51
|
Functional polymorphisms in IL13 are protective against high Schistosoma mansoni infection intensity in a Brazilian population. PLoS One 2012; 7:e35863. [PMID: 22574126 PMCID: PMC3345031 DOI: 10.1371/journal.pone.0035863] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/27/2012] [Indexed: 11/30/2022] Open
Abstract
Background IL-13 is a signature cytokine of the helper T cell type 2 (TH2) pathway which underlies host defense to helminthic infection and activates production of IgE in both parasitized populations and in urban settings after allergen exposure. Methodology/Principal Findings Two functional polymorphisms in IL13, rs1800925 (or c.1-1111C>T) and rs20541 (or R130Q) were previously found to be associated with Schistosoma hematobium infection intensity. They have not been thoroughly explored in S. mansoni-endemic populations, however, and were selected along with 5 tagging SNPs for genotyping in 812 individuals in 318 nuclear families from a schistosomiasis-endemic area of Conde, Bahia, in Brazil. Regression models using GEE to account for family membership and family-based quantitative transmission disequilibrium tests (QTDT) were used to evaluate associations with total serum IgE (tIgE) levels and S. mansoni fecal egg counts adjusted for non-genetic covariates. We identified a protective effect for the T allele at rs20541 (P = 0.005) against high S. mansoni egg counts, corroborated by QTDT (P = 0.014). Our findings also suggested evidence for protective effects for the T allele at rs1800925 and A allele at rs2066960 after GEE analysis only (P = 0.050, 0.0002). Conclusions/Significance The two functional variants in IL13 are protective against high S. mansoni egg counts. These markers showed no evidence of association with tIgE levels, unlike tIgE levels previously studied in non-parasitized or atopic study populations.
Collapse
|
52
|
Detection of a quantitative trait locus associated with resistance to Ascaris suum infection in pigs. Int J Parasitol 2012; 42:383-91. [DOI: 10.1016/j.ijpara.2012.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
53
|
Oliveira RR, Figueiredo JP, Cardoso LS, Jabar RL, Souza RP, Wells MT, Carvalho EM, Fitzgerald DW, Barnes KC, Araújo MI, Glesby MJ. Factors associated with resistance to Schistosoma mansoni infection in an endemic area of Bahia, Brazil. Am J Trop Med Hyg 2012; 86:296-305. [PMID: 22302866 DOI: 10.4269/ajtmh.2012.11-0204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Detailed knowledge of factors associated with resistance to Schistosoma mansoni infection in endemic areas might facilitate more effective schistosomiasis control. We conducted a cross-sectional study of persons resistant to schistosomiasis and found no association between socioeconomic status and resistance to infection. Mononuclear cells of resistant subjects produced higher levels of interleukin-5 (IL-5), IL-13 and interferon-γ upon stimulation with soluble egg antigen (SEA) compared with infected persons. When stimulated with Sm21.6 or Sm22.6, levels of IL-10 were higher in cell culture of resistant persons. Levels of IgE against soluble adult worm antigen (SWAP) and against interleukin-4-inducing principle from S. mansoni eggs (IPSE) and levels of IgG4 against SWAP, SEA, and Sm22.6 were lower in the resistant group compared with the susceptible group. Our data suggest that socioeconomic status could not fully explain resistance to S. mansoni infection observed in the studied area. However, a mixture of Th1 and Th2 immune responses and low levels of specific IgG4 against parasite antigens could be mediating resistance to infection.
Collapse
Affiliation(s)
- Ricardo R Oliveira
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Quirós JL, Jiménez E, Bonilla R, Arce I, Hernández C, Jiménez Y. Abdominal angiostrongyliasis with involvement of liver histopathologically confirmed: a case report. Rev Inst Med Trop Sao Paulo 2012; 53:219-22. [PMID: 21915466 DOI: 10.1590/s0036-46652011000400008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 05/20/2011] [Indexed: 10/08/2023] Open
Abstract
Human abdominal angiostrongyliasis is a zoonotic disease caused by ingestion of the L3 larvae of Angiostrongylus costaricensis. The human infection gives rise to a pathological condition characterized by acute abdominal pain, secondary to an inflammatory granulomatous reaction, marked eosinophilia and eosinophilic vasculitis. Most commonly this disease is limited to intestinal location, primary ileocecal, affecting the mesenteric arterial branches and intestinal walls. We present one of the few cases reported around the world with simultaneous involvement of the intestines and liver, including proved presence of nematodes inside the hepatic arteriole.
Collapse
|
55
|
De Angelis F, Garzoli A, Battistini A, Iorio A, De Stefano GF. Genetic response to an environmental pathogenic agent: HLA-DQ and onchocerciasis in northwestern Ecuador. ACTA ACUST UNITED AC 2011; 79:123-9. [PMID: 22117902 DOI: 10.1111/j.1399-0039.2011.01811.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study is to explore human leukocyte antigen (HLA)-DQ variability in two populations (Cayapas Amerindians and Afro-Ecuadorians) who live near one another along the Cayapa River and who are exposed to the same environmental stresses, such as infection by Onchocerca volvulus. HLA-DQA1 and HLA-DQB1 of 149 unrelated individuals (74 Cayapas and 75 Afro-Ecuadorians) have been analyzed. HLA high-resolution molecular typing was performed by sequence-based typing, sequence-specific oligonucleotides hybridization and sequence-specific primer (SSP) amplification. The comparison between affected (cases) and unaffected people (controls) in both populations shows the key role of several HLA-DQA1 alleles in susceptibility and protection against onchocerciasis. In both populations, there is strong evidence related to the protective role of DQA1*0401 against onchocerciasis. Alleles HLA-DQA1*0102 and *0103 seem to represent risk factors in Afro-Ecuadorians, while HLA-DQA1*0301 is only a suggestive susceptibility allele in Cayapas. These findings represent new positive/negative associations with onchocerciasis in South America, whereas previous findings pertained only to African populations.
Collapse
Affiliation(s)
- F De Angelis
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
56
|
The role of Intelectin-2 in resistance toAscaris suumlung larval burdens in susceptible and resistant mouse strains. Parasitology 2011; 138:660-9. [DOI: 10.1017/s0031182011000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe underlying mechanism of predisposition toAscarisinfection is not yet understood but host genetics are thought to play a fundamental role. We investigated the association between the Intelectin-2 gene and resistance in F2mice derived from mouse strains known to be susceptible and resistant to infection.Ascarislarvae were isolated from murine lungs and the number of copies of the Intelectin-2 gene was determined in F2mice. Intelectin-2 gene copy number was not significantly linked to larval burden. In a pilot experiment, the response to infection in parental mice of both sexes was observed in order to address the suitablity of female F2mice. No overall significant sex effect was detected. However, a divergence in resistance/susceptibility status was observed between male and, female hybrid offspring. The responsiveness toAscarisin mice is likely to be controlled by multiple genes and, despite a unique absence from the susceptible C57BL/6j strain, the Intelectin-2 gene does not play a significant role in resistance. The observed intra-strain variation in larval burden requires further investigation but we hypothesize that it stems from social/dominance hierarchies created by the presence of female mice and possibly subsequent hormonal perturbations that modify the intensity of the immune response.
