51
|
Leach FE, Xiao Z, Laremore TN, Linhardt RJ, Amster IJ. ELECTRON DETACHMENT DISSOCIATION AND INFRARED MULTIPHOTON DISSOCIATION OF HEPARIN TETRASACCHARIDES. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 308:253-259. [PMID: 22247649 PMCID: PMC3254104 DOI: 10.1016/j.ijms.2011.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heparin glycosaminoglycans (GAGs) present the most difficult glycoform for analytical characterization due to high levels of sulfation and structural heterogeneity. Recent contamination of the clinical heparin supply and subsequent fatalities has highlighted the need for sensitive methodologies of analysis. In the last decade, tandem mass spectrometry has been increasingly applied for the analysis of GAGs, but developments in the characterization of highly sulfated compounds have been minimal due to the low number of cross-ring cleavages generated by threshold ion activation by collisional induced dissociation (CID). In the current work, electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) are applied to a series of heparin tetrasaccharides. With both activation methods, abundant glycosidic and cross-ring cleavages are observed. The concept of Ionized Sulfate Criteria (ISC) is presented as a succinct method for describing the charge state, degree of ionization and sodium/proton exchange in the precursor ion. These factors contribute to the propensity for useful fragmentation during MS/MS measurements. Precursors with ISC values of 0 are studied here, and shown to yield adequate structural information from ion activation by EDD or IRMPD.
Collapse
Affiliation(s)
- Franklin E Leach
- University of Georgia, Department of Chemistry, Athens, GA 30602
| | | | | | | | | |
Collapse
|
52
|
A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. J Virol 2011; 86:484-91. [PMID: 22072779 DOI: 10.1128/jvi.06357-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
Collapse
|
53
|
The efficient structure elucidation of minor components in heparin digests using microcoil NMR. Carbohydr Res 2011; 346:2244-54. [DOI: 10.1016/j.carres.2011.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/09/2011] [Indexed: 11/23/2022]
|
54
|
Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 2011; 83:7815-22. [PMID: 21863856 DOI: 10.1021/ac201498a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences and Technology, the Koch Institute for Integrative, Cancer Research and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
55
|
Sommers CD, Ye H, Kolinski RE, Nasr M, Buhse LF, Al-Hakim A, Keire DA. Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns. Anal Bioanal Chem 2011; 401:2445-54. [PMID: 21901459 DOI: 10.1007/s00216-011-5362-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment. For UFH, a mean ± standard deviation value for M(w) of 16,773 ± 797 was observed with a range of 15,620 to 18,363 (n = 20, run in triplicate). For LMWHs by SEC-MALLS, we measured mean M(w) values for dalteparin, tinzaparin, and enoxaparin of 6,717 ± 71 (n = 4), 6,670 ± 417 (n = 3), and 3,959 ± 145 (n = 3), respectively. PAGE analysis of the same UFH, dalteparin, tinzaparin, and enoxaparin samples showed values of 16,135 ± 643 (n = 20), 5,845 ± 45 (n = 4), 6,049 ± 95 (n = 3), and 4,772 ± 69 (n = 3), respectively. These orthogonal measurements are the first M(w) results obtained with a large heparin sample set on product being marketed after the heparin crisis of 2008 changed the level of scrutiny of this drug class. In this study, we compare our new data set to samples analyzed over 10 years earlier. In addition, we found that the PAGE analysis of heparinase digested UFH and neat LMWH samples yield characteristic patterns that provide a facile approach for identification and assessment of drug quality and uniformity.
Collapse
Affiliation(s)
- Cynthia D Sommers
- Division of Pharmaceutical Analysis, CDER, Food and Drug Administration, 1114 Market St. Rm 1002, St. Louis, MO 63101, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. ACTA ACUST UNITED AC 2011; 2:209-17. [PMID: 19877943 DOI: 10.1089/ten.1996.2.209] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Small intestinal submucosa (SIS) is a resorbable biomaterial that induces tissue remodeling when used as a xenogeneic tissue graft in animal models of vascular, urologic, dermatologic, neurologic, and orthopedic injury. Determination of the composition and structure of naturally occurring biomaterials such as SIS that promote tissue remodeling is necessary for the greater understanding of their role in wound healing. Since glycosaminoglycans (GAGs) are important components of extracellular matrix (ECM) and SIS is primarily an ECM-based material, studies were performed to identify the species of glycosaminoglycans present in SIS. Porcine SIS was chemically extracted and the extracts were analyzed for uronic acid. The extractable uronic acid content was determined to be 47.7 micromol/g (approximately 21 microg GAG/mg) of the dry weight of the SIS tissue. Using electrophoretic separation of GAGs on cellulose acetate membranes, hyaluronic acid, heparin, heparan sulfate, chondroitin sulfate A, and dermatan sulfate were identified. Digestion of specific GAGs with selective enzymes confirmed the presence of these GAG species. Two GAGs common to other tissues with large basement membrane ECM components, keratan sulfate and chondroitin sulfate C, were not detected in the SIS extracts. Identification of specific GAGs in the composition of the ECM-rich SIS provides a starting point toward a more comprehensive understanding of the structure and function of this naturally occurring biomaterial with favorable in vivo tissue remodeling properties.
Collapse
Affiliation(s)
- J P Hodde
- Hillenbrand Biomedical Engineering Center, Purdue University, West Lafayette, Indiana 47907-1293
| | | | | | | |
Collapse
|
57
|
Asparagine 405 of heparin lyase II prevents the cleavage of glycosidic linkages proximate to a 3-O-sulfoglucosamine residue. FEBS Lett 2011; 585:2461-6. [PMID: 21741976 DOI: 10.1016/j.febslet.2011.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023]
Abstract
Heparin and heparan sulfate contain a rare 3-O-sulfoglucosamine residue critical for anticoagulation and virus recognition, respectively. The glycosidic linkage proximate to this 3-O-sulfoglucosamine is resistant to cleavage by all heparin lyases (Heps). HepII has a broad specificity. The crystal structure of the wild type HepII identified its active site and showed a close spatial proximity between Asn405 and the 3-OH group of the bound glucosamine residue. In this study, we mutated Asn405 to the less sterically demanding Ala405 or Gly405, which broadened the substrate specificity of HepII and caused it to cleave the resistant linkage proximate to the 3-O-sulfoglucosamine residue.
