51
|
Sibbons CM, Irvine NA, Pérez-Mojica JE, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:432. [PMID: 29556240 PMCID: PMC5844933 DOI: 10.3389/fimmu.2018.00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important for immune function. Limited evidence indicates that immune cell activation involves endogenous PUFA synthesis, but this has not been characterised. To address this, we measured metabolism of 18:3n-3 in quiescent and activated peripheral blood mononuclear cells (PBMCs), and in Jurkat T cell leukaemia. PBMCs from men and women (n = 34) were incubated with [1-13C]18:3n-3 with or without Concanavalin A (Con. A). 18:3n-3 conversion was undetectable in unstimulated PBMCs, but up-regulated when stimulated. The main products were 20:3n-3 and 20:4n-3, while 18:4n-3 was undetectable, suggesting initial elongation and Δ8 desaturation. PUFA synthesis was 17.4-fold greater in Jurkat cells than PBMCs. The major products of 18:3n-3 conversion in Jurkat cells were 20:4n-3, 20:5n-3, and 22:5n-3. 13C Enrichment of 18:4n-3 and 20:3n-3 suggests parallel initial elongation and Δ6 desaturation. The FADS2 inhibitor SC26196 reduced PBMC, but not Jurkat cell, proliferation suggesting PUFA synthesis is involved in regulating mitosis in PBMCs. Con. A stimulation increased FADS2, FADS1, ELOVL5 and ELOVL4 mRNA expression in PBMCs. A single transcript corresponding to the major isoform of FADS2, FADS20001, was detected in PBMCs and Jurkat cells. PBMC activation induced hypermethylation of a 470bp region in the FADS2 5'-regulatory sequence. This region was hypomethylated in Jurkat cells compared to quiescent PBMCs. These findings show that PUFA synthesis involving initial elongation and Δ8 desaturation is involved in regulating PBMC proliferation and is regulated via transcription possibly by altered DNA methylation. These processes were dysregulated in Jurkat cells. This has implications for understanding the regulation of mitosis in normal and transformed lymphocytes.
Collapse
Affiliation(s)
- Charlene M Sibbons
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - J Eduardo Pérez-Mojica
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
52
|
Ayisi CL, Yamei C, Zhao JL. Genes, transcription factors and enzymes involved in lipid metabolism in fin fish. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Metherel AH, Lacombe RJS, Chouinard-Watkins R, Hopperton KE, Bazinet RP. Complete assessment of whole-body n-3 and n-6 PUFA synthesis-secretion kinetics and DHA turnover in a rodent model. J Lipid Res 2017; 59:357-367. [PMID: 29229739 DOI: 10.1194/jlr.m081380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
Previous assessments of the PUFA biosynthesis pathway have focused on DHA and arachidonic acid synthesis. Here, we determined whole-body synthesis-secretion kinetics for all downstream products of PUFA metabolism, including direct measurements of DHA and n-6 docosapentaenoic acid (DPAn-6, 22:5n-6) turnover, and compared n-6 and n-3 homolog kinetics. We infused labeled α-linolenic acid (ALA, 18:3n-3), linoleic acid (LNA, 18:2n-6), DHA, and DPAn-6 as 2H5-ALA, 13C18-LNA, 13C22-DHA, and 13C22-DPAn-6. Eight 11-week-old Long Evans rats fed a 10% fat diet were infused with the labeled PUFAs over 3 h, and plasma enrichment of labeled products was measured every 30 min. The DHA synthesis-secretion rate (94 ± 34 nmol/day) did not differ from other PUFA products (range, 21.8 ± 4.3 nmol/day to 408 ± 116 nmol/day). Synthesis-secretion rates of n-6 and n-3 PUFA homologs were similar, except 22:4n-6 and DPAn-6 had lower synthesis rates. However, daily turnover from newly synthesized DHA (0.067 ± 0.023%) was 56-fold to 556-fold slower than all other PUFA turnover and was 130-fold slower than that determined directly from the total plasma unesterified DHA pool. In conclusion, n-6 and n-3 PUFA synthesis-secretion kinetics suggest that differences in turnover, not in synthesis-secretion rates, primarily determine PUFA plasma levels.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
54
|