Collapse
|
57
|
Bourke CD, Maizels RM, Mutapi F. Acquired immune heterogeneity and its sources in human helminth infection. Parasitology 2011; 138:139-59. [PMID: 20946693 PMCID: PMC3021922 DOI: 10.1017/s0031182010001216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 07/18/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
Similarities in the immunobiology of different parasitic worm infections indicate that co-evolution of humans and helminths has shaped a common anti-helminth immune response. However, recent in vitro and immuno-epidemiological studies highlight fundamental differences and plasticity within host-helminth interactions. The 'trade-off' between immunity and immunopathology inherent in host immune responses occurs on a background of genetic polymorphism, variable exposure patterns and infection history. For the parasite, variation in life-cycle and antigen expression can influence the effector responses directed against them. This is particularly apparent when comparing gastrointestinal and tissue-dwelling helminths. Furthermore, insights into the impact of anti-helminthic treatment and co-infection on acquired immunity suggest that immune heterogeneity arises not from hosts and parasites in isolation, but also from the environment in which immune responses develop. Large-scale differences observed in the epidemiology of human helminthiases are a product of complex host-parasite-environment interactions which, given potential for exposure to parasite antigens in utero, can arise even before a parasite interacts with its human host. This review summarizes key differences identified in human acquired immune responses to nematode and trematode infections of public health importance and explores the factors contributing to these variations.
Collapse
Affiliation(s)
- C D Bourke
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH93JT, UK.
| | | | | |
Collapse
|
58
|
Dold C, Holland CV. Investigating the underlying mechanism of resistance to Ascaris infection. Microbes Infect 2010; 13:624-31. [PMID: 20934532 DOI: 10.1016/j.micinf.2010.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
The generative mechanism(s) of predisposition to Ascaris infection are currently unknown. While many factors play a role in interindividual infection intensity, much focus has been placed on the host's immunological response to infection and the underlying genetics. The present review describes the research conducted that has examined various immunological parameters and genetic factors that may play a role in resistance to ascariasis. We also discuss the contribution that animal models have made to our understanding of resistance to the parasitic roundworm and their role in possible future work.
Collapse
Affiliation(s)
- Christina Dold
- Department of Zoology, School of Natural Science, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
59
|
Polymorphisms in IL10 are associated with total Immunoglobulin E levels and Schistosoma mansoni infection intensity in a Brazilian population. Genes Immun 2010; 12:46-50. [PMID: 20927126 DOI: 10.1038/gene.2010.50] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-10 is a regulatory cytokine of the helper T cell type 2 (TH2) pathway, which underlies both the host defense to helminthic infection and atopic diseases, including asthma. Although IL10 promoter polymorphisms are associated with increased atopy risk, IL10 variation has not been thoroughly explored in schistosomiasis-endemic populations. Three atopy-related IL10 promoter polymorphisms (rs1800896, rs1800871 and rs1800872), complemented by six tagging single-nucleotide polymorphisms (SNPs), were genotyped in 812 individuals in 318 nuclear families from a schistosomiasis-endemic area in Brazil. Associations between markers and total serum Immunoglobulin E (tIgE) levels, indicating non-specific activation of the TH2 pathway, and Schistosoma mansoni fecal egg counts, indicating burden of infection reflecting effectiveness of schistosomiasis host immunity, were performed using family-based transmission disequilibrium tests for quantitative traits (QTDTs). Alleles A, T and A at the three promoter SNPs rs1800896, rs1800871 and rs1800872 were associated with high tIgE levels in the same direction as in atopy populations (P=0.0008, 0.026 and 0.045), but not with egg counts. IL10 promoter polymorphisms appear to influence non-specific tIgE levels, but not schistosomiasis-specific immunity. The tagging SNP rs3024495 was associated with high S. mansoni egg counts (P=0.005), suggesting a novel locus in IL10 may influence clinically relevant burden of infection.
Collapse
|
60
|
Quinnell RJ, Pullan RL, Breitling LP, Geiger SM, Cundill B, Correa-Oliveira R, Brooker S, Bethony JM. Genetic and household determinants of predisposition to human hookworm infection in a Brazilian community. J Infect Dis 2010; 202:954-61. [PMID: 20681887 DOI: 10.1086/655813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Predisposition to heavy or light human hookworm infection is consistently reported in treatment-reinfection studies. A significant role for host genetics in determining hookworm infection intensity has also been shown, but the relationship between host genetics and predisposition has not been investigated. METHODS A treatment-reinfection study was conducted among 1302 individuals in Brazil. Bivariate variance components analysis was used to estimate heritability for pretreatment and reinfection intensity and to estimate the contribution of genetic and household correlations between phenotypes to the overall phenotypic correlation (ie, predisposition). RESULTS Heritability for hookworm egg count was 17% before treatment and 25% after reinfection. Predisposition to heavy or light hookworm infection was observed, with a phenotypic correlation of 0.34 between pretreatment and reinfection intensity. This correlation was reduced to 0.23 after including household and environmental covariates. Genetic and household correlations were 0.41 and 1, respectively, and explained 88% of the adjusted phenotypic correlation. CONCLUSIONS Predisposition to human hookworm infection in this area results from a combination of host genetics and consistent differences in exposure, with the latter explained by household and environmental factors. Unmeasured individual-specific differences in exposure did not contribute to predisposition.
Collapse
Affiliation(s)
- Rupert J Quinnell
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Bresolin N, Clerici M, Sironi M. The landscape of human genes involved in the immune response to parasitic worms. BMC Evol Biol 2010; 10:264. [PMID: 20807397 PMCID: PMC2940816 DOI: 10.1186/1471-2148-10-264] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. RESULTS Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. CONCLUSIONS Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Scientific Institute IRCCS E, Medea, Bioinformatic Lab, Via don L, Monza 20, 23842 Bosisio, Parini, LC, Italy
| | | | | | | | | | | | | |
Collapse
|
62
|
Lanzas C, Ayscue P, Ivanek R, Gröhn YT. Model or meal? Farm animal populations as models for infectious diseases of humans. Nat Rev Microbiol 2010; 8:139-48. [PMID: 20040917 PMCID: PMC7097165 DOI: 10.1038/nrmicro2268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent decades, theory addressing the processes that underlie the dynamics of infectious diseases has progressed considerably. Unfortunately, the availability of empirical data to evaluate these theories has not grown at the same pace. Although laboratory animals have been widely used as models at the organism level, they have been less appropriate for addressing issues at the population level. However, farm animal populations can provide empirical models to study infectious diseases at the population level.
Collapse
Affiliation(s)
- Cristina Lanzas
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
63
|
Meyrowitsch DW, Simonsen PE, Garred P, Dalgaard M, Magesa SM, Alifrangis M. Association between mannose-binding lectin polymorphisms and Wuchereria bancrofti infection in two communities in North-Eastern Tanzania. Am J Trop Med Hyg 2010; 82:115-20. [PMID: 20065005 DOI: 10.4269/ajtmh.2010.09-0342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The association between selected mannose-binding lectin (MBL) genotype polymorphisms and Wuchereria bancrofti infection status was assessed among individuals whose infection status had been monitored for three decades. Blood samples were collected in 2006 and examined for polymorphisms in the mbl-2 gene and for W. bancrofti-specific circulating filarial antigen (CFA) status. Logistic regression analysis showed a significant association between MBL genotype and CFA status, with low-expression MBL genotype individuals being almost three times more likely to be CFA positive than high-expression MBL genotype individuals (odds ratio [OR] = 2.90). When individuals' filarial infection (microfilaria) status in 1975 was included in the analyses, the gain of new infections between the two examination points was almost 10 times higher among individuals with low than among those with high MBL expression genotype (OR = 9.51). The susceptibility to W. bancrofti infection thus appears to be significantly affected by the MBL expression genotype of the host.