Collapse
|
58
|
Chen S, Ye F, Chen Y, Chen Y, Zhao H, Yatsunami R, Nakamura S, Arisaka F, Xing XH. Biochemical analysis and kinetic modeling of the thermal inactivation of MBP-fused heparinase I: Implications for a comprehensive thermostabilization strategy. Biotechnol Bioeng 2011; 108:1841-51. [DOI: 10.1002/bit.23144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 11/12/2022]
|
59
|
|
60
|
Murali S, Leong DFM, Lee JJL, Cool SM, Nurcombe V. Comparative assessment of the effects of gender-specific heparan sulfates on mesenchymal stem cells. J Biol Chem 2011; 286:17755-65. [PMID: 21454472 DOI: 10.1074/jbc.m110.148874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compare here the structural and functional properties of heparan sulfate (HS) chains from both male or female adult mouse liver through a combination of molecular sieving, enzymatic cleavage, and strong anion exchange-HPLC. The results demonstrated that male and female HS chains are significantly different by a number of parameters; size determination showed that HS chain lengths were ∼100 and ∼22 kDa, comprising 30-40 and 6-8 disaccharide repeats, respectively. Enzymatic depolymerization and disaccharide composition analyses also demonstrated significant differences in domain organization and fine structure. N-Unsubstituted glucosamine (ΔHexA-GlcNH(3)(+), ΔHexA-GlcNH(3)(+)(6S), ΔHexA(2S)-GlcNH(3)(+), and N-acetylglucosamine (ΔHexA-GlcNAc) are the predominant disaccharides in male mouse liver HS. However, N-sulfated glucosamine (ΔHexA-GlcNSO(3)) is the predominant disaccharide found in female liver. These structurally different male and female liver HS forms exert differential effects on human mesenchymal cell proliferation and subsequent osteogenic differentiation. The present study demonstrates the potential usefulness of gender-specific liver HS for the manipulation of human mesenchymal cell properties, including expansion, multipotentiality, and subsequent matrix mineralization. Our results suggest that HS chains show both tissue- and gender-specific differences in biochemical composition that directly reflect their biological activity.
Collapse
Affiliation(s)
- Sadasivam Murali
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos, Singapore 138648
| | | | | | | | | |
Collapse
|
61
|
Xiao Z, Tappen BR, Ly M, Zhao W, Canova LP, Guan H, Linhardt RJ. Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin. J Med Chem 2011; 54:603-10. [PMID: 21166465 PMCID: PMC3024469 DOI: 10.1021/jm101381k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seven pharmaceutical heparins were investigated by oligosaccharide mapping by digestion with heparin lyase 1, 2, or 3, followed by high performance liquid chromatography analysis. The structure of one of the prepared mapping standards, ΔUA-Gal-Gal-Xyl-O-CH(2)CONHCH(2)COOH (where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, Gal is β-d-galactpyranose, and Xyl is β-d-xylopyranose) released from the linkage region using either heparin lyase 2 or heparin lyase 3 digestion, is reported for the first time. A size-dependent susceptibility of site cleaved by heparin lyase 3 was also observed. Heparin lyase 3 acts on the undersulfated domains of the heparin chain and does not cleave the linkages within heparin's antithrombin III binding site. Thus, a novel low molecular weight heparin (LMWH) is afforded on heparin lyase 3 digestion of heparin due to this unique substrate specificity, which has anticoagulant activity comparable to that of currently available LMWH.
Collapse
Affiliation(s)
- Zhongping Xiao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao, 266003, China
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Britney R. Tappen
- Department of Biochemistry and Biophysics, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mellisa Ly
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjing Zhao
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lauren P. Canova
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao, 266003, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
62
|
Pedron S, Kasko AM, Peinado C, Anseth KS. Effect of heparin oligomer chain length on the activation of valvular interstitial cells. Biomacromolecules 2010; 11:1692-5. [PMID: 20446725 DOI: 10.1021/bm100211k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Pedron
- Department of Chemical and Biological Engineering, University of Colorado, ECCH 111, UCB 424, Boulder, Colorado 80309-0424, USA
| | | | | | | |
Collapse
|
63
|
Beni S, Limtiaco JFK, Larive CK. Analysis and characterization of heparin impurities. Anal Bioanal Chem 2010; 399:527-39. [PMID: 20814668 PMCID: PMC3015169 DOI: 10.1007/s00216-010-4121-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations. Schematic illustrating the process for heparin impurity characterization ![]()
Collapse
Affiliation(s)
- Szabolcs Beni
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
64
|
Xiao Z, Zhao W, Yang B, Zhang Z, Guan H, Linhardt RJ. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages. Glycobiology 2010; 21:13-22. [PMID: 20729345 DOI: 10.1093/glycob/cwq123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine intestinal mucosa heparin was partially depolymerized by recombinant heparinase 1 (heparin lyase 1, originating from Flavobacterium heparinum and expressed in Escherichia coli) and then fractionated, leading to the isolation of 22 homogeneous oligosaccharides with sizes ranging from disaccharide to hexadecasaccharide. The purity of these oligosaccharides was determined by gel electrophoresis, strong anion exchange and reversed-phase ion-pairing high-performance liquid chromatography. The molecular mass of oligosaccharides was determined using electrospray ionization-mass spectrometry and their structures were elucidated using one- and two-dimensional nuclear magnetic resonance spectroscopy at 600 MHz. Five of the characterized oligosaccharides represent new compounds. The most prominent oligosaccharide comprises the common repeating unit of heparin, ΔUA2S-[-GlcNS6S-IdoA2S-](n)-GlcNS6S, where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, GlcN is 2-deoxy-2-amino-d-glucopyranose, IdoA is l-idopyranosyluronic acid, S is sulfate and n = 0-7. A second prominent heparin oligosaccharide motif corresponds to ΔUA2S-[GlcNS6S-IdoA2S](n)-GlcNS6S-IdoA-GlcNAc6S-GlcA-GlcNS3S6S (where n = 0-5 and GlcA is d-glucopyranosyluronic acid), a fragment of the antithrombin III binding site in heparin. The prominence of this second set of oligosaccharides and the absence of intact antithrombin III binding sites suggest that the -GlcNS3S6S-IdoA2S- linkage is particularly susceptible to heparinase 1.
Collapse
Affiliation(s)
- Zhongping Xiao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
65
|
Shaya D, Zhao W, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M. Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J Biol Chem 2010; 285:20051-61. [PMID: 20404324 PMCID: PMC2888417 DOI: 10.1074/jbc.m110.101071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/10/2010] [Indexed: 11/06/2022] Open
Abstract
Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a beta-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.
Collapse
Affiliation(s)
- David Shaya
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Wenjing Zhao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Marie-Line Garron
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Zhongping Xiao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Qizhi Cui
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Zhenqing Zhang
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Traian Sulea
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Robert J. Linhardt
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Miroslaw Cygler
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| |
Collapse
|
66
|
Differential effects of Heparitinase I and Heparitinase III on endothelial tube formation in vitro. Biochem Biophys Res Commun 2010; 398:191-3. [PMID: 20599743 DOI: 10.1016/j.bbrc.2010.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) play vital roles in many steps of angiogenesis under physiological and pathological conditions. HSPGs on endothelial cell surfaces act as co-receptors for a variety of pro-angiogenic growth factors such as FGF and VEGF and anti-angiogenic factors such as endostatin. However, the fine structural requirements of these binding interactions are dependent on the sulfation patterns of HSPGs. Previous studies have shown that Heparitinases, heparin lyases isolated from Flavobacterium heparinum, can cleave heparan sulfate chains. These enzymes have been shown to reduce tumor-derived neovascularization in vivo in mice. However, the results from these experiments could not conclusively pinpoint the origin of the HS fragments. Thus, in this study we utilized an in vitro assay to assess the differential effects of Heparitinase I (Hep I) and Heparitinase III (Hep III) on endothelial tube formation. Hep III was found to be a more potent inhibitor of tube formation than Hep I. In conclusion, differential cleavage of endothelial cell surface bound HS can affect the extent of inhibition of tube formation.