Fares S, Sethom MM, Hammami MB, Cheour M, Feki M, Hadj-Taieb S, Kacem S. Postnatal RBC arachidonic and docosahexaenoic acids deficiencies are associated with higher risk of neonatal morbidities and mortality in preterm infants. Prostaglandins Leukot Essent Fatty Acids 2017; 126:112-116. [PMID: 29031388 DOI: 10.1016/j.plefa.2017.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
Arachidonic (AA) and docosahexaenoic (DHA) acids are essential for the health and development of the neonate. Red blood cell (RBC) fatty acids were analyzed in 583 very low birth weight (VLBW) infants and 274 term infants using capillary gas chromatography. VLBW infants exhibited significantly lower RBC AA (13.0 ± 0.89 vs. 13.5 ± 0.98) and DHA (3.77 ± 0.60 vs. 3.80 ± 0.62), but higher n6:n3 ratio (3.97 ± 0.46 vs. 3.63 ± 0.37) than term infants. In VLBW infants, DHA was lower in those born with small for gestational age (3.69 ± 0.57 vs. 3.86 ± 0.58) and those who suffered from neonatal sepsis (3.73 ± 0.60 vs. 3.86 ± 0.55). Both AA and DHA were significantly lower in infants who developed respiratory distress syndrome or intraventricular hemorrhage, and those who died during the hospital stay. VLBW infants had lower postnatal RBC AA and DHA levels than term infants did. These deficits are associated with higher risk of neonatal morbidities and mortality.
Collapse
Affiliation(s)
- S Fares
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, 1007 Jebbari, Tunis, Tunisia.
| | - M M Sethom
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, 1007 Jebbari, Tunis, Tunisia
| | - M B Hammami
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, 1007 Jebbari, Tunis, Tunisia
| | - M Cheour
- Centre de Maternité et de Néonatologie de Tunis, Service de Néonatologie, 1007 Jebbari, Tunis, Tunisia
| | - M Feki
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, 1007 Jebbari, Tunis, Tunisia
| | - S Hadj-Taieb
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, 1007 Jebbari, Tunis, Tunisia
| | - S Kacem
- Centre de Maternité et de Néonatologie de Tunis, Service de Néonatologie, 1007 Jebbari, Tunis, Tunisia
| |
Collapse
|
55
|
Zhao X, Qiu X. Analysis of the biosynthetic process of fatty acids in Thraustochytrium. Biochimie 2017; 144:108-114. [PMID: 29097280 DOI: 10.1016/j.biochi.2017.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
Thraustochytrium is a marine protist producing a specific profile of nutritionally important fatty acids, including very long chain polyunsaturated fatty acids (VLCPUFAs) docosahexaenoic acid (DHA, 22:6n-3), even chain saturated fatty acids (SFAs) palmitic acid (16:0), and odd chain SFAs pentadecanoic acid (15:0). To study how these fatty acids are synthesized, a series of radiolabeled precursors were used to trace the biosynthetic process in vivo and in vitro. When Thraustochytrium was fed with long chain fatty acid intermediates such as [1-14C]-oleic acid, [1-14C]-linoleic acid and [1-14C]-α-linolenic acid, no VLCPUFAs were produced, indicating that the aerobic pathway for the biosynthesis of VLCPUFAs was not functional in Thraustochytrium. When fed with [1-14C]-acetic acid, both SFAs and VLCPUFAs were labeled, and when fed with [1-14C]-propionic acid, mainly SFAs were labeled. However, when fed with [1-14C]-acetic acid in the presence of cerulenin, a type I FAS inhibitor, only VLCPUFAs were labeled, and when fed with [1-14C]-propionic acid in the presence of cerulenin, neither SFAs nor VLCPUFAs were labeled. This result clearly indicates that the type I fatty acid synthase (FAS) in Thraustochytrium could use acetic acid and propionic acid as the primers to synthesize even chain and odd chain SFAs, respectively, and VLCPUFAs were synthesized by the PUFA synthase using acetic acid as the primer. In addition, radioactive acetic acid could label both phospholipids (PL) and triacylglycerols (TAG), and VLCPUFAs appeared first and were largely accumulated in PL, whereas TAG accumulated much more SFAs than VLCPUFAs. The in vitro assay with [1-14C]-malonyl-CoA in presence of cerulenin showed that the crude protein of Thraustochytrium produced only VLCPUFAs, not SFAs, further confirming the role of the PUFA synthase in the biosynthesis of VLCPUFAs. Collectively, these results have elucidated the biochemical mechanisms for the biosynthesis of all fatty acids in Thraustochytrium.