Collapse
Affiliation(s)
- Dan W Meyrowitsch
- Section of Health Services Research, Department of Public Health, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
64
|
Haçariz O, Sayers G, Flynn RJ, Lejeune A, Mulcahy G. IL-10 and TGF-beta1 are associated with variations in fluke burdens following experimental fasciolosis in sheep. Parasite Immunol 2009; 31:613-22. [PMID: 19751473 DOI: 10.1111/j.1365-3024.2009.01135.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection with Fasciola hepatica causes an economically important disease in ruminants. Variability in parasite load may indicate innate differences in the host immune system. This study aimed to investigate the immunological mechanisms that are associated with variability in parasite burden following experimental F. hepatica infection in cross-bred sheep. Of a total of 16 animals, four were randomly chosen as uninfected controls, and the remainder infected with 100 viable metacercariae. Uninfected animals were used as the control group for evaluation of cytokine gene expression levels. For comparative analysis, specific animals were selected on the basis of extremes of fluke burdens, and were categorised into light (n = 4) and heavy burdened (n = 3) cohorts. Serum antibody levels, haematological parameters, and expression of IL-4 and IFN-gamma genes in hepatic lymph nodes were equivalent in both groups. However, significant differences in mitogen-specific lymphocyte proliferation in vitro and in expression of TGF-beta1 and IL-10 genes in hepatic lymph nodes were observed at acute and chronic phases of infection, respectively. These results provide useful information in developing further understanding of natural resistance to fasciolosis in sheep.
Collapse
Affiliation(s)
- O Haçariz
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
65
|
Pullan RL, Bethony JM, Geiger SM, Correa-Oliveira R, Brooker S, Quinnell RJ. Human helminth co-infection: no evidence of common genetic control of hookworm and Schistosoma mansoni infection intensity in a Brazilian community. Int J Parasitol 2009; 40:299-306. [PMID: 19699204 DOI: 10.1016/j.ijpara.2009.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Strong statistical associations between soil-transmitted helminths and schistosomes are frequently observed in co-endemic human populations, although the underlying explanations remain poorly understood. This study investigates the contribution of host genetics and domestic environment to hookworm and Schistosoma mansoni infection intensity and evaluates the role of genetic and non-genetic factors in co-variation of infection intensity. Detailed genealogical information allowed assignment of 1303 individuals living in the Brazilian community of Americaninhas, Minas Gerais state, to 25 pedigrees (containing between two and 1159 members) residing in 303 households. The prevalence of co-infection with both hookworms and schistosomes was high (38.5%), with significant correlation between Necator americanus and S. mansoni faecal egg counts. Bivariate variance component analysis demonstrated a modest but significant species-specific heritability for intensity of N. americanus (h(2)=0.196) and S. mansoni infection (h(2)=0.230). However, after accounting for demographic, socio-economic and household risk factors, no evidence for common genetic control of intensity of hookworm and schistosome infection was observed. There was some evidence for residual clustering within households but the majority (63%) of the covariance between N. americanus and S. mansoni infection intensity remained specific to the individual and could not be explained by shared genes, shared environment or other shared demographic, socio-economic or environmental risk factors. Our results emphasize the importance of exposure to hookworm and schistosome infection in driving the association between levels of infection with these species in hosts resident in areas of high transmission and suggest that much of this common exposure occurs outside the home.
Collapse
Affiliation(s)
- Rachel L Pullan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Molecular approaches are providing new insights into the genetic diversity of schistosomes and their intermediate snail hosts. For instance, molecular tools based on the polymerase chain reaction are being developed for the diagnosis of schistosomiasis and the detection of prepatent schistosome infections in snails at transmission sites. Robust phylogenies of the different species of Schistosoma, Bulinus and Biomphalaria have been determined and novel methods are available to identify the different and cryptic taxa involved. Microsatellite analyses and mitochondrial DNA sequencing methods have been developed and are contributing to a better understanding of the genetic structure of both schistosome and snail populations. New sampling procedures to capture DNA of eggs and larval stages of schistosomes in field situations are facilitating more detailed and ethically advantageous studies on parasite heterogeneity. Knowledge of the genetic diversity of schistosome and snail populations adds a further dimension to the monitoring and surveillance of disease, and the implementation of new molecular-based approaches will be of increasing importance in helping to assess the impact of schistosomiasis control strategies.
Collapse
|
67
|
Abstract
SUMMARYAscaris lumbricoides, the human roundworm, is a remarkably infectious and persistent parasite. It is a member of the soil-transmitted helminths or geohelminths and infects in the order of 1472 million people worldwide. Despite, its high prevalence and wide distribution it remains along with its geohelminth counterparts, a neglected disease. Ascariasis is associated with both chronic and acute morbidity, particularly in growing children, and the level of morbidity assessed as disability-adjusted life years is about 10·5 million. Like other macroparasite infections, the frequency distribution ofA. lumbricoidesis aggregated or overdispersed with most hosts harbouring few or no worms and a small proportion harbouring very heavy infections. Furthermore, after chemotherapeutic treatment, individuals demonstrate consistency in the pattern of re-infection with ascariasis, described as predisposition. These epidemiological phenomena have been identified, in a consistent manner, from a range of geographical locations in both children and adults. However, what has proved to be much more refractory to investigation has been the mechanisms that contribute to the observed epidemiological patterns. Parallel observations utilizing human subjects and appropriate animal model systems are essential to our understanding of the mechanisms underlying susceptibility/resistance to ascariasis. Furthermore, these patterns ofAscarisintensity and re-infection have broader implications with respect to helminth control and interactions with other important bystander infections.
Collapse
|
68
|
|
69
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
Affiliation(s)
- Jenefer M Blackwell
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, P.O. Box 855, West Perth, Western Australia, Australia 6872.
| | | | | |
Collapse
|
70
|
Abstract
Aggregated distributions of macroparasites within their host populations are characteristic of most natural and experimental infections. We designed this study to measure the amount of variation that is attributable to host genetic factors in a pig-helminth system. In total, 195 piglets were produced after artificial insemination of 19 sows (Danish Landrace-Yorkshire crossbreds) with semen selected from 13 individual Duroc boars (1 or 2 sows per boar; mean litter size: 10.3; 5-14 piglets per litter). Starting at 10 weeks of age, piglets were repeatedly infected with the gastrointestinal helminths Trichuris suis and Ascaris suum by administering eggs in the feed for 14 weeks until necropsy. Faecal egg counts (FECs) were estimated regularly and A. suum worm burden was obtained at necropsy. Heritability calculations for log (FEC+1) at weeks 7-10 post-infection (p.i.) showed that 0.32-0.73 of the phenotypic variation for T. suis could be attributed to genetic factors. For A. suum, heritabilities of 0.29-0.31 were estimated for log (FEC+1) at weeks 7-14 p.i., whereas the heritability of log worm counts was 0.45. Strong positive genetic correlations (0.75-0.89) between T. suis and A. suum FECs suggest that resistance to both infections involves regulation by overlapping genes. Our data demonstrate that there is a strong genetic component in resistance to A. suum and T. suis infections in pigs. Identification of responsible genes would enhance our understanding of the host immune response to these common nematodes and for the closely related species (T. trichiura and A. lumbricoides) in man infecting more than a billion people.