Collapse
|
67
|
Hyun YJ, Lee KS, Kim DH. Cloning, expression and characterization of acharan sulfate-degrading heparin lyase II from Bacteroides stercoris HJ-15. J Appl Microbiol 2010; 108:226-35. [PMID: 19566715 DOI: 10.1111/j.1365-2672.2009.04418.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS This study focused on the cloning, expression and characterization of recombinant heparinase II (rHepII) from Bacteroides stercoris HJ-15. METHODS AND RESULTS The heparinase II gene from Bact. stercoris HJ-15 was identified by Southern blotting and the sequence was deposited in GenBank. The gene was cloned and overexpressed in Escherichia coli, and rHepII was purified using two simple ion-exchange column chromatography steps. Enzymatic properties and substrate specificities of rHepII were assessed and its kinetic constants were calculated. Heparin-like glycosaminoglycans (HLGAGs) were digested with rHepII under optimal reaction conditions, and the products were analysed by SAX-HPLC. CONCLUSIONS The heparinase II gene is 2322-bp long and consists of 773 amino acids. rHepII is most active in 50 mmol l(-1) sodium phosphate buffer with 75 mmol l(-1) NaCl (pH 7.4) at 32 degrees C, and the activity is stable at 4 degrees C for 15 days on storage. Acharan sulfate is the best substrate for rHepII, followed by heparan sulfate and heparin. The major degradation products were verified as highly sulfated disaccharides through SAX-HPLC analysis. It means that rHepII prefers iduronic acid over glucuronic acid on the HLGAG structure. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides easy and certain means for obtaining large amounts of pure rHepII and also provides important information regarding the tendencies of this enzyme and its digested products. rHepII digests HLGAGs in a different manner than heparinases from Flavobacterium heparinum; therefore, we anticipate that rHepII will be a powerful tool for studies of GAGs and GAGs lyases.
Collapse
Affiliation(s)
- Y-J Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University, Hoegi, Dongdaemun-ku, Seoul, Korea
| | | | | |
Collapse
|
68
|
Eldridge SL, Higgins LA, Dickey BJ, Larive CK. Insights into the capillary electrophoresis separation of heparin disaccharides from nuclear magnetic resonance, pKa, and electrophoretic mobility measurements. Anal Chem 2009; 81:7406-15. [PMID: 19653663 DOI: 10.1021/ac901218q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Determination of the pK(a) values of heparin disaccharide functional groups can provide insights into the nature of glycosaminoglycan (GAG)-protein interactions and prove useful for optimization of the charged-based separations typically used in GAG analysis. In order to gain a better understanding into the capillary electrophoresis (CE) separation process, the pK(a) values of the carboxylate and primary amine moieties of 11 heparin disaccharide standards were determined through (1)H NMR detected pH titrations. These pK(a) values were used to calculate the effective net charge of each disaccharide and compared to the electrophoretic mobilities measured by CE. Although a different migration order had been reported by other researchers, our results indicate a strong positive correlation between the two measurements, consistent with the migration order observed in our CE separations. The effect of mutarotation was also examined by (1)H NMR. Mutarotation equilibrium constants favored the alpha anomer over the beta conformation. pK(a) values determined for both anomers of the four disaccharide standards containing a GlcN primary amine indicated that the beta anomer of the GlcN residue was more acidic. Partial separation of these anomers was achieved in CE separations using either formic acid or phosphate buffer.
Collapse
Affiliation(s)
- Stacie L Eldridge
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
69
|
Hyun YJ, Lee JH, Kim DH. Cloning, overexpression, and characterization of recombinant heparinase III from Bacteroides stercoris HJ-15. Appl Microbiol Biotechnol 2009; 86:879-90. [PMID: 19908038 DOI: 10.1007/s00253-009-2327-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Recombinant heparinase III (rHepIII) from Bacteroides stercoris HJ-15 was cloned, expressed, and characterized. The full-length heparinase III gene from B. stercoris HJ-15 was identified by Southern blotting, and the sequence was deposited in GenBank. The heparinase III gene, which is 2,001-bp long, was cloned and overexpressed in Escherichia coli; highly active rHepIII was easily purified using only one step of immobilized Ni(2+) affinity column chromatography. Enzymatic properties and substrate specificities of rHepIII were assessed, and its kinetic constants were calculated. rHepIII was most active in 50 mM sodium phosphate buffer with 350 mM NaCl (pH 6.6) at 45 degrees C. Through amino acid modification studies and site-directed mutagenesis assay, cysteines and histidines were identified as crucial residues for enzymatic activity. Moreover, this enzyme digested not only heparan sulfate but also heparin and hyaluronic acid, and their degradation products were verified by strong anion exchange/high-performance liquid chromatography. These characteristics, including active residues and substrate specificities were interesting compared with those of existing heparinase III from other species. We anticipate that the convenience of purification and the characteristics of this enzyme will make it a powerful tool for studies of glycosaminoglycans and their lyases.
Collapse
Affiliation(s)
- Yang-Jin Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | | | | |
Collapse
|
70
|
Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 2009; 83:12714-24. [PMID: 19812150 DOI: 10.1128/jvi.00717-09] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an approximately 56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors.
Collapse
|
71
|
Han YH, Garron ML, Kim HY, Kim WS, Zhang Z, Ryu KS, Shaya D, Xiao Z, Cheong C, Kim YS, Linhardt RJ, Jeon YH, Cygler M. Structural snapshots of heparin depolymerization by heparin lyase I. J Biol Chem 2009; 284:34019-27. [PMID: 19801541 DOI: 10.1074/jbc.m109.025338] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a beta-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with an (alpha/alpha)(6) fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.