Collapse
Affiliation(s)
- Xianming Zhao
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.
| |
Collapse
|
56
|
Effects of increasing dietary organic selenium levels on meat fatty acid composition and oxidative stability in growing rabbits. Meat Sci 2017; 131:132-138. [DOI: 10.1016/j.meatsci.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022]
|
57
|
Cardoso C, Afonso C, Bandarra NM. Dietary DHA, bioaccessibility, and neurobehavioral development in children. Crit Rev Food Sci Nutr 2017; 58:2617-2631. [PMID: 28665691 DOI: 10.1080/10408398.2017.1338245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is a key nutritional n-3 polyunsaturated fatty acid and needs to be supplied by the human diet. High levels of DHA intake appear to reduce the risk of depression, bipolar disorder, and mood disorders. On the basis of these connections between DHA and neurological health, this paper reviews what is currently known about DHA and children neurodevelopment as well as the benefits of DHA intake to prevention of autism and behavior disorders through a selective and representative revision of different papers ranging from pure observational studies to randomized controlled trials (RCTs). This review also highlights the issue of DHA bioaccessibility and its implications to the performance of studies. As main conclusions, it can be mentioned that high DHA intake may prevent autism disorder. However, more studies are required to strengthen the connection between autism and dietary DHA. Regarding behavioral disorders, the evidence is also contradictory, thereby raising the need of further studies. From all screened studies on autism, attention deficit/hyperactivity disorder, and other disorders, it can be concluded that study samples should be larger for greater statistical significance and RCTs should be more carefully designed.
Collapse
Affiliation(s)
- Carlos Cardoso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Cláudia Afonso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Narcisa M Bandarra
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| |
Collapse
|
58
|
Zhang JY, Qin X, Liang A, Kim E, Lawrence P, Park WJ, Kothapalli KSD, Brenna JT. Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins Leukot Essent Fatty Acids 2017; 123:25-32. [PMID: 28838557 PMCID: PMC5609706 DOI: 10.1016/j.plefa.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
Fatty acid desaturase 3 (FADS3) is the third member of the FADS gene cluster. FADS1 and FADS2 code for enzymes required for highly unsaturated fatty acid (HUFA) biosynthesis, but FADS3 function remains elusive. We generated the first Fads3 knockout (KO) mouse with an aim to characterize its metabolic phenotype and clues to in vivo function. All mice (wild type (WT) and KO) were fed facility rodent chow devoid of HUFA. No differences in overt phenotypes (survival, fertility, growth rate) were observed. Docosahexaenoic acid (DHA, 22:6n-3) levels in the brain of postnatal day 1 (P1) KO mice were lower than the WT (P < 0.05). The ratio of docosapentaenoic acid (DPA, 22:5n-3) to DHA in P1 KO liver was higher than in WT suggesting lower desaturase activity. Concomitantly, 20:4n-6 was lower but its elongation product 22:4n-6 was greater in the liver of P1 KO mice. P1 KO liver Fads1 and Fads2 mRNA levels were significantly downregulated whereas expression levels of elongation of very long chain 2 (Elovl2) and Elovl5 genes were upregulated compared to age-matched WT. No Δ13-desaturation of vaccenic acid was observed in liver or heart in WT mice expressing FADS3 as was reported in vitro. Taken together, the fatty acid compositional results suggest that Fads3 enhances liver-mediated 22:6n-3 synthesis to support brain 22:6n-3 accretion before and during the brain growth spurt.