Collapse
|
71
|
Pullan RL, Bethony JM, Geiger SM, Cundill B, Correa-Oliveira R, Quinnell RJ, Brooker S. Human helminth co-infection: analysis of spatial patterns and risk factors in a Brazilian community. PLoS Negl Trop Dis 2008; 2:e352. [PMID: 19104658 PMCID: PMC2602736 DOI: 10.1371/journal.pntd.0000352] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 12/02/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Individuals living in areas endemic for helminths are commonly infected with multiple species. Despite increasing emphasis given to the potential health impacts of polyparasitism, few studies have investigated the relative importance of household and environmental factors on the risk of helminth co-infection. Here, we present an investigation of exposure-related risk factors as sources of heterogeneity in the distribution of co-infection with Necator americanus and Schistosoma mansoni in a region of southeastern Brazil. METHODOLOGY Cross-sectional parasitological and socio-economic data from a community-based household survey were combined with remotely sensed environmental data using a geographical information system. Geo-statistical methods were used to explore patterns of mono- and co-infection with N. americanus and S. mansoni in the region. Bayesian hierarchical models were then developed to identify risk factors for mono- and co-infection in relation to community-based survey data to assess their roles in explaining observed heterogeneity in mono and co-infection with these two helminth species. PRINCIPAL FINDINGS The majority of individuals had N. americanus (71.1%) and/or S. mansoni (50.3%) infection; 41.0% of individuals were co-infected with both helminths. Prevalence of co-infection with these two species varied substantially across the study area, and there was strong evidence of household clustering. Hierarchical multinomial models demonstrated that relative socio-economic status, household crowding, living in the eastern watershed and high Normalized Difference Vegetation Index (NDVI) were significantly associated with N. americanus and S. mansoni co-infection. These risk factors could, however, only account for an estimated 32% of variability between households. CONCLUSIONS Our results demonstrate that variability in risk of N. americanus and S. mansoni co-infection between households cannot be entirely explained by exposure-related risk factors, emphasizing the possible role of other household factors in the heterogeneous distribution of helminth co-infection. Untangling the relative contribution of intrinsic host factors from household and environmental determinants therefore remains critical to our understanding of helminth epidemiology.
Collapse
Affiliation(s)
- Rachel L Pullan
- London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
72
|
Bethony JM, Quinnell RJ. Genetic epidemiology of human schistosomiasis in Brazil. Acta Trop 2008; 108:166-74. [PMID: 18207118 DOI: 10.1016/j.actatropica.2007.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 11/30/2007] [Indexed: 11/25/2022]
Abstract
Human schistosomiasis presents the classic, complex disease phenotype, with marked variation in the intensity of infection, the immune response to infection, and the development of schistosome-related pathology. Determining the role of host genetics in schistosomiasis is complicated by the numerous parasite and environmental factors involved in transmission. However, as a result of the increased availability of sequence data, novel statistical methods, and new methods of study design, the last decade has seen significant advances in identifying the role of host genetics in schistosome infection around the world. Many of these advances have taken place in Brazil. Epidemiological studies in Brazil have shown that the intensity of infection (worm burden) is a heritable phenotype (41%). Human genome scans have identified a locus responsible for controlling Schistosoma mansoni infection intensity on chromosome 5q31-q33. There is also evidence for genetic control of pathology due to S. mansoni, with linkage reported to a region containing the gene for the interferon-gamma receptor 1 subunit. Numerous association studies have also provided evidence for major histocompatibility complex control of pathology in schistosomiasis. Recent candidate gene studies suggest a role of other immune response genes in controlling helminth infection and pathology. We chronicle the many advances made in understanding the role of host genetics in S. mansoni infection that have taken place in Brazil by phenotype studied: infection intensity, immune response, and disease development. Results from Brazilian studies are compared with studies of S. mansoni and other schistosome species elsewhere in the world.
Collapse
|
73
|
Abstract
SUMMARYHookworms infect approximately 740 million humans worldwide and are an important cause of morbidity. The present study examines the role of additive genetic effects in determining the intensity of hookworm infection in humans, and whether these effects vary according to the sex of the host. Parasitological and epidemiological data for a population of 704 subjects in Papua New Guinea were used in variance components analysis. The ‘narrow-sense’ heritability of hookworm infection was estimated as 0·15±0·04 (P<0·001), and remained significant when controlling for shared environmental (household) effects. Allowing the variance components to vary between the sexes of the human host consistently revealed larger additive genetic effects in females than in males, reflected by heritabilities of 0·18 in females and 0·08 in males in a conservative model. Household effects were also higher in females than males, although the overall household effect was not significant. The results indicate that additive genetic effects are an important determinant of the intensity of human hookworm infection in this population. However, despite similar mean and variance of intensity in each sex, the factors responsible for generating variation in intensity differ markedly between males and females.
Collapse
|
74
|
Grant A, Araujo M, Ponte E, Oliveira R, Cruz A, Barnes K, Beaty T. High Heritability but Uncertain Mode of Inheritance for Total Serum IgE Level andSchistosoma mansoniInfection Intensity in a Schistosomiasis‐Endemic Brazilian Population. J Infect Dis 2008; 198:1227-36. [DOI: 10.1086/591946] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
75
|
Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest 2008; 118:1311-21. [PMID: 18382743 DOI: 10.1172/jci34261] [Citation(s) in RCA: 970] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helminths are parasitic worms. They are the most common infectious agents of humans in developing countries and produce a global burden of disease that exceeds better-known conditions, including malaria and tuberculosis. As we discuss here, new insights into fundamental helminth biology are accumulating through newly completed genome projects and the nascent application of transgenesis and RNA interference technologies. At the same time, our understanding of the dynamics of the transmission of helminths and the mechanisms of the Th2-type immune responses that are induced by infection with these parasitic worms has increased markedly. Ultimately, these advances in molecular and medical helminth biology should one day translate into a new and robust pipeline of drugs, diagnostics, and vaccines for targeting parasitic worms that infect humans.
Collapse
Affiliation(s)
- Peter J Hotez
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Phenotypic differences on the outcome of the host–parasite relationship: Behavior of mice of the CBi stock in natural and experimental infections. Vet Parasitol 2008; 153:157-63. [DOI: 10.1016/j.vetpar.2008.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 11/19/2022]
|
77
|
Williams-Blangero S, Vandeberg JL, Subedi J, Jha B, Dyer TD, Blangero J. Two quantitative trait loci influence whipworm (Trichuris trichiura) infection in a Nepalese population. J Infect Dis 2008; 197:1198-203. [PMID: 18462166 PMCID: PMC4122289 DOI: 10.1086/533493] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Whipworm (Trichuris trichiura) infection is a soil-transmitted helminth infection that affects >1 billion people. It is a serious public health problem in many developing countries and can result in deficits in growth and cognitive development. In a follow-up study of significant heritability for whipworm infection, we conducted the first genome scan for quantitative trait loci (QTL) influencing the heritability of susceptibility to this important parasitic disease. METHODS Whipworm egg counts were determined for 1,253 members of the Jirel population of eastern Nepal. All individuals in the study sample belonged to a single pedigree including >26,000 pairs of relatives that are informative for genetic analysis. RESULTS Linkage analysis of genome scan data generated for the pedigree provided unambiguous evidence for 2 QTL influencing susceptibility to whipworm infection, one located on chromosome 9 (logarithm of the odds ratio [LOD] score, 3.35; genomewide P = .0138) and the other located on chromosome 18 (LOD score, 3.29; genomewide P = .0159). There was also suggestive evidence that 2 loci located on chromosomes 12 and 13 influenced whipworm infection. CONCLUSION The results of this first genome scan for T. trichiura egg counts provides new information on the determinants of genetic predisposition to whipworm infection.
Collapse
Affiliation(s)
- Sarah Williams-Blangero
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Courtin D, Berthier D, Thevenon S, Dayo GK, Garcia A, Bucheton B. Host genetics in African trypanosomiasis. INFECTION GENETICS AND EVOLUTION 2008; 8:229-38. [PMID: 18394971 DOI: 10.1016/j.meegid.2008.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
In Africa, the protozoan parasite of the genus Trypanosoma causes animal (AAT) and human African trypanosomiasis (HAT). These diseases are responsible for considerable mortality and economic losses, and until now the drugs commonly used have often been very toxic and expensive, with no vaccine available. A range of clinical presentations, from chronic to acute symptoms, is observed in both AAT and HAT. Host, parasite, and environmental factors are likely to be involved in this clinical variability. In AAT, some West African cattle (N'Dama, Bos taurus) have the ability to better control the disease development (and therefore to remain productive) than other taurine breeds (Zebu, Bos indicus). This phenomenon is called trypanotolerance and seems to have major genetic components. In humans, tolerance/resistance to the disease is suspected, however, this needs confirmation. This review focuses on recent advances made in the field of host genetics in African trypanosomiasis in animals (mouse and bovine) and humans. The perspectives for the development of new control strategies and their applications as well as a better understanding of the physiopathology of the disease are discussed.
