversal. We show that 3D11 inhibits cell traversal at nanomolar concentrations. We conclude that antibodies elicited by CSP-based vaccines are likely to inhibit the migration of sporozoites from the skin to the liver.
Collapse
Affiliation(s)
- Satish Mishra
- Michael Heidelberger Division of Immunology, Department of Pathology, New York University School of Medicine, NY 10016, USA.
| | | | | |
Collapse
|
87
|
Annoura T, Chevalley S, Janse CJ, Franke-Fayard B, Khan SM. Quantitative analysis of Plasmodium berghei liver stages by bioluminescence imaging. Methods Mol Biol 2012; 923:429-43. [PMID: 22990796 DOI: 10.1007/978-1-62703-026-7_30] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe simple and sensitive in vitro and in vivo assays to analyze Plasmodium liver stage development using transgenic P. berghei parasites (PbGFP-Luccon), which express the bioluminescent reporter protein, luciferase. In these assays, parasite development in hepatocytes is visualized and quantified by real-time bioluminescence imaging both in culture and in live mice. We also describe quantification of in vitro liver-stage development by measuring luminescence using a microplate reader. Reporter-parasite based quantification of liver-stage development is faster and correlates very well with established quantitative RT-PCR methods currently used to assess parasite development inside hepatocytes, both in live mice and in culture.
Collapse
Affiliation(s)
- Takeshi Annoura
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
88
|
Prudêncio M, Mota MM, Mendes AM. A toolbox to study liver stage malaria. Trends Parasitol 2011; 27:565-74. [PMID: 22015112 DOI: 10.1016/j.pt.2011.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/28/2023]
Abstract
The first obligatory phase of mammalian infection by Plasmodium parasites, the causative agents of malaria, occurs in the liver of the host. This stage of Plasmodium infection bears enormous potential for anti-malarial intervention. Recent technological progress has strongly contributed to overcoming some of the long-standing difficulties in experimentally assessing hepatic infection by Plasmodium. Here, we review appropriate infection models and infection assessment tools, and provide a comprehensive description of recent advances in experimental strategies to investigate the liver stage of malaria. These issues are discussed in the context of current challenges in the field to provide researchers with the technical tools that enable effective experimental approaches to study liver stage malaria.
Collapse
Affiliation(s)
- Miguel Prudêncio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | | | | |
Collapse
|
89
|
Affiliation(s)
- Emily R. Derbyshire
- Deparment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Jon Clardy
- Deparment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
90
|
Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite. Vaccine 2011; 29:7002-8. [DOI: 10.1016/j.vaccine.2011.07.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/21/2022]
|
91
|
Vera IM, Beatty WL, Sinnis P, Kim K. Plasmodium protease ROM1 is important for proper formation of the parasitophorous vacuole. PLoS Pathog 2011; 7:e1002197. [PMID: 21909259 PMCID: PMC3164628 DOI: 10.1371/journal.ppat.1002197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/22/2011] [Indexed: 11/18/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host. Plasmodium parasites are obligate intracellular organisms that invade cells by an active mechanism mediated by the secretion of contents from specialized secretory organelles, the micronemes and rhoptries. Invaded parasites reside and replicate within a membrane-bound compartment called the parasitophorous vacuole (PV). PV formation is exclusive to development within mammalian specific host cells, the erythrocytes and hepatocytes. Proper modification of the PV is important to protect the parasite from host defenses and to serve as a gateway for nutrient acquisition and communication with the environment. The rhomboid proteins, a class of intramembrane serine proteases, are implicated in the invasion process. We studied the microneme rhomboid protease, ROM1 in the rodent malaria parasite, Plasmodium yoelii. We find that pyROM1 is not important for efficient invasion into host cells and instead is important for survival within the host cells. Analysis of parasites developing within hepatocytes reveals a defect in PV development. We propose that pyROM1 provides a fitness advantage to parasites developing within host cells by promoting the proper modification of the PV.