Collapse
Affiliation(s)
- Ji Yao Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xia Qin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Allison Liang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ellen Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
59
|
Wang SH, Pan Y, Li J, Chen HQ, Zhang H, Chen W, Gu ZN, Chen YQ. Endogenous omega-3 long-chain fatty acid biosynthesis from alpha-linolenic acid is affected by substrate levels, gene expression, and product inhibition. RSC Adv 2017. [DOI: 10.1039/c7ra06728c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested that dietary alpha-linolenic acid (ALA) increases the levels of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs)in vivo, but the conversion procedure and the genes involved remain poorly understood.
Collapse
Affiliation(s)
- Shun-he Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yong Pan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Jing Li
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hai-qin Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Zhen-nan Gu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
60
|
Metherel AH, Domenichiello AF, Kitson AP, Lin YH, Bazinet RP. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid. Lipids 2016; 52:167-172. [DOI: 10.1007/s11745-016-4223-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Adam H. Metherel
- ; Department of Nutritional Sciences, Faculty of Medicine; University of Toronto; 150 College St., Room 307, Fitzgerald Building Toronto ON M5S 3E2 Canada
| | - Anthony F. Domenichiello
- ; Department of Nutritional Sciences, Faculty of Medicine; University of Toronto; 150 College St., Room 307, Fitzgerald Building Toronto ON M5S 3E2 Canada
| | - Alex P. Kitson
- ; Department of Nutritional Sciences, Faculty of Medicine; University of Toronto; 150 College St., Room 307, Fitzgerald Building Toronto ON M5S 3E2 Canada
| | - Yu-Hong Lin
- ; Section of Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism; National Institutes of Health; Bethesda MD USA
| | - Richard P. Bazinet
- ; Department of Nutritional Sciences, Faculty of Medicine; University of Toronto; 150 College St., Room 307, Fitzgerald Building Toronto ON M5S 3E2 Canada
| |
Collapse
|
61
|
Chen XL, Wang N, Tian ML, Wang L, Liu T, Zhang XW, Shi BM, Shan AS. Dietary linseed oil in the maternal diet affects immunoglobulins, tissue fatty acid composition and expression of lipid metabolism-related genes in piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:e257-e265. [PMID: 27868251 DOI: 10.1111/jpn.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023]
Abstract
This experiment investigated the effects of supplementing the maternal diet with linseed oil (LSO) and soya bean oil (SBO) on immunoglobulins, the fatty acid composition and hepatic expression of lipid metabolism-related genes in piglets. Multiparous sows (twenty-four per diet) were fed on diets containing a supplement of either SBO or LSO during last week of gestation and lactation. The results indicated that supplementation of maternal diet with LSO could improve the weaning weight of piglets and average daily gain (ADG) (p < 0.05). The concentration of immunoglobulin G (IgG) and immunoglobulin A (IgA) was enhanced in sow plasma, colostrum and milk by the addition of LSO (p < 0.05). In addition, the concentration of 18: 3n-3 fatty acids was higher in the milk of LSO sows. Meanwhile, maternal supplementation with LSO increased the levels of plasma IgG, IgA and the tissues n-3 polyunsaturated fatty acid (PUFA) in piglets (p < 0.05). Correspondingly, the mRNA expression levels of hepatic ∆5-desaturase (D5D) and ∆6-desaturase (D6D) were higher, and fatty acid synthase (FAS) was lower in piglets from LSO-fed sows when compared with that in the SBO group. In conclusion, LSO supplementation of the maternal diet increases immunoglobulins, modifies the fatty acid composition and affects the gene of D5D and D6D expression of piglets.