Collapse
Affiliation(s)
- David Courtin
- Radboud University Medical Center, Medical Parasitology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
79
|
Babu S, Nutman TB. Immune responses to helminths. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
80
|
Stear MJ, Fitton L, Innocent GT, Murphy L, Rennie K, Matthews L. The dynamic influence of genetic variation on the susceptibility of sheep to gastrointestinal nematode infection. J R Soc Interface 2007; 4:767-76. [PMID: 17626002 PMCID: PMC2394554 DOI: 10.1098/rsif.2007.1104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction between sheep and the nematode Teladorsagia circumcincta is one of the best understood of all host-parasite interactions. Following infection, there is considerable variation among lambs in the number of nematode eggs produced, the number of early fourth-stage larvae and the number of adult worms in the mucosa. These traits have a high variance to mean ratio (i.e. they are overdispersed or aggregated among hosts), they are skewed and approximately negative binomially distributed. The sources of overdispersion are differences among lambs in the ingestion of infective larvae and the immune response. Both forces can produce aggregation but their relative importance is unknown. The key components of variation can be identified by variance analysis. The sum of the average effects of polymorphic genes is known as additive genetic variation and this increases essentially from zero at one month of age to quite high values at six months of age. The major mechanism underlying genetic variation appears to be the differences among individuals in immune responses. Two of the major sources of variation in immune responses are differences in antigen recognition and differences in the type of cytokines produced. Genes that influence both these sources of variation are associated with differences in resistance to nematode infection. Therefore, much of the heterogeneity among animals in parasite transmission appears to be due to genetic variation in immune responsiveness.
Collapse
Affiliation(s)
- Michael J Stear
- Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | |
Collapse
|
81
|
Moller M, Gravenor MB, Roberts SE, Sun D, Gao P, Hopkin JM. Genetic haplotypes of Th-2 immune signalling link allergy to enhanced protection to parasitic worms. Hum Mol Genet 2007; 16:1828-36. [PMID: 17519224 DOI: 10.1093/hmg/ddm131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic worm infection, allergy and asthma involve increased IgE production, eosinophil activity, mucus secretion and smooth muscle reactivity, effected through Th-2 immune signalling. These pathological features of allergic disorder, common in developed countries, appear to be protective features in resistance to parasitic worm infections prevalent in many developing countries. We investigated how genetic variation in the Th-2 signalling transduction molecule STAT6 relates to these clinical disorders, using immune phenotyping by serum IgE levels and haplotyping nine STAT6 genetic variants in a rural Chinese population, where Ascaris infection is prevalent, and an urban UK population where Ascaris is largely unknown but asthma and allergy are prevalent. We show for the first time that STAT6 haplotypes relate clearly to IgE levels, allergy and worm burden. The haplotypes segregated into two groups: those with raised IgE/low worm burden tended to have increased risk of allergic disorder, whereas low IgE/high worm burden tended to have a reduced risk of allergies. By estimating the mean worm burden for each haplotype in China and the relative risk of asthma for the matching haplotype in the UK, we draw a cross-population comparison and show a negative correlation between worm burden and expected risk of asthma. These data imply that the origin of common up-regulating variants of Th-2 signalling, involving STAT6, promotes asthma and allergy in developed countries, whereas in developing countries it protects against parasitic worm infections. Selective evolutionary mechanisms, driven by parasitic worm infection, may underlie the genetic contribution to risk of allergy and asthma in humans.
Collapse
Affiliation(s)
- Maria Moller
- School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | |
Collapse
|
82
|
Fincham JE, Markus MB, van der Merwe L, Adams VJ, van Stuijvenberg ME, Dhansay MA. Ascaris, co-infection and allergy: the importance of analysis based on immunological variables rather than egg excretion. Trans R Soc Trop Med Hyg 2007; 101:680-2. [PMID: 17254621 DOI: 10.1016/j.trstmh.2006.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 11/30/2022] Open
Abstract
The ratio of Ascaris seropositivity to the presence of eggs in the faeces was 2.44 in children residing near Cape Town, South Africa. Similar and larger ratios have previously been described for children and women living in the city. The new finding strengthens the concept that when helminthic infections occur together with non-helminthic diseases, an analysis of the interaction must include the use of disease-related immunological variables and not be based only on egg excretion status. One of the reasons is that many egg-negative people who live where helminthiasis is highly endemic are immunologically activated as a result of transitory non-patent or intermittent patent infection by Ascaris and/or other worms.
Collapse
Affiliation(s)
- John E Fincham
- South African Medical Research Council, Nutritional Intervention Research Unit, P.O. Box 19070, Tygerberg 7505, South Africa.
| | | | | | | | | | | |
Collapse
|
83
|
Brooker S, Alexander N, Geiger S, Moyeed RA, Stander J, Fleming F, Hotez PJ, Correa-Oliveira R, Bethony J. Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil. Int J Parasitol 2006; 36:1143-51. [PMID: 16814294 PMCID: PMC1783908 DOI: 10.1016/j.ijpara.2006.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/15/2006] [Accepted: 05/22/2006] [Indexed: 11/20/2022]
Abstract
Marked heterogeneity exists in the patterns of parasitic infection between individuals, households and communities. Analysis of parasite distributions within populations is complicated by the fact that parasite distributions are highly aggregated and few studies have explicitly incorporated this distribution when investigating small-scale spatial heterogeneities. This study aimed to quantify the small-scale (within- and between-household) heterogeneity of helminth infection in an area of Minas Gerais State, Brazil, with rural and urban sectors. Parasitological data from a cross-sectional survey of 1,249 individuals aged 0-86 years from 242 households were analysed. Within-household clustering of infection was assessed using random effect logistic regression models and between-household spatial heterogeneity was assessed using a Bayesian negative binomial spatial model. The overall prevalence of hookworm (Necator americanus) was 66.9%, the prevalence of Schistosoma mansoni was 44.9% and the prevalence of Ascaris lumbricoides was 48.8%. Statistical analysis indicated significant (within) household and (between household) spatial clustering of hookworm in both rural and urban areas and of S. mansoni in rural areas. There was no evidence of either household or spatial clustering of S. mansoni in urban areas. The spatial correlation of S. mansoni was estimated to reduce by half over a distance of 700 m in the rural area. Rural hookworm had a much smaller half-distance (28 m) and urban hookworm showed an even smaller half-distance (12 m). We suggest that such species-specific differences in patterns of infection by environment are primarily due to variation in exposure and parasite life cycle, although host genetic factors cannot be ruled out.