Collapse
Affiliation(s)
- Iset Medina Vera
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Photini Sinnis
- Department of Microbiology, New York University Langone School of Medicine, New York, New York, United States of America
| | - Kami Kim
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
92
|
Mishra S, Rai U, Shiratsuchi T, Li X, Vanloubbeeck Y, Cohen J, Nussenzweig RS, Winzeler EA, Tsuji M, Nussenzweig V. Identification of non-CSP antigens bearing CD8 epitopes in mice immunized with irradiated sporozoites. Vaccine 2011; 29:7335-42. [PMID: 21807053 DOI: 10.1016/j.vaccine.2011.07.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 07/18/2011] [Indexed: 01/29/2023]
Abstract
Immunization of BALB/c mice with irradiated sporozoites (IrSp) of Plasmodium yoelii can lead to sterile immunity. The circumsporozoite protein (CSP) plays a dominant role in protection. Nevertheless after hyper-immunization with IrSp, complete protection is obtained in CSP-transgenic BALB/c mice that are T-cell tolerant to the CSP and cannot produce antibodies [CSP-Tg/JhT(-/-)]. This protection is mediated exclusively by CD8(+) T cells [1]. To identify the non-CSP protective T cell antigens, we studied the properties of 34 P. yoelii sporozoite antigens that are predicted to be secreted and to contain strong Kd-restricted CD8(+) T cell epitopes. The synthetic peptides corresponding to the epitopes were used to screen for the presence of peptide-specific CD8(+) T cells secreting interferon-γ (IFN-γ) in splenocytes from CSP-Tg/JhT(-/-) BALB/c mice hyper immunized with IrSp. However, the numbers of IFN-γ-secreting splenocytes specific for the non-CSP antigen-derived peptides were 20-100 times lower than those specific for the CSP-specific peptide. When mice were immunized with recombinant adenoviruses expressing selected non-CSP antigens, the animals were not protected against challenge with P. yoelii sporozoites although large numbers of CD8(+) specific T cells were generated.
Collapse
Affiliation(s)
- Satish Mishra
- Michael Heidelberger Division, Department of Pathology, New York University School of Medicine, NY 10016, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Baumeister S, Wiesner J, Reichenberg A, Hintz M, Bietz S, Harb OS, Roos DS, Kordes M, Friesen J, Matuschewski K, Lingelbach K, Jomaa H, Seeber F. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. PLoS One 2011; 6:e19334. [PMID: 21573242 PMCID: PMC3087763 DOI: 10.1371/journal.pone.0019334] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/27/2011] [Indexed: 11/18/2022] Open
Abstract
Background Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii. Methodology/Principal Findings Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite. Conclusions/Significance Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.
Collapse
Affiliation(s)
- Stefan Baumeister
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Jochen Wiesner
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Armin Reichenberg
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Martin Hintz
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Sven Bietz
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Omar S. Harb
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maximilian Kordes
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Johannes Friesen
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Klaus Lingelbach
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Hassan Jomaa
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Frank Seeber
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
- Fachgebiet 16 Parasitologie, Robert-Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
94
|
Pollock T, Leitao R, Galan-Rodriguez C, Wong KA, Rodriguez A. Daily Plasmodium yoelii infective mosquito bites do not generate protection or suppress previous immunity against the liver stage. Malar J 2011; 10:97. [PMID: 21501513 PMCID: PMC3102649 DOI: 10.1186/1475-2875-10-97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human populations that are naturally subjected to Plasmodium infection do not acquire complete protection against the liver stage of this parasite despite prolonged and frequent exposure. However, sterile immunity against Plasmodium liver stage can be achieved after repeated exposure to radiation attenuated sporozoites. The reasons for this different response remain largely unknown, but a suppressive effect of blood stage Plasmodium infection has been proposed as a cause for the lack of liver stage protection. METHODS Using Plasmodium yoelii 17XNL, the response generated in mice subjected to daily infective bites from normal or irradiated mosquitoes was compared. The effect of daily-infected mosquito bites on mice that were previously immunized against P. yoelii liver stage was also studied. RESULTS It was observed that while the bites of normal infected mosquitoes do not generate strong antibody responses and protection, the bites of irradiated mosquitoes result in high levels of anti-sporozoite antibodies and protection against liver stage Plasmodium infection. Exposure to daily infected mosquito bites did not eliminate the protection acquired previously with a experimental liver stage vaccine. CONCLUSIONS Liver stage immunity generated by irradiated versus normal P. yoelii infected mosquitoes is essentially different, probably because of the blood stage infection that follows normal mosquito bites, but not irradiated. While infective mosquito bites do not induce a protective liver stage response, they also do not interfere with previously acquired liver stage protective responses, even if they induce a complete blood stage infection. Considering that the recently generated anti-malaria vaccines induce only partial protection against infection, it is encouraging that, at least in mouse models, immunity is not negatively affected by subsequent exposure and infection with the parasite.