Collapse
Affiliation(s)
- Young-Hyun Han
- Magnetic Resonance Team, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ye F, Kuang Y, Chen S, Zhang C, Chen Y, Xing XH. Characteristics of low molecular weight heparin production by an ultrafiltration membrane bioreactor using maltose binding protein fused heparinase I. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Banga J, Tripathi C. Rapid purification and characterization of a novel heparin degrading enzyme from Acinetobacter calcoaceticus. N Biotechnol 2009; 26:99-104. [DOI: 10.1016/j.nbt.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/04/2009] [Accepted: 04/28/2009] [Indexed: 11/15/2022]
|
74
|
Guimond SE, Puvirajesinghe TM, Skidmore MA, Kalus I, Dierks T, Yates EA, Turnbull JE. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: toward glycomics profiling. J Biol Chem 2009; 284:25714-22. [PMID: 19596853 PMCID: PMC2757973 DOI: 10.1074/jbc.m109.032755] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/06/2009] [Indexed: 11/24/2022] Open
Abstract
Studies on glycosaminoglycans and proteoglycans (PGs) have been hampered by difficulties in isolation and analysis by traditional methods that are laborious and lack sensitivity and throughput. Here we demonstrate a simple method for rapid isolation of proteoglycans (RIP) employing phenol/guanidine/chloroform reagent to purify heparan sulfate (HS) PGs quantitatively from various tissues and cells. We further show that this generic purification methodology, when applied in concert with a BODIPY fluorescent label, permits structural analyses on RIP-purified HS at approximately 1,000-fold higher sensitivity than standard UV detection methods and approximately 10-100-fold higher sensitivity than previous fluorescence detection methods. The utility of RIP-BODIPY methodology was demonstrated by rapid profiling of HS structural composition from small tissue samples, multiple mouse organs, and as little as a few thousand cultured cells. It was also used to generate novel insights into in vivo structural changes in HS from Sulf1 knock-out mice for the first time that differed significantly from previous observations limited to tissue culture experiments. RIP was also applied to purify HS for bioassay testing, exemplified by cell assays of fibroblast growth factor signaling activation; this generated data from 2-O-sulfotransferase knock-out mice and revealed an unexpected deficiency in fibroblast growth factor activation by HS from heterozygous mice. These data demonstrate that RIP will underpin emerging efforts to develop glycomics profiling strategies for HS and other glycosaminoglycans to explore their structure-function relationships in complex biological systems.
Collapse
Affiliation(s)
- Scott E. Guimond
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Tania M. Puvirajesinghe
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Mark A. Skidmore
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Ina Kalus
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Dierks
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Edwin A. Yates
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Jeremy E. Turnbull
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| |
Collapse
|
75
|
Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity. J Biol Chem 2009; 284:35177-88. [PMID: 19726671 DOI: 10.1074/jbc.m109.053801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
76
|
Babu P, Kuberan B. Fluorescent-tagged heparan sulfate precursor oligosaccharides to probe the enzymatic action of heparitinase I. Anal Biochem 2009; 396:124-32. [PMID: 19732739 DOI: 10.1016/j.ab.2009.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022]
Abstract
Heparitinase I, a key lyase enzyme essential for structural analysis of heparan sulfate (HS), degrades HS domains that are undersulfated at glucuronyl residues through an elimination mechanism. Earlier studies employed viscosimetric measurements and electrophoresis to deduce the mechanism of action of heparitinase I and two other related lyases, heparitinase II and heparitinase III. However, these findings lack molecular evidence for the intermediates formed and could not distinguish whether the cleavage occurred from the reducing end or the nonreducing end. In the current study, 2-aminoacridone (2-AMAC)-labeled HS precursor oligosaccharides of various sizes were prepared to investigate the mechanism of heparitinase I-mediated depolymerization using sensitive and quantitative methodologies. Furthermore, fluorescent (2-AMAC) tagging of HS precursor oligosaccharides allowed us to distinguish fragments that result from cleavage of the substrates at various time intervals and sites farther away from the reducing and nonreducing ends of oligosaccharide substrates. This study provides the first direct molecular evidence for a predominantly random endolytic mechanism of cleavage of HS precursor oligosaccharides by heparitinase I. This robust strategy can be adapted to deduce the mechanism of action of other heparitinases and also to deduce structural information of complex HS oligosaccharides of biological importance.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
77
|
Banga J, Tripathi C. Response surface methodology for optimization of medium components in submerged culture ofAspergillus flavusfor enhanced heparinase production. Lett Appl Microbiol 2009; 49:204-9. [DOI: 10.1111/j.1472-765x.2009.02640.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Doneanu CE, Chen W, Gebler JC. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry. Anal Chem 2009; 81:3485-99. [PMID: 19344114 DOI: 10.1021/ac802770r] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current chromatographic and mass spectrometric techniques have limitations for analyzing heparin and heparin oligomers due to their high polarity, structural diversity, and sulfate lability. A rapid method for the analysis of heparin oligosaccharides was developed using ion-pair reversed-phase ultraperformance liquid chromatography coupled with electrospray quadruple time-of-flight mass spectrometry (IPRP-UPLC ESI Q-TOF MS). The method utilizes an optimized buffer system containing a linear pentylamine and a unique additive, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to achieve highly efficient separation together with enhanced mass response of heparin oligosaccharides. Analyses of a heparin oligosaccharide test mixture, dp6 through dp22, reveal that the chromatographic conditions enable baseline resolution of isomeric heparin oligosaccharides (dp6) and produce intact molecular ions with no sulfate losses during mass spectrometric analysis. In addition, the described conditions are amenable to the detection of heparin oligosaccharides in positive ion mode, yield stronger positive ion signals for corresponding oligosaccharides compared to the negative ion mode, and allow identification of structural isomers by an MS/MS approach. Because sensitive detection of oligosaccharides is also achieved with ultraviolet (UV) detection, the method utilizes a dual detection scheme (UV and MS in series) along with IPRP UPLC to simultaneously obtain quantification (UV) and characterization (MS) data for heparin oligosaccharides. The broad potential of this new method is further demonstrated for the analysis of a low-molecular-weight heparin (LMWH) preparation from porcine heparin. This approach will be of particular utility for profiling the molecular entities of heparin materials, as well as for structural variability comparison for samples from various sources.
Collapse
Affiliation(s)
- Catalin E Doneanu
- Biopharmaceutical Sciences, Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, USA
| | | | | |
Collapse
|
79
|
Banga J, Tripathi CKM. Purification and Characterization of a Novel Heparin Degrading Enzyme from Aspergillus flavus (MTCC-8654). Appl Biochem Biotechnol 2009; 160:1004-16. [DOI: 10.1007/s12010-009-8530-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
80
|
Puvirajesinghe TM, Guimond SE, Turnbull JE, Guenneau S. Chemometric analysis for comparison of heparan sulphate oligosaccharides. J R Soc Interface 2009; 6:997-1004. [PMID: 19158013 DOI: 10.1098/rsif.2008.0483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparan sulphate (HS) is a glycosaminoglycan present in all metazoan organisms. It is an unbranched chain made up of repeating disaccharide units of uronic acid and glucosamine sugars, and is present in both cells and the extracellular matrix. It is one of the most structurally diverse biological molecules and its biosynthesis involves a variety of enzymic modification steps. Unlike the genome and the transcriptome, HS synthesis is not template driven. Nevertheless, the HS structure and function are highly regulated with modification steps occurring in discrete regions of the polysaccharide chain to give rise to diverse structures interacting with, and regulating, many different proteins. The resulting variation leads to diverse biological roles of HS. To study this structural diversity, rapid isolation and characterization of HS from small amounts of tissues, followed by digestion with bacterially derived enzymes (heparitinases) and chromatography techniques can be used to separate HS oligosaccharides of different size and charge. However, this leads to complex datasets where comparison of just a few samples leads to difficulties in data analysis. Using automatically integrated peak data obtained from chromatographic software, one can apply the effective disc technique to the data points to obtain the centre of mass in each dataset, for example from different murine tissues. This allows facile comparative analysis of different datasets. When the cloud of points displays some preferential direction (anisotropy), it is preferable to compute its effective ellipse. Analysis of the dynamics of the cloud of points for repeated experiments allows the quantification of their reproducibility through evaluation of an average Lyapunov exponent characterizing the area-preserving nature of a sequence of effective ellipses. These basic mathematical approaches allow a more systematic comparison of datasets derived from structural analysis using basic spreadsheet software calculations and contribute to the development of system biology strategies for tackling biocomplexity of HS polysaccharides.