Collapse
Affiliation(s)
- Simon Brooker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WCIE 7HT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Behnke JM, Iraqi FA, Mugambi JM, Clifford S, Nagda S, Wakelin D, Kemp SJ, Baker RL, Gibson JP. High resolution mapping of chromosomal regions controlling resistance to gastrointestinal nematode infections in an advanced intercross line of mice. Mamm Genome 2006; 17:584-97. [PMID: 16783640 DOI: 10.1007/s00335-005-0174-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Fine mapping of quantitative trait loci (QTL) associated with resistance to the gastrointestinal parasite Heligmosomoides polygyrus was achieved on F(6)/F(7) offspring (1076 mice) from resistant (SWR) and susceptible (CBA) mouse strains by selective genotyping (top and bottom 20% selected on total worm count in week 6). Fecal egg counts were recorded at weeks 2, 4, and 6, and the average was also analyzed. Blood packed cell volume in weeks 3 and 6 and five immunological traits (mucosal mast cell protease 1, granuloma score, IgG1 against adult worm, IgG1, and IgE to L4 antigen) were also recorded. On Chromosome 1 single-trait analyses identified a QTL with effects on eight traits located at about 24 cM on the F(2) mouse genome database (MGD) linkage map, with a 95% confidence interval (CI) of 20-32 cM established from a multitrait analysis. On Chromosome 17 a QTL with effects on nine traits was located at about 18 cM on the MGD map (CI 17.9-18.4 cM). Strong candidate genes for the QTL position on Chromosome 1 include genes known to be involved in regulating immune responses and on Chromosome 17 genes within the MHC, notably the Class II molecules and tumor necrosis factor.
Collapse
Affiliation(s)
- Jerzy M Behnke
- School of Biological Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Adams VJ, Markus MB, Kwitshana ZL, Dhansay MA, van der Merwe L, Walzl G, Fincham JE. Recall of intestinal helminthiasis by HIV-infected South Africans and avoidance of possible misinterpretation of egg excretion in worm/HIV co-infection analyses. BMC Infect Dis 2006; 6:88. [PMID: 16725057 PMCID: PMC1483828 DOI: 10.1186/1471-2334-6-88] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ascariasis and HIV/AIDS are often co-endemic under conditions of poverty in South Africa; and discordant immune responses to the respective infections could theoretically be affecting the epidemic of HIV/AIDS in various ways. It is well-known that sensitisation to helminthic antigens can aggravate or ameliorate several non-helminthic diseases and impair immunisation against cholera, tetanus and tuberculosis. The human genotype can influence immune responses to Ascaris strongly. With these factors in mind, we have started to document the extent of long-term exposure to Ascaris and other helminths in a community where HIV/AIDS is highly prevalent. In more advanced studies, objectives are to analyse relevant immunological variables (e.g. cytokine activity and immunoglobulin levels). We postulate that when Ascaris is hyperendemic, analysis of possible consequences of co-infection by HIV cannot be based primarily on excretion vs non-excretion of eggs. METHODS Recall of worms seen in faeces was documented in relation to the age of adult volunteers who were either seropositive (n = 170) or seronegative (n = 65) for HIV. Reasons for HIV testing, deworming treatments used or not used, date and place of birth, and duration of residence in Cape Town, were recorded. Confidence intervals were calculated both for group percentages and the inter-group differences, and were used to make statistical comparisons. RESULTS In both groups, more than 70% of participants were aware of having passed worms, often both when a child and as an adult. Most of the descriptions fitted Ascaris. Evidence for significantly prolonged exposure to helminthic infection in HIV-positives was supported by more recall of deworming treatment in this group (p < 0.05). Over 90% of the participants had moved to the city from rural areas. CONCLUSION There was a long-term history of ascariasis (and probably other helminthic infections) in both of the groups that were studied. In women in the same community, and in children living where housing and sanitation are better, Ascaris sero-prevalence exceeded egg-prevalence by two- and three-fold, respectively. For ongoing and future analyses of possible consequences of co-infection by Ascaris (and/or other helminths) and HIV/AIDS (and/or other bystander conditions), comparisons must be based mainly on disease-related immunological variables. Especially in adults, comparisons cannot be based only on the presence or absence of eggs in excreta.
Collapse
Affiliation(s)
- Vera J Adams
- Nutritional Intervention Research Unit, P O Box 19070, Tygerberg 7505, South Africa
| | - Miles B Markus
- University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Zilungile L Kwitshana
- Nutritional Intervention Research Unit, P O Box 70380, Durban-Overport 4067, South Africa
| | - Muhammad A Dhansay
- Nutritional Intervention Research Unit, P O Box 19070, Tygerberg 7505, South Africa
| | - Lize van der Merwe
- Biostatistics Unit, Medical Research Council of South Africa, P O Box 19070, Tygerberg 7505, South Africa
| | - Gerhard Walzl
- Department of Medical Biochemistry, University of Stellenbosch, Tygerberg 7505, South Africa
| | - John E Fincham
- Nutritional Intervention Research Unit, P O Box 19070, Tygerberg 7505, South Africa
| |
Collapse
|
86
|
Bryja J, Galan M, Charbonnel N, Cosson JF. Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 2006; 58:191-202. [PMID: 16467985 DOI: 10.1007/s00251-006-0085-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Major histocompatibility complex (MHC) genes play important role in host-parasite interactions and parasites are crucial factors influencing the population dynamics of hosts. We described the structure and diversity of exon 2 of the MHC class II DQA gene in three species of voles (Arvicolinae) exhibiting regular multi-annual fluctuations of population density and analysed the processes leading to the observed MHC polymorphism. By using cloning-sequencing methodology and capillary electrophoresis-single strand conformation polymorphism, we described seven sequences in the water, eight in the common, and seven in the bank voles coming from an area of 70 km(2) around the Nozeroy canton in the Jura Mountains (Franche Comté, France). All exon 2 sequences translate to give unique amino acid sequences and positive selection was found to act very intensively on antigen binding sites. We documented the presence of recombination at vole DQA region but its importance in generating allelic polymorphism seems to be relatively limited. For the first time within rodents, we documented the duplication of the DQA gene in all three species with both copies being transcriptionally active. Phylogenetic analysis of allelic sequences revealed extensive trans-species polymorphism within the subfamily although no alleles were shared between species in our data set. We discuss possible role of parasites in forming the recent polymorphism pattern of the DQA locus in voles.
Collapse
Affiliation(s)
- J Bryja
- Centre de Biologie et Gestion des Populations (UMR 22), INRA, Campus International de Baillarguet, CS 30016,, 34988 Montferrier sur Lez, Cedex, France.
| | | | | | | |
Collapse
|
87
|
Abath FGC, Morais CNL, Montenegro CEL, Wynn TA, Montenegro SML. Immunopathogenic mechanisms in schistosomiasis: what can be learnt from human studies? Trends Parasitol 2006; 22:85-91. [PMID: 16380294 DOI: 10.1016/j.pt.2005.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 10/13/2005] [Accepted: 12/08/2005] [Indexed: 11/27/2022]
Abstract
Studies in mice indicate that schistosome egg-induced granuloma formation and hepatic fibrosis depend markedly on cytokine regulation, with interleukin 10 having a central role. There is no clear consensus about the pattern of cytokine production and regulation that causes a minority of chronically exposed patients to develop severe hepatosplenic (HS) disease, which is characterized by periportal fibrosis and portal hypertension. HS disease and the progression of hepatic fibrosis are associated with the production of profibrotic type 2 cytokines in the early stages of infection with Schistosoma mansoni. However, other studies indicate that HS disease is characterized by a predominant T helper 1 profile. Until new tools and approaches are developed to study human disease in endemic areas, investigators must either speculate about indirect evidence from human studies or rely more heavily on findings generated from experimental models of the disease.