Collapse
Affiliation(s)
- X L Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - N Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - M L Tian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - L Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - T Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X W Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - B M Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - A S Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
62
|
Tigistu-Sahle F, Lampinen M, Kilpinen L, Holopainen M, Lehenkari P, Laitinen S, Käkelä R. Metabolism and phospholipid assembly of polyunsaturated fatty acids in human bone marrow mesenchymal stromal cells. J Lipid Res 2016; 58:92-110. [PMID: 27856675 DOI: 10.1194/jlr.m070680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
High arachidonic acid (20:4n-6) and low n-3 PUFA levels impair the capacity of cultured human bone marrow mesenchymal stromal cells (hBMSCs) to modulate immune functions. The capacity of the hBMSCs to modify PUFA structures was found to be limited. Therefore, different PUFA supplements given to the cells resulted in very different glycerophospholipid (GPL) species profiles and substrate availability for phospholipases, which have preferences for polar head group and acyl chains when liberating PUFA precursors for production of lipid mediators. When supplemented with 20:4n-6, the cells increased prostaglandin E2 secretion. However, they elongated 20:4n-6 to the less active precursor, 22:4n-6, and also incorporated it into triacylglycerols, which may have limited the proinflammatory signaling. The n-3 PUFA precursor, 18:3n-3, had little potency to reduce the GPL 20:4n-6 content, while the eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acid supplements efficiently displaced the 20:4n-6 acyls, and created diverse GPL species substrate pools allowing attenuation of inflammatory signaling. The results emphasize the importance of choosing appropriate PUFA supplements for in vitro hBMSC expansion and suggests that for optimal function they require an exogenous fatty acid source providing 20:5n-3 and 22:6n-3 sufficiently, but 20:4n-6 moderately, which calls for specifically designed optimal PUFA supplements for the cultures.
Collapse
Affiliation(s)
| | - Milla Lampinen
- Department of Biosciences University of Helsinki, Helsinki, Finland
| | - Lotta Kilpinen
- Department of Biosciences University of Helsinki, Helsinki, Finland.,Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Minna Holopainen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Petri Lehenkari
- Institute of Biomedicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu, Finland.,Department of Anatomy and Cell Biology, University of Oulu, Finland and Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Oulu, Finland
| | - Saara Laitinen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Reijo Käkelä
- Department of Biosciences University of Helsinki, Helsinki, Finland
| |
Collapse
|
63
|
González-Bengtsson A, Asadi A, Gao H, Dahlman-Wright K, Jacobsson A. Estrogen Enhances the Expression of the Polyunsaturated Fatty Acid Elongase Elovl2 via ERα in Breast Cancer Cells. PLoS One 2016; 11:e0164241. [PMID: 27788154 PMCID: PMC5082882 DOI: 10.1371/journal.pone.0164241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Endocrine therapy is the first-line targeted adjuvant therapy for hormone-sensitive breast cancer. In view of the potential anticancer property of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) together with chemotherapy in estrogen receptor alpha (ERα) positive mammary tumors, we have explored the regulation by estradiol of the fatty acid desaturation and elongation enzymes involved in DHA synthesis in the human breast cancer cell line MCF7, which expresses ERα but not ERβ. We demonstrate a robust up-regulation in the expression of the fatty acid elongases Elovl2 and Elovl5 upon estradiol stimulation in MCF7 cells, which was sustained for more than 24 hours. Exposure with the ER inhibitor tamoxifen abolished specifically the Elovl2 but not the Elovl5 expression. Similarly, knock-down of ERα eliminated almost fully the Elovl2 but not the Elovl5 expression. Furthermore, ERα binds to one specific ERE within the Elovl2 enhancer in a ligand dependent manner. The involvement of ERα in the control of especially Elovl2, which plays a crucial role in DHA synthesis, may have potential implications in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amanda González-Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