Collapse
Affiliation(s)
- T M Puvirajesinghe
- School of Biological Sciences, Department of Mathematical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
81
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 703] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
82
|
Eldridge SL, Korir AK, Gutierrez SM, Campos F, Limtiaco JF, Larive CK. Heterogeneity of depolymerized heparin SEC fractions: to pool or not to pool? Carbohydr Res 2008; 343:2963-70. [DOI: 10.1016/j.carres.2008.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
83
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
84
|
Colombres M, Henríquez JP, Reig GF, Scheu J, Calderón R, Alvarez A, Brandan E, Inestrosa NC. Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol 2008; 216:805-15. [PMID: 18449906 DOI: 10.1002/jcp.21465] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wnt factors are secreted ligands that affect different aspects of the nervous system behavior like neurodevelopment, synaptogenesis and neurodegeneration. In different model systems, Wnt signaling has been demonstrated to be regulated by heparan sulfate proteoglycans (HSPGs). Whether HSPGs modulate Wnt signaling in the context of neuronal behavior is currently unknown. Here we demonstrate that activation of Wnt signaling with the endogenous ligand Wnt-7a results in an increased of neurite outgrowth in the neuroblastoma N2a cell line. Interestingly, heparin induces glycogen synthase kinase-3beta (GSK-3beta) inhibition, beta-catenin stabilization and morphological differentiation in both N2a cells and in rat primary hippocampal neuronal cultures. We also show that heparin modulates Wnt-3a-induced stabilization of beta-catenin. Several extracellular matrix and membrane-attached HSPGs were found to be expressed in both in vitro neuronal models. Changes in the expression of specific HSPGs were observed upon differentiation of N2a cells. Taken together, our findings suggest that HSPGs may modulate canonical Wnt signaling for neuronal morphogenesis.
Collapse
Affiliation(s)
- Marcela Colombres
- Centro de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
85
|
TGF-beta binding in human Wharton's jelly. Mol Cell Biochem 2008; 311:137-43. [PMID: 18214641 DOI: 10.1007/s11010-008-9704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/10/2008] [Indexed: 12/18/2022]
Abstract
Our previous study reported that TGF-beta may be isolated from human Wharton's jelly (WJ) in a form of soluble, high molecular complex(es). We decided to study the effect of extracellular matrix degradation and reduction of disulphide bridges reduction on the release of TGF-beta from WJ. The WJ prepared from the umbilical cords of newborns delivered at term by healthy mothers was homogenised and treated with hyaluronidase, collagenase, heparinase, chondroitinase and beta-mercaptoethanol, the resulting extracts were then submitted to TGF-beta immunoassay and SDS/PAGE followed by Western immunoblotting. The effect of metalloproteinase activation on TGF-beta was also studied. Pre-treatment of WJ homogenates with hyaluronidase or collagenase markedly increased the extractability of TGF-beta, but did not dissociate the complexes. In contrast, the action of beta-mercaptoethanol resulted in the release of free TGF-beta; but activation of metalloproteinases resulted in the disappearance of this factor. We conclude that TGF-beta1 is bound through disulphide bonds to an extracellular matrix component of WJ. The large amount of collagen fibrils and hyaluronate molecules which surround the cells scattered in WJ may prevent the access of extracting solution to TGF-beta causing a low extractability of this factor. Although hyaluronate and collagen do not bind TGF-beta directly, they may present a barrier that prevents the diffusion of TGF-beta in WJ and results in its concentration around the cells thereby facilitating its interaction with membrane receptors and subsequent stimulation of cell division and synthesis of extracellular matrix components.
Collapse
|
86
|
The hek outer membrane protein of Escherichia coli strain RS218 binds to proteoglycan and utilizes a single extracellular loop for adherence, invasion, and autoaggregation. Infect Immun 2007; 76:1135-42. [PMID: 18160475 DOI: 10.1128/iai.01327-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli is the principal gram-negative causative agent of sepsis and meningitis in neonates. The pathogenesis of meningitis due to E. coli K1 involves mucosal colonization, transcytosis of epithelial cells, survival in the bloodstream, and eventually invasion of the meninges. The last two aspects have been well characterized at a molecular level. Less is known about the early stages of pathogenesis, i.e., adhesion to and invasion of epithelial cells. We have previously reported that the Hek protein causes autoaggregation and can mediate adherence to and invasion of epithelial cells. Here, we report that Hek-mediated adherence is dependent on binding to glycosoaminoglycan, in particular, heparin. The ability to hemagglutinate, autoaggregate, adhere, and invade is contingent on a putative 25-amino-acid loop that is exposed to the outside of the bacterial cells.
Collapse
|
87
|
Kumarasuriyar A, Dombrowski C, Rider DA, Nurcombe V, Cool SM. A novel use of TAT-EGFP to validate techniques to alter osteosarcoma cell surface glycosaminoglycan expression. J Mol Histol 2007; 38:435-47. [PMID: 17885814 DOI: 10.1007/s10735-007-9136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Several methods to alter cell surface glycosaminoglycan (GAG) expression have previously been described, including treatments with chlorate to reduce the addition of charged sulfate groups, xyloside compounds to displace GAGs from their core proteins, and GAG lyases, such as heparinase and chondroitinase, to release GAG fragments from the cell layer. While these methods are useful in identifying cellular mechanisms which are dependent on GAGs, they must be stringently validated to assess results in the appropriate context. To determine the most useful technique for the evaluation of GAG function in osteogenesis, MG-63 osteosarcoma cells were systematically treated with these agents and evaluated for changes in cell surface GAGs using a TAT-EGFP fusion protein. TAT, a protein transduction domain from the HIV-1 virus, requires cell surface GAGs to traverse cell membranes. The EGFP component provides a method to assess protein entry into cells in both qualitative and quantitative tests. Here, TAT-EGFP transduction analysis confirmed radiochemical and physiological data that chlorate effectively disrupts GAG expression. TAT-EGFP entry into cells was also inhibited by the exogenous application of commercial heparin and GAGs extracted from MG-63 cells as well as by the pre-treatment of cells with chondroitinase ABC. However, neither heparinase III treatment nor the addition of exogenous chondroitin-6-sulfate affected TAT-EGFP entry into cells. In addition, xyloside-beta-D-naphthol and xyloside-beta-D-cis/trans-decahydro-2-naphthol treatment could not induce significant phenotypic change in these cells, and the unaffected TAT-EGFP transduction confirmed that this was due to an inability to efficiently prime GAG synthesis. The use of TAT-EGFP is thus a useful technique to specifically evaluate cell surface GAG expression in a simple, quantifiable manner, and avoids the complications involved with conventional radiochemical assays or analytical chromatography.