Collapse
Affiliation(s)
- Frederico G C Abath
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Professor Moraes Rego s/n, Cidade Universitária, 50670-420 Recife, Brazil.
| | | | | | | | | |
Collapse
|
88
|
Scott ME. High transmission rates restore expression of genetically determined susceptibility of mice to nematode infections. Parasitology 2006; 132:669-79. [PMID: 16393368 DOI: 10.1017/s0031182005009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 11/06/2022]
Abstract
This study investigated why the susceptible or resistance phenotype to the nematode Heligmosomoides polygyrus was lost when susceptible (C57BL/6) and resistant (Balb/c) strains of mice were housed together in indoor arenas with continuous transmission of the parasite larvae present in peat trays (Scott, 1991). First, both strains expressed their normal phenotype when given a controlled challenge while living in arenas, and when experimentally infected with only 5 parasite larvae. To test whether chronic exposure to peat altered the resistance phenotype, mice were given a challenge infection while living on peat. C57BL/6 mice living on peat had higher egg production and higher worm numbers than Balb/c mice, except at 2 months post-challenge. Finally, natural transmission rates were increased in arena experiments through either regular replacement of arena mice with naïve mice or direct introduction of additional larvae. A transient difference in infection levels between strains was detected in response to a modest increase in transmission whereas a 10-fold increase in transmission allowed C57BL/6 mice to exhibit the typical profile of high egg production and elevated worm numbers. These data indicate that C57BL/6 mice are less able to regulate parasite numbers at high transmission rates compared with lower transmission rates.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, Canada H9X 3V9.
| |
Collapse
|
89
|
Davies G, Stear MJ, Benothman M, Abuagob O, Kerr A, Mitchell S, Bishop SC. Quantitative trait loci associated with parasitic infection in Scottish blackface sheep. Heredity (Edinb) 2006; 96:252-8. [PMID: 16391549 DOI: 10.1038/sj.hdy.6800788] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study aimed to identify quantitative trait loci associated with endoparasitic infection in Scottish Blackface sheep. Data were collected from 789 animals over a 3-year period. All of the animals were continually exposed to a mixed nematode infection by grazing. Faecal samples were collected in August, September and October each year at ca. 16, 20 and 24 weeks of age; Nematodirus spp. eggs were counted separately from the other species of nematodes. Blood samples were collected in October from which immunoglobulin A (IgA) activity was measured and DNA was extracted for genotyping. In total, 139 Microsatellite markers were genotyped across eight chromosomal regions (chromosomes 1, 2, 3, 5, 14, 18, 20 and 21) in the sires and progeny were genotyped for the markers that were polymorphic in their sire. Evidence was found for quantitative trait loci (QTL) on chromosomes 2, 3, 14 and 20. QTL associated with specific IgA activity were identified in chromosomes 3 and 20, in regions close to IFNG (chromosome 3) and the MHC (chromosome 20). QTL associated with Nematodirus FEC were identified on chromosomes 2, 3 and 14. Lastly, QTL associated with non-Nematodirus Strongyle FEC were identified on chromosomes 3 and 20. This study has shown that some aspects of host resistance to gastrointestinal parasites are under strong genetic control, therefore these QTL could be utilised in a marker-assisted selection scheme to increase host resistance to gastrointestinal parasites.
Collapse
Affiliation(s)
- G Davies
- Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK.
| | | | | | | | | | | | | |
Collapse
|
90
|
Fenwick A, Rollinson D, Southgate V. Implementation of Human Schistosomiasis Control: Challenges and Prospects. ADVANCES IN PARASITOLOGY 2006; 61:567-622. [PMID: 16735173 DOI: 10.1016/s0065-308x(05)61013-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a major disease of public health importance in humans occurring in over 70 countries of the tropics and sub-tropics. In this chapter, the history of the control of schistosomiasis is briefly discussed and current methods of control of schistosomiasis are reviewed; including mollusciciding, biological control of the intermediate snail hosts, the development of drugs to kill the adult worms, provision of clean water and health education, with a focus on the African situation. Since an effective vaccine against schistosomiasis is lacking, the emphasis today is placed on the drug praziquantel (PZQ). The marked reduction in the cost of PZQ together with the support of the Bill and Melinda Gates Foundation has enabled the drug to be used more widely in sub-Saharan Africa. Nevertheless, with the possibility of resistance to praziquantel emerging, the potential role of other drugs, such as artemether, in the control of schistosomiasis is examined. The World Health Organization (WHO) anticipates that at least 75% of all schoolchildren at risk of morbidity from schistosomiasis will be treated by 2010, with the aim of reversing morbidity. The importance of recent international initiatives such as the Schistosomiasis Control Initiative (SCI) working in Mali, Niger, Burkina Faso, Zambia, Tanzania and Uganda is recognised. There are benefits to integrating the control of schistosomiasis with other disease control programmes, such as gastrointestinal helminths and/or lymphatic filariasis (LF), since this markedly reduces the cost of delivery of the treatment. Countries that are situated on the perimeter of the distribution of schistosomiasis have either achieved or have made progress towards the elimination of the disease. For control programmes to be successful in areas such as sub-Saharan Africa, it is absolutely essential that these programmes are sustainable. Thus, it will be vital for Ministries of Health and Education to budget for the control of diseases of poverty in addition to school health, and to utilise funds from a range of sources, such as, government funds, pooled donor contributions, or bilateral and international agencies.
Collapse
Affiliation(s)
- Alan Fenwick
- Schistosomiasis Control Initiative, Department of Infectious Disease Epidemiology, Imperial College, London W2 1PG, UK
| | | | | |
Collapse
|
91
|
Blake DP, Hesketh P, Archer A, Carroll F, Shirley MW, Smith AL. The influence of immunizing dose size and schedule on immunity to subsequent challenge with antigenically distinct strains ofEimeria maxima. Avian Pathol 2005; 34:489-94. [PMID: 16537164 DOI: 10.1080/03079450500368292] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eimeria maxima, the most immunogenic of the Eimeriidae that infect the chicken, is characterized by the presence of antigenic diversity within field isolates. In priming/challenge experiments immunity to homologous infection is essentially complete while immunity against challenge by a heterologous strain is often only partial. The phenotype "escape from immune protection" is known to be influenced by both host and parasite genotypes but the impact of varied immunization dose and schedule remains poorly documented. In this manuscript we report that an immunizing dose between <or=5 and <or=20 sporulated E. maxima oocysts is consistently capable of stimulating complete (>99.99%) protective immunity against challenge by 100 oocysts of a homologous strain. In contrast, complete immunity against a heterologous strain was never observed, although increasing the immunizing dose size did frequently reduce oocyst production arising from subsequent heterologous challenge. Differences in cross-protective immunizing capacity between two strains of E. maxima were evident as the H strain consistently stimulated a more potent protective immune response than the W strain. Similarly, increasing the number of immunizing doses of the E. maxima W strain (but not the H strain) increased immune protection against subsequent heterologous challenge. When combined with previously published data the results described here suggest that the E. maxima genome encodes a pool of antigens that are capable of stimulating an immune response cross-protective against more than one strain. These antigens supplement a separate restricted pool of antigens that are capable of stimulating stronger, but strain-specific, protective immune responses.
Collapse
Affiliation(s)
- Damer P Blake
- Enteric Immunology Group, Institute for Animal Health, Compton, Nr. Newbury, Berkshire, RG20 7NN, UK
| | | | | | | | | | | |
Collapse
|
92
|
Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2005; 2:16. [PMID: 16242022 PMCID: PMC1282567 DOI: 10.1186/1742-9994-2-16] [Citation(s) in RCA: 542] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022] Open
Abstract
Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies.
Collapse
Affiliation(s)
- Simone Sommer
- Animal Ecology & Conservation, Biocentre Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|
93
|
Traub RJ, Monis PT, Robertson ID. Molecular epidemiology: A multidisciplinary approach to understanding parasitic zoonoses. Int J Parasitol 2005; 35:1295-307. [PMID: 16143334 DOI: 10.1016/j.ijpara.2005.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
Sound application of molecular epidemiological principles requires working knowledge of both molecular biological and epidemiological methods. Molecular tools have become an increasingly important part of studying the epidemiology of infectious agents. Molecular tools have allowed the aetiological agent within a population to be diagnosed with a greater degree of efficiency and accuracy than conventional diagnostic tools. They have increased the understanding of the pathogenicity, virulence, and host-parasite relationships of the aetiological agent, provided information on the genetic structure and taxonomy of the parasite and allowed the zoonotic potential of previously unidentified agents to be determined. This review describes the concept of epidemiology and proper study design, describes the array of currently available molecular biological tools and provides examples of studies that have integrated both disciplines to successfully unravel zoonotic relationships that would otherwise be impossible utilising conventional diagnostic tools. The current limitations of applying these tools, including cautions that need to be addressed during their application are also discussed.