Collapse
Affiliation(s)
- Tzvi Pollock
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | | | | | | | |
Collapse
|
95
|
Schmidt NW, Butler NS, Harty JT. Plasmodium-host interactions directly influence the threshold of memory CD8 T cells required for protective immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:5873-84. [PMID: 21460205 DOI: 10.4049/jimmunol.1100194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plasmodium infections are responsible for millions of cases of malaria and ∼1 million deaths annually. Recently, we showed that sterile protection (95%) in BALB/c mice required Plasmodium berghei circumsporozoite protein (CS(252-260))-specific memory CD8 T cells exceeding a threshold of 1% of all PBLs. Importantly, it is not known if Plasmodium species affect the threshold of CS-specific memory CD8 T cells required for protection. Furthermore, C57BL/6 mice immunized with radiation-attenuated parasites are more difficult to protect against Plasmodium sporozoite challenge than similarly immunized BALB/c mice; however, it is not known whether this is the result of different CD8 T cell specificity, functional attributes of CD8 T cells, or mouse strain-specific factors expressed in nonhematopoietic cells. In this article, we show that more CS-specific memory CD8 T cells are required for protection against P. yoelii sporozoite challenge than for protection against P. berghei sporozoite challenge. Furthermore, P. berghei CS(252)-specific CD8 T cells exhibit reduced protection against P. berghei sporozoite challenge in the context of C57BL/6 and C57BL/10 non-MHC-linked genes in CB6F1 and B10.D2 mice, respectively. Generation and immunization of reciprocal chimeric mice between BALB/c and B10.D2 strains revealed that B10 background factors expressed by nonhematopoietic cells increased the threshold required for protection through a CD8 T cell-extrinsic mechanism. Finally, reduced CS-specific memory CD8 T cell protection in P. yoelii-infected BALB/c or P. berghei-infected B10.D2 mice correlated with increased rates of Plasmodium amplification in the liver. Thus, both Plasmodium species and strain-specific background genes in nonhematopoietic cells determine the threshold of memory CD8 T cells required for protection.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
96
|
Induction of antimalaria immunity by pyrimethamine prophylaxis during exposure to sporozoites is curtailed by parasite resistance. Antimicrob Agents Chemother 2011; 55:2760-7. [PMID: 21444698 DOI: 10.1128/aac.01717-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each year, infections with the protozoan parasite Plasmodium falciparum kill 1 million people, mostly children in Africa. Intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) reduces the incidence of malaria and aims to prevent mortality in infants, children, and pregnant women. There is contradictory evidence as to whether this strategy may generate additional protection against reinfection beyond the limited duration of the intervention. Previous work established that ablation of either liver-stage maturation or subsequent life cycle conversion by causal prophylactic drugs elicits protective immune responses against reinfections when drugs are no longer present. Here we show in the rodent malaria model that pyrimethamine, a component of SP, inhibits liver-stage development in vitro and in vivo, confirming the causal prophylactic activity of pyrimethamine. Repeated exposure to high doses of Plasmodium berghei sporozoites during pyrimethamine prophylaxis induced complete protection in C57BL/6 mice against challenge with high doses of sporozoites delivered intravenously 35 to 199 days later. Immunizations by infectious mosquito bites induced limited, inoculation-dependent protection against subsequent challenge by infected mosquito bites but provided partial protection against experimental cerebral malaria. Short-term pyrimethamine prophylaxis during intravenous transmission of sporozoites from a pyrimethamine-resistant strain delayed, but did not prevent, blood-stage infection. Our data provide a rationale for the notion of sustained protective efficacy of IPT based on the capacity of arrested, drug-sensitive liver-stage and/or suppressed blood-stage parasites to mount lasting protection.
Collapse
|
97
|
Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo. PLoS Pathog 2011; 7:e1001318. [PMID: 21445239 PMCID: PMC3060173 DOI: 10.1371/journal.ppat.1001318] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 02/15/2011] [Indexed: 01/27/2023] Open
Abstract
Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2Kb epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase. Malaria causes the deaths of 0.5–2 million people each year, mainly in Africa. A safe and effective vaccine is likely needed for the control or eradication of this disease. Immunization by irradiated malaria-infected mosquitoes has been shown to protect people against malaria. Irradiated parasites do not divide and cause infection but are capable of activating specialized killer cells called CD8+ T cells, which can protect against live parasites. Because vaccinating people with irradiated mosquitoes is not practical, we wanted to understand which parasite molecules are targeted by CD8+ T cells. These molecules may then be formulated into a safe and effective vaccine. CD8+ T cells do not automatically recognize every parasite molecule, but instead fragments of parasite proteins must be displayed on the surface of infected cells to be seen by CD8+ T cells. Our data show that CD8+ T cells recognize parasite proteins secreted by the parasite into the infected cell. This suggests that such proteins could be important components of malaria vaccines.