Collapse
|
88
|
Chen Y, Xing XH, Ye F, Kuang Y, Luo M. Production of MBP–HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2006.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Luo Y, Huang X, McKeehan WL. High yield, purity and activity of soluble recombinant Bacteroides thetaiotaomicron GST-heparinase I from Escherichia coli. Arch Biochem Biophys 2007; 460:17-24. [PMID: 17346663 PMCID: PMC1993911 DOI: 10.1016/j.abb.2007.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/18/2022]
Abstract
Heparinase I from Flavobacterium heparinum, a source of diverse polysaccharidases, suffers from low yields, insufficient purity for structural studies and insolubility when expressed as a recombinant product in Escherichia coli that is devoid of glycosaminoglycan polysaccharidases. In this study, cDNA coding for the orthologue of F. heparinum heparinase I was constructed from genomic information from the mammalian gut symbiont Bacteroides thetaiotaomicron and expressed in E. coli as a fusion protein with GST at the N-terminus. This resulted in high yield (30 mg/g dry bacteria) of soluble product and facilitated one-step affinity purification to homogeneity. Purified heparinase I bearing the GST fusion exhibited a K(m) of 2.3 microM and V(max) of 42.7 micromol/min with a specific activity of 164 U/mg with heparin (average 12,000 Da) as substrate. The results indicate a 2-fold improvement in yield, specific activity and affinity for heparin as substrate over previous reports. The data suggest that the heparinase I from the gut symbiont exhibits a higher intrinsic affinity for heparin than that from F. heparinum. The purified GST fusion enzyme exhibited a requirement for Ca(2+) and a pH optimum between 6.7 and 7.3 that was similar to the enzyme freed of the N-terminal GST portion. Our study revealed that catalytic activity of heparinase I requires a reducing environment. The GST facilitated immobilization of heparinase I in solid phase either for clinical purposes or for structural studies in absence of interference by contaminating polysaccharidases.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
| | - Xinqiang Huang
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
| | - Wallace L. McKeehan
- Center for Cancer and Stem Cell Biology (formerly Cancer Biology and Nutrition), Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
- Department of Biochemistry and Biophysics, Texas A&M University, Institute of Biosciences and Technology (IBT), The Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030-3303, USA
- *Corresponding author: Phone: 713-677-7522; Fax: 713-677-7512;
| |
Collapse
|
90
|
Mader JS, Smyth D, Marshall J, Hoskin DW. Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1753-66. [PMID: 17071598 PMCID: PMC1780222 DOI: 10.2353/ajpath.2006.051229] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiogenesis is a complex process whereby new blood vessels form from pre-existing vasculature in response to proangiogenic factors such as basic fibroblast growth factor (bFGF) and the 165-kd isoform of vascular endothelial growth factor (VEGF165). Angiogenesis inhibitors show considerable potential in the treatment of cancer because angiogenesis is necessary for tumor growth beyond a few millimeters in diameter because of the tumor's need for oxygen and nutrient supply, as well as waste removal. Bovine lactoferricin (LfcinB) is a peptide fragment of iron- and heparin-binding lactoferrin obtained from cow's milk. Here we provide in vivo and in vitro evidence that LfcinB has potent antiangiogenic activity. LfcinB strongly inhibited both bFGF- and VEGF165-induced angiogenesis in Matrigel plugs implanted in C57BL/6 mice. In addition, LfcinB inhibited the in vitro proliferation and migration of human umbilical vein endothelial cells (HUVECs) in response to bFGF or VEGF165 but was not cytotoxic to HUVECs. Rather, LfcinB complexed with heparin-like structures on the HUVEC surface that are involved in the binding of bFGF and VEGF165 to their respective receptors, thereby preventing receptor-stimulated angiogenesis. These findings suggest that LfcinB may have utility as an antiangiogenic agent for the treatment of human cancers.
Collapse
Affiliation(s)
- Jamie S Mader
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5 Canada
| | | | | | | |
Collapse
|
91
|
Ziegler A, Zaia J. Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:76-86. [PMID: 16704936 DOI: 10.1016/j.jchromb.2006.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/09/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Recent findings on specific and non-specific interactions of glycosaminoglycans (GAGs) accentuate their pivotal role in biology and the call for improved sequencing tools. The present study evaluates size-exclusion chromatography (SEC) of heparin oligosaccharides at high and low pressure, requiring amounts as low as 0.2 microgram, using conventional UV detection after depolymerization with heparin lyases. Because of their high charge at physiological pH, SEC elution volumes of heparin oligosaccharides depend on both molecular size and charge repulsion from the matrix. As a consequence, SEC elution volumes of GAGs are smaller than those of globular proteins of similar molecular weight, and this might be exploited. Accordingly, larger heparin oligosaccharides are best separated according to their size at high ionic strength of the mobile phase (>30 mM); in contrast, disaccharides are best separated according to their charge at low ionic strength, compatible with on-line coupling to mass spectrometry. Optimized SEC affords separation of characteristic heparin trisaccharides that contain uronic acid at the reducing end and suggest cellular storage of heparin as a free glycan.
Collapse
Affiliation(s)
- André Ziegler
- Proteoglycan and Glycosaminoglycan Structure Laboratory, Mass Spectrometry Resource, Boston University, 715 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
92
|
Misinzo G, Delputte PL, Meerts P, Lefebvre DJ, Nauwynck HJ. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol 2006; 80:3487-94. [PMID: 16537616 PMCID: PMC1440380 DOI: 10.1128/jvi.80.7.3487-3494.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monocyte/macrophage lineage cells are target cells in vivo for porcine circovirus 2 (PCV2) replication. The porcine monocytic cell line 3D4/31 supports PCV2 replication in vitro, and attachment and internalization kinetics of PCV2 have been established in these cells. However, PCV2 receptors remain unknown. Glycosaminoglycans (GAG) are used by several viruses as receptors. The present study examined the role of GAG in attachment and infection of PCV2. Heparin, heparan sulfate (HS), chondroitin sulfate B (CS-B), but not CS-A, and keratan sulfate reduced PCV2 infection when these GAG were incubated with PCV2 prior to and during inoculation of 3D4/31 cells. Enzymatic removal of HS and CS-B prior to PCV2 inoculation of 3D4/31 cells significantly reduced PCV2 infection. Similarly, when PCV2 virus-like particles (VLP) were allowed to bind onto 3D4/31 cells in the presence of heparin and CS-B, attachment was strongly reduced. Titration of field isolates and low- and high-passage laboratory strains of PCV2 in the presence of heparin significantly reduced PCV2 titers, showing that the capacity of PCV2 to bind GAG was not acquired during in vitro cultivation but is an intrinsic feature of wild-type virus. When Chinese hamster ovary (CHO) cells were inoculated with PCV2, relative percentages of PCV2-infected cells were 27% +/- 8% for HS-deficient and 12% +/- 10% for GAG-deficient cells compared to wild-type cells (100%). Furthermore, it was shown using heparin-Sepharose chromatography that both PCV2 and PCV2 VLP directly interacted with heparin. Together, these results show that HS and CS-B are attachment receptors for PCV2.