Collapse
Affiliation(s)
- R J Traub
- WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.
| | | | | |
Collapse
|
94
|
Churcher TS, Ferguson NM, Basáñez MG. Density dependence and overdispersion in the transmission of helminth parasites. Parasitology 2005; 131:121-32. [PMID: 16038403 DOI: 10.1017/s0031182005007341] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The influence of density-dependent processes on the transmission of parasitic helminths is determined by both the severity of the regulatory constraints and the degree of parasite overdispersion among the host population. We investigate how overdispersed parasite distributions among humans influence transmission levels in both directly- and indirectly-transmitted nematodes (Ascaris lumbricoides and Onchocerca volvulus). While past work has assumed, for simplicity, that density dependence acts on the average worm load, here we model density-dependence as acting on individual parasite burdens before averaging across hosts. A composite parameter, which we call the effective transmission contribution, is devised to measure the number of transmission stages contributed by a given worm burden after incorporating over-dispersion in adult worm mating probabilities and other density-dependent mechanisms. Results indicate that the more overdispersed the parasite population, the greater the effect of density dependence upon its transmission dynamics. Strong regulation and parasite overdispersion make the relationship between mean worm burden and its effective contribution to transmission highly non-linear. Consequently, lowering the intensity of infection in a host population using chemotherapy may produce only a small decline in transmission (relative to its initial endemic level). Our analysis indicates that when parasite burden is low, intermediate levels of parasite clustering maximize transmission. Implications are discussed in relation to existing control programmes and the spread of anthelmintic resistance.
Collapse
Affiliation(s)
- T S Churcher
- Department of Infectious Disease Epidemiology, Faculty of Medicine, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
95
|
Tarazona-Santos E, Tishkoff SA. Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immun 2005; 6:53-65. [PMID: 15602587 DOI: 10.1038/sj.gene.6364149] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-13 (IL-13) is a cytokine involved in Th2 immune response, which plays a role in susceptibility to infection by extracellular parasites as well as complex diseases of the immune system such as asthma and allergies. To determine the pattern of genetic diversity at the IL13 gene, we sequenced 3950 bp encompassing the IL13 gene and its promoter in 264 chromosomes from individuals originating from East and West Africa, Europe, China and South America. Thirty-one single-nucleotide polymorphisms (SNPs) arranged in 88 haplotypes were indentified, including the nonsynonymous substitution Arg130Gln in exon 4, which differs in frequency across ethnic groups. We show that genetic diversity and linkage disequilibrium (LD) are not evenly distributed across the gene and that sites in the 5' and 3' regions of the gene show strong differentiation among continental groups. We observe a divergent pattern of haplotype variation and LD across geographic regions and we identify a set of htSNPs that will be useful for functional genetic association studies of complex disease. We use several statistical tests to distinguish the effects of natural selection and demographic history on patterns of genetic diversity at the IL13 locus.
Collapse
Affiliation(s)
- E Tarazona-Santos
- Department of Biology, University of Maryland, College Park, MD 80742, USA
| | | |
Collapse
|
96
|
Bottomley C, Isham V, Basáñez MG. Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitology 2005; 131:417-33. [PMID: 16178364 DOI: 10.1017/s0031182005007791] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite evidence for the existence of interspecific interactions between helminth species, there has been no theoretical exploration of their effect on the distribution of the parasite species in a host population. We use a deterministic model for the accumulation and loss of adult worms of 2 interacting helminth species to motivate an individual-based stochastic model. The mean worm burden and variance[ratio ]mean ratio (VMR) of each species, and the correlation between the two species are used to describe the distribution within different host age classes. We find that interspecific interactions can produce convex age-intensity profiles and will impact the level of aggregation (as measured by the VMR). In the absence of correlated exposure, the correlation in older age classes may be close to zero when either intra- or interspecific synergistic effects are strong. We therefore suggest examining the correlation between species in young hosts as a possible means of identifying interspecific interaction. The presence of correlation between the rates of exposure makes the interpretation of correlations between species more difficult. Finally we show that in the absence of interaction, strong positive correlations are generated by averaging across most age classes.
Collapse
Affiliation(s)
- C Bottomley
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), Wolfson House, 4 Stephenson Way, London NW1 2HE.
| | | | | |
Collapse
|
97
|
Abstract
Immune responses to human roundworm (Ascaris lumbricoides) and whipworm (Trichuris trichiura) and their role in controlling worm populations are reviewed. Recent immunoepidemiological data implicate T(H)2-mediated responses in limiting A. lumbricoides and T. trichiura populations. Reinfection studies further suggest that IL-5 cytokine responses are negatively associated with adult recruitment in T. trichiura but not A. lumbricoides and may therefore be involved in negative intraspecific and interspecific interactions mediated through the host immune system. The importance of inducible immunoregulatory networks in the ecology of the host-parasite relationship is considered, with particular regard to possible manipulative strategies by the parasites. This aspect of the worms' interaction with the host immune system is both poorly known and potentially central to an understanding of parasite population dynamics and the evolutionary pressures that have shaped present-day host-parasite associations. Some possible implications of worm-mediated immunomodulation for the occurrence of bystander infectious diseases in human populations and the management of de-worming programmes are also discussed.
Collapse
Affiliation(s)
- J E Bradley
- School of Biology, Nottingham University, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
98
|
Schad J, Ganzhorn JU, Sommer S. PARASITE BURDEN AND CONSTITUTION OF MAJOR HISTOCOMPATIBILITY COMPLEX IN THE MALAGASY MOUSE LEMUR, MICROCEBUS MURINUS. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01002.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
99
|
Schad J, Ganzhorn JU, Sommer S. PARASITE BURDEN AND CONSTITUTION OF MAJOR HISTOCOMPATIBILITY COMPLEX IN THE MALAGASY MOUSE LEMUR, MICROCEBUS MURINUS. Evolution 2005. [DOI: 10.1554/04-312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
Abstract
PURPOSE OF REVIEW Schistosomiasis is an important poverty-related health problem and more than 200 million people are infected. This review summarizes papers from April 2003 to June 2004 with a focus on schistosomiasis morbidity and the various factors that affect the level of morbidity in endemic populations. The aim is to provide an update on the current state of knowledge and, hopefully, thereby stimulate continued research interest in this important area. RECENT FINDINGS Research into the immune responses associated with severe morbidity has provided new insights into the mechanisms of immune regulation as well as the role of genetic predisposition to periportal fibrosis. Malaria and schistosomiasis are co-endemic and co-infection with malaria may increase the level of morbidity in hepatosplenic schistosomiasis, and alter the host immune response towards schistosome antigens. Schistosome infections may render the host more susceptible to human immunodeficiency virus infection by either interfering with immune responses or increasing the risk of transmission due to genital lesions. An important advance in schistosomiasis research, and parasite genomics, is the recent availability of two major Schistosoma mansoni and Schistosoma japonicum DNA bioinformatic resources. SUMMARY Significant advances have been achieved in our understanding of the epidemiology, immunology and genetics of schistosomiasis, and the various factors that may influence morbidity. However, good research is vital for sustainable disease control, and continued progress requires a critical mass of researchers with a range of expertise from basic parasite biology to public-health interventions. It is therefore important to strengthen research capacity in endemic countries.
Collapse
|