64
|
Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res 2016; 64:30-56. [DOI: 10.1016/j.plipres.2016.07.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
|
65
|
Park HG, Lawrence P, Engel MG, Kothapalli K, Brenna JT. Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (20:5n-3) dominates over elongation to tetracosahexaenoic acid (24:6n-3). FEBS Lett 2016; 590:3188-94. [PMID: 27543786 DOI: 10.1002/1873-3468.12368] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
Docosahexaenoic acid (22:6n-3) supplementation in humans causes eicosapentaenoic acid (20:5n-3) levels to rise in plasma, but not in neural tissue where 22:6n-3 is the major omega-3 in phospholipids. We determined whether neuronal cells (Y79 and SK-N-SH) metabolize 22:6n-3 differently from non-neuronal cells (MCF7 and HepG2). We observed that (13) C-labeled 22:6n-3 was primarily esterified into cell lipids. We also observed that retroconversion of 22:6n-3 to 20:5n-3 was 5- to 6-fold greater in non-neural compared to neural cells and that retroconversion predominated over elongation to tetracosahexaenoic acid (24:6n-3) by 2-5-fold. The putative metabolic intermediates, (13) C-labeled 22:5n-3 and (13) C-labeled 24:5n-3, were not detected in our assays. Analysis of the expression of enzymes involved in fatty acid beta-oxidation revealed that MCF7 cells abundantly expressed the mitochondrial enzymes CPT1A, ECI1, and DECR1, whereas the peroxisomal enzyme ACOX1 was abundant in HepG2 cells, thus suggesting that the initial site of 22:6n-3 oxidation depends on the cell type. Our data reveal that non-neural cells more actively metabolize 22:6n-3 to 20:5n-3 via channeled retroconversion, while neural cells retain 22:6n-3.
Collapse
Affiliation(s)
- Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew G Engel
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kumar Kothapalli
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
66
|
Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:997-1004. [DOI: 10.1016/j.bbalip.2016.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
|
67
|
Meesapyodsuk D, Qiu X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. J Lipid Res 2016; 57:1854-1864. [PMID: 27527703 DOI: 10.1194/jlr.m070136] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Thraustochytrium, a unicellular marine protist, has been used as a commercial source of very long chain PUFAs (VLCPUFAs) such as DHA (22:6n-3). Our recent work indicates coexistence of a Δ4-desaturation-dependent pathway (aerobic) and a polyketide synthase-like PUFA synthase pathway (anaerobic) to synthesize the fatty acids in Thraustochytrium sp. 26185. Heterologous expression of the Thraustochytrium PUFA synthase along with a phosphopantetheinyl transferase in Escherichia coli showed the anaerobic pathway was highly active in the biosynthesis of VLCPUFAs. The amount of Δ4 desaturated VLCPUFAs produced reached about 18% of the total fatty acids in the transformant cells at day 6 in a time course of the induced expression. In Thraustochytrium, the expression level of the PUFA synthase gene was much higher than that of the Δ4 desaturase gene, and also highly correlated with the production of VLCPUFAs. On the other hand, Δ9 and Δ12 desaturations in the aerobic pathway were either ineffective or absent in the species, as evidenced by the genomic survey, heterologous expression of candidate genes, and in vivo feeding experiments. These results indicate that the anaerobic pathway is solely responsible for the biosynthesis for VLCPUFAs in Thraustochytrium.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| |
Collapse
|
68
|
Decsi T, Koletzko B. Role of Long-Chain Polyunsaturated Fatty Acids in Early Human Neurodevelopment. Nutr Neurosci 2016; 3:293-306. [DOI: 10.1080/1028415x.2000.11747327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
69
|
|
70
|
The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
71
|
Simón MV, Agnolazza DL, German OL, Garelli A, Politi LE, Agbaga MP, Anderson RE, Rotstein NP. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. J Neurochem 2016; 136:931-46. [PMID: 26662863 DOI: 10.1111/jnc.13487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 12/27/2022]
Abstract
Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.