Collapse
|
98
|
Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, Corradin G, Persson C, Tewari R, Sinnis P. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med 2011; 208:341-56. [PMID: 21262960 PMCID: PMC3039851 DOI: 10.1084/jem.20101488] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/22/2010] [Indexed: 11/21/2022] Open
Abstract
Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.
Collapse
Affiliation(s)
- Alida Coppi
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | - Ramya Natarajan
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | - Gabriele Pradel
- Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | - Brandy L. Bennett
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | | | - Mario A. Roggero
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Cathrine Persson
- Department of Molecular Biology, Umea University, SE-901 87 Umea, Sweden
| | - Rita Tewari
- Center for Genetics and Genomics, School of Biology, The University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| |
Collapse
|
99
|
Overstreet MG, Chen YC, Cockburn IA, Tse SW, Zavala F. CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites. PLoS One 2011; 6:e15948. [PMID: 21245909 PMCID: PMC3014941 DOI: 10.1371/journal.pone.0015948] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
CD4+ helper T cells are critical orchestrators of immune responses to infection and vaccination. During primary responses, naïve CD8+ T cells may need “CD4 help” for optimal development of memory populations. The immunological factors attributed to CD4 help depend on the context of immunization and vary depending on the priming system. In response to immunization with radiation-attenuated Plasmodium yoelii sporozoites, CD8+ T cells in BALB/c mice fail to generate large numbers of effector cells without help from CD4+ T cells – a defect not observed in most systems. Given this unique early dependence on CD4 help, we evaluated the effects of CD4+ cells on the development of functional properties of CD8+ T cells and on their ability to abolish infection. First, we determined that this effect was not mediated by CD4+ non-T cells and did not involve CD1d-restricted NKT cells. We found that CD8+ T cells induced by sporozoites without CD4 help formed memory populations severely reduced in magnitude that could not limit parasite development in the liver. The inability of these “helpless” memory T cells to protect is not a result of defects in effector function, as their capacity to produce cytokines and undergo cytotoxic degranulation was indistinguishable from control memory T cells. These data indicate that CD4+ T help may not be necessary to develop the functional attributes of CD8+ T cells; however they are crucial to ensure the survival of effector and memory cells induced in primary responses.
Collapse
Affiliation(s)
- Michael G. Overstreet
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yun-Chi Chen
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ian A. Cockburn
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sze-Wah Tse
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
100
|
Tewari K, Flynn BJ, Boscardin SB, Kastenmueller K, Salazar AM, Anderson CA, Soundarapandian V, Ahumada A, Keler T, Hoffman SL, Nussenzweig MC, Steinman RM, Seder RA. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine 2010; 28:7256-66. [PMID: 20846528 DOI: 10.1016/j.vaccine.2010.08.098] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/28/2010] [Accepted: 08/29/2010] [Indexed: 01/05/2023]
Abstract
Development of a fully effective vaccine against the pre-erythrocytic stage of malaria infection will likely require induction of both humoral and cellular immune responses. Protein based vaccines can elicit such broad-based immunity depending on the adjuvant and how the protein is formulated. Here to assess these variables, non human primates (NHP) were immunized three times with Plasmodium falciparum (Pf) circumsporozoite protein (CSP) or CSP cloned into MG38, a monoclonal antibody that targets DEC-205 (αDEC-CSP), an endocytic receptor on dendritic cells (DCs). Both vaccines were administered with or without poly(I:C) as adjuvant. Following three immunizations, the magnitude and quality of cytokine secreting CD4+ T cells were comparable between CSP+poly(I:C) and αDEC-CSP+poly(I:C) groups with both regimens eliciting multi-functional cytokine responses. However, NHP immunized with CSP+poly(I:C) had significantly higher serum titers of CSP-specific IgG antibodies and indirect immunofluorescent antibody (IFA) titers against Pf sporozoites. Furthermore, sera from both CSP or αDEC-CSP+poly(I:C) immunized animals limited sporozoite invasion of a hepatocyte cell line (HC04) in vitro. To determine whether CSP-specific responses could be enhanced, all NHP primed with CSP or αDEC-CSP+poly(I:C) were boosted with a single dose of 150,000 irradiated Pf sporozoites (PfSPZ) intravenously. Remarkably, boosting had no effect on the CSP-specific immunity. Finally, immunization with CSP+poly-ICLC reduced malaria parasite burden in the liver in an experimental mouse model. Taken together, these data showing that poly(I:C) is an effective adjuvant for inducing potent antibody and Th1 immunity with CSP based vaccines offers a potential alternative to the existing protein based pre-erythrocytic vaccines.
Collapse
Affiliation(s)
- Kavita Tewari
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|