Collapse
Affiliation(s)
- Gerald Misinzo
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
93
|
Yu Y, Sweeney MD, Saad OM, Leary JA. Potential inhibitors of chemokine function: analysis of noncovalent complexes of CC chemokine and small polyanionic molecules by ESI FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:524-535. [PMID: 16503157 DOI: 10.1016/j.jasms.2005.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/08/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Chemokines play a critical role in inducing chemotaxis, extravasation, and activation of leukocytes both in routine immunosurveillance and autoimmune diseases. Traditionally, to disrupt chemokine function, strategies have focused on blockage of its interaction with the receptor. Recently, it has been demonstrated that binding to glycosaminoglycans (GAGs) is also required for the in vivo activity of many chemokines. Thus, interference with the GAG-binding of chemokines may offer an alternative, valid, anti-inflammatory strategy. However, the potential of using small polyanions to inhibit the interactions between chemokines and cell surface GAGs has not been fully explored. In this study, a mass spectrometry based filtration trapping assay was utilized to study the interactions between two CCR 2 ligands (MCP-1/CCL2 and MCP-3/CCL7) and a series of low molecular weight, polyanionic molecules. Findings were confirmed by using a hydrophobic trapping assay. The results indicated that Arixtra (fondaparinux sodium), sucrose octasulfate, and suramin were specific binders of the chemokines, while cyclodextrin sulfate, although the most highly sulfated molecule among the ones investigated, showed no binding. The binding stoichiometry of the small molecule ligand was determined from the measured molecular weight of the noncovalent complex. Furthermore, the dissociation constant between MCP-3 and Arixtra was determined by using electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry, which compared favorably with the result of the isothermal titration calorimetry (ITC) assay. The relative binding affinity of these ligands to MCP-3 was also determined using a competitive filtration trapping assay.
Collapse
Affiliation(s)
- Yonghao Yu
- Genome Center, Department of Chemistry and Molecular Cell Biology, University of California at Davis, One Shields Road, 95616, Davis, CA, USA
- the Department of Chemistry, University of California at Berkeley, Berkeley, CA
| | - Matthew D Sweeney
- Genome Center, Department of Chemistry and Molecular Cell Biology, University of California at Davis, One Shields Road, 95616, Davis, CA, USA
- the Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA
| | - Ola M Saad
- Genome Center, Department of Chemistry and Molecular Cell Biology, University of California at Davis, One Shields Road, 95616, Davis, CA, USA
| | - Julie A Leary
- Genome Center, Department of Chemistry and Molecular Cell Biology, University of California at Davis, One Shields Road, 95616, Davis, CA, USA.
| |
Collapse
|
94
|
Shaya D, Tocilj A, Li Y, Myette J, Venkataraman G, Sasisekharan R, Cygler M. Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J Biol Chem 2006; 281:15525-35. [PMID: 16565082 DOI: 10.1074/jbc.m512055200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparinase II depolymerizes heparin and heparan sulfate glycosaminoglycans, yielding unsaturated oligosaccharide products through an elimination degradation mechanism. This enzyme cleaves the oligosaccharide chain on the nonreducing end of either glucuronic or iduronic acid, sharing this characteristic with a chondroitin ABC lyase. We have determined the first structure of a heparin-degrading lyase, that of heparinase II from Pedobacter heparinus (formerly Flavobacterium heparinum), in a ligand-free state at 2.15 A resolution and in complex with a disaccharide product of heparin degradation at 2.30 A resolution. The protein is composed of three domains: an N-terminal alpha-helical domain, a central two-layered beta-sheet domain, and a C-terminal domain forming a two-layered beta-sheet. Heparinase II shows overall structural similarities to the polysaccharide lyase family 8 (PL8) enzymes chondroitin AC lyase and hyaluronate lyase. In contrast to PL8 enzymes, however, heparinase II forms stable dimers, with the two active sites formed independently within each monomer. The structure of the N-terminal domain of heparinase II is also similar to that of alginate lyases from the PL5 family. A Zn2+ ion is bound within the central domain and plays an essential structural role in the stabilization of a loop forming one wall of the substrate-binding site. The disaccharide binds in a long, deep canyon formed at the top of the N-terminal domain and by loops extending from the central domain. Based on structural comparison with the lyases from the PL5 and PL8 families having bound substrates or products, the disaccharide found in heparinase II occupies the "+1" and "+2" subsites. The structure of the enzyme-product complex, combined with data from previously characterized mutations, allows us to propose a putative chemical mechanism of heparin and heparan-sulfate degradation.
Collapse
Affiliation(s)
- David Shaya
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
Menozzi FD, Reddy VM, Cayet D, Raze D, Debrie AS, Dehouck MP, Cecchelli R, Locht C. Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect 2005; 8:1-9. [PMID: 15914062 DOI: 10.1016/j.micinf.2005.03.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 03/21/2005] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis, the etiologic agent of tuberculosis, adheres to, invades and multiplies in both professional phagocytes and epithelial cells. Adherence to epithelial cells is predominantly mediated by the 28-kDa heparin-binding haemagglutinin adhesin (HBHA), which is also required for the extrapulmonary dissemination of the bacilli. To study the cellular mechanisms that might result in HBHA-mediated extrapulmonary dissemination, we used a transwell model of cellular barrier and fluorescence microscopy and found that HBHA induces a reorganization of the actin filament network in confluent endothelial cells, but does not affect the tight junctions that link them. When coupled to colloidal gold particles, HBHA-mediated a rapid attachment of the particles to the membrane of human laryngeal epithelial cells (non polarized HEp-2 cells) and human type II pneumocytes (polarized A-549 pneumocytes). After attachment, the particles were internalized in membrane-bound vacuoles that migrated across the polarized pneumocytes to reach the basal side. Attachment of the HBHA-coated particles was not observed when the epithelial cells were pretreated with heparinase III, a lyase that specifically cleaves the heparan sulfate chains borne by the proteoglycans. Furthermore, no binding was observed when the gold particles were coated with HBHA lacking its C-terminal heparin-binding domain. These observations indicate that HBHA induces receptor-mediated endocytosis through the recognition of heparan sulfate-containing proteoglycans by the heparin-binding domain of the adhesin. In addition, the transcellular migration of the endocytic vacuoles containing HBHA-coated particles suggests that HBHA induces epithelial transcytosis, which may represent a macrophage-independent extrapulmonary dissemination mechanism leading to systemic infection by M. tuberculosis.
Collapse
Affiliation(s)
- Franco D Menozzi
- Inserm, U629, Mécanismes Moléculaires de la Pathogénie Microbienne, Institut Pasteur de Lille, 1, rue du professeur Calmette, 59019 Lille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Park Y, Lebrilla CB. Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. MASS SPECTROMETRY REVIEWS 2005; 24:232-264. [PMID: 15389860 DOI: 10.1002/mas.20010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to the structural elucidation of oligosaccharides is described. This review covers the analyses of oligosaccharides in the context of the unique features of FTICR MS and the improvements in instrumentation that make it possible to study this class of compounds. It consists of work performed initially to understand the fundamental aspects of oligosaccharide ionization and unimolecular fragmentation. More recent investigation includes the application of the technique to samples of direct biological origin. Chemical and enzymatic degradation methods in conjunction with mass spectrometry (MS) and the use front-end methods with FTICR MS are also discussed. The current applications including the characterization of bacterial lipooligosaccharides and phosporylated carbohydrates are described.