Collapse
Affiliation(s)
- María Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Daniela L Agnolazza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Andrés Garelli
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Martin-Paul Agbaga
- Cell Biology, Univ of Oklahoma Hlth Sci Ctr, Oklahoma City, Oklahoma, USA.,Univ of Oklahoma Hlth Sci Ctr, Oklahoma City, Oklahoma, USA
| | - Robert E Anderson
- Univ of Oklahoma Hlth Sci Ctr, Oklahoma City, Oklahoma, USA.,Ophthalmology/Cell Biology, Univ of Oklahoma Hlth Sci Ctr, Oklahoma City, Oklahoma, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Department of Biology, Biochemistry and Pharmacy, Univ Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
72
|
Lee JM, Lee H, Kang S, Park WJ. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016; 8:nu8010023. [PMID: 26742061 PMCID: PMC4728637 DOI: 10.3390/nu8010023] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea.
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea.
| | - SeokBeom Kang
- Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Seogwipo 63607, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|
73
|
Lagarde M, Calzada C, Jouvène C, Bernoud-Hubac N, Létisse M, Guichardant M, Véricel E. Functional fluxolipidomics of polyunsaturated fatty acids and oxygenated metabolites in the blood vessel compartment. Prog Lipid Res 2015; 60:41-9. [PMID: 26484703 DOI: 10.1016/j.plipres.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Synthesis of bioactive oxygenated metabolites of polyunsaturated fatty acids and their degradation or transformation products are made through multiple enzyme processes. The kinetics of the enzymes responsible for the different steps are known to be quite diverse, although not precisely determined. The location of the metabolites biosynthesis is diverse as well. Also, the biological effects of the primary and secondary products, and their biological life span are often completely different. Consequently, phenotypes of cells in response to these bioactive lipid mediators must then depend on their concentrations at a given time. This demands a fluxolipidomics approach that can be defined as a mediator lipidomics, with all measurements done as a function of time and biological compartments. This review points out what is known, even qualitatively, in the blood vascular compartment for arachidonic acid metabolites and number of other metabolites from polyunsaturated fatty acids of nutritional value. The functional consequences are especially taken into consideration.
Collapse
Affiliation(s)
- M Lagarde
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France.
| | - C Calzada
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - C Jouvène
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - N Bernoud-Hubac
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - M Létisse
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - M Guichardant
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - E Véricel
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| |
Collapse
|
74
|
Tucci S, Behringer S, Spiekerkoetter U. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids. FEBS J 2015; 282:4242-53. [PMID: 26284828 DOI: 10.1111/febs.13418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/30/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| | - Sidney Behringer
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| |
Collapse
|
75
|
Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 2015; 59:54-66. [DOI: 10.1016/j.plipres.2015.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
76
|
Park HG, Park WJ, Kothapalli KSD, Brenna JT. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. FASEB J 2015; 29:3911-9. [PMID: 26065859 DOI: 10.1096/fj.15-271783] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 11/11/2022]
Abstract
Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of β-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.
Collapse
Affiliation(s)
- Hui Gyu Park
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - Woo Jung Park
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - Kumar S D Kothapalli
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - J Thomas Brenna
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| |
Collapse
|
77
|
Varin A, Thomas C, Ishibashi M, Ménégaut L, Gautier T, Trousson A, Bergas V, de Barros JPP, Narce M, Lobaccaro JMA, Lagrost L, Masson D. Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages: relevance in the context of atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35:1357-65. [PMID: 25838428 DOI: 10.1161/atvbaha.115.305539] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/18/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis. APPROACH AND RESULTS Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid. CONCLUSIONS Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.
Collapse
Affiliation(s)
- Alexis Varin
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Charles Thomas