Collapse
Affiliation(s)
- Youmie Park
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | |
Collapse
|
97
|
Zambruni A, Thalheimer U, Coppell J, Riddell A, Mancuso A, Leandro G, Perry D, Burroughs AK. Endogenous heparin-like activity detected by anti-Xa assay in infected cirrhotic and non-cirrhotic patients. Scand J Gastroenterol 2004; 39:830-6. [PMID: 15513380 DOI: 10.1080/00365520410004433] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bacterial infections have been proposed as a trigger for portal hypertensive bleeding in cirrhotic patients. Endogenous low molecular weight heparinoids have been previously detected in vitro by heparinase-modified thromboelastography, but it is not known what type of heparinoids they are. The aim of this study was to assay anti-Xa concentrations to detect heparin activity in infected cirrhotics in vivo. METHODS We evaluated 30 cirrhotic patients (15 with bacterial infection, 15 not infected) and 9 non-cirrhotic patients with bacterial infection. The anti-Xa assay was performed at the start of infection in all patients and after resolution of infection in 8 cirrhotics (5 to 10 days after starting antibiotics); thromboelastography (native and heparinase I-modified TEG) was performed in a subgroup of 11 cirrhotic patients with infection, 8 cirrhotics without infection and 8 non-cirrhotics with infection. RESULTS Anti-Xa activity was detected in 9 of the 15 infected cirrhotics (60%) and only in 1 of 15 non-infected cirrhotics (6.7%) (P < 0.01). In the infected cirrhotic patients, a heparinase effect was shown in the heparinase I-modified TEG: k time (P < 0.01), alpha-angle (P < 0.01) and r time (P = 0.05), with no effect in the non-infected cirrhotics. Four of 9 (44%) infected non-cirrhotics were positive with the anti-Xa assay. CONCLUSION In cirrhotic patients, bacterial infections modify haemostasis by producing endogenous heparin-like substances which can inhibit the activated clotting factor X (factor Xa). In infected non-cirrhotics, anti-Xa activity can also be found.
Collapse
Affiliation(s)
- A Zambruni
- Liver Transplantation and Hepatobiliary Medicine, Royal Free Hospital, Pond Street, London NW3 1QG, UK
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Gunay NS, Linhardt RJ. Capillary electrophoretic separation of heparin oligosaccharides under conditions amenable to mass spectrometric detection. J Chromatogr A 2004; 1014:225-33. [PMID: 14558628 DOI: 10.1016/s0021-9673(03)01288-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A capillary electrophoresis method for the separation of high-molecular-mass heparin oligosaccharides compatible with mass spectral detection was developed. Structurally defined heparin oligosaccharides ranging in size from tetrasaccharide to tetradecasaccharide were used to optimize the conditions. Applying normal and reversed polarity modes, these oligosaccharides were separated by CE under various conditions. Ammonium hydrogencarbonate (30 mM at pH 8.50) used as the running electrolyte system gave good separation efficiency and resolution in the normal polarity mode. Application of this method to the separation of complicated heparin oligosaccharide mixtures required the addition of electrolyte additives. Ammonium hydrogencarbonate (30 mM), containing triethylamine (10 mM), was useful for the separation of complex oligosaccharide mixtures. Run-to-run and day-to-day precision and limits of detection were established for these separations.
Collapse
Affiliation(s)
- Nur Sibel Gunay
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
99
|
Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 2004; 78:3817-26. [PMID: 15047797 PMCID: PMC374263 DOI: 10.1128/jvi.78.8.3817-3826.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 12/12/2003] [Indexed: 11/20/2022] Open
Abstract
Norovirus (NV), a member of the family Caliciviridae, is one of the important causative agents of acute gastroenteritis. In the present study, we found that virus-like particles (VLPs) derived from genogroup II (GII) NV were bound to cell surface heparan sulfate proteoglycan. Interestingly, the VLPs derived from GII were more than ten times likelier to bind to cells than were those derived from genogroup I (GI). Heparin, a sulfated glycosaminoglycan, and suramin, a highly sulfated derivative of urea, efficiently blocked VLP binding to mammalian cell surfaces. The reagents known to bind to cell surface heparan sulfate, as well as the enzymes that specifically digest heparan sulfate, markedly reduced VLP binding to the cells. Treatment of the cells with chlorate revealed that sulfation of heparan sulfate plays an important role in the NV-heparan sulfate interaction. The binding efficiency of NV to undifferentiated Caco-2 (U-Caco-2) cells differed largely between GI NV and GII NV, whereas the efficiency of binding to differentiated Caco-2 (D-Caco-2) cells did not differ significantly between the two genogroups, although slight differences between strains were observed. Digestion with heparinase I resulted in a reduction of up to 90% in U-Caco-2 cells and a reduction of up to only 50% in D-Caco-2 cells, indicating that heparan sulfate is the major binding molecule for U-Caco-2 cells, while it contributed to only half of the binding in the case of D-Caco-2 cells. The other half of those VLPs was likely to be associated with H-type blood antigen, suggesting that GII NV has two separate binding sites. The present study is the first to address the possible role of cell surface glycosaminoglycans in the binding of recombinant VLPs of NV.
Collapse
Affiliation(s)
- Masaru Tamura
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | | | | | |
Collapse
|
100
|
Murphy KJ, Merry CLR, Lyon M, Thompson JE, Roberts IS, Gallagher JT. A new model for the domain structure of heparan sulfate based on the novel specificity of K5 lyase. J Biol Chem 2004; 279:27239-45. [PMID: 15047699 DOI: 10.1074/jbc.m401774200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidation of the molecular structure of heparan sulfate (HS) is the key to understanding its functional versatility as a co-receptor for growth factors and morphogens. We have identified and exploited the novel substrate specificity of the coliphage K5 lyase in studies of the domain organization of HS. We show that K5 lyase cleaves HS principally within non-sulfated sequences of four or more N-acetylated disaccharides. Uniquely, sections comprising alternating N-acetylated and N-sulfated units are resistant to the enzyme, as are the highly sulfated S domains. Spacing of the K5 lyase cleavage sites ( approximately 7-8 kDa) is similar to that of the S domains. On the basis of these findings, we propose a refined model of the structure of HS in which N-acetylated sequences of four to five disaccharide units (GlcNAc-GlcUA)(4-5) are positioned centrally between the S domains. The latter are embedded within N-acetylated and N-sulfated sequences, forming extended regions of hypervariable sulfation distributed at regular intervals along the polymer chain. K5 lyase provides a means of excision of these composite sulfated regions for structural and functional analyses.
Collapse
Affiliation(s)
- Kevin J Murphy
- Cancer Research UK and University of Manchester, Department of Medical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | |
Collapse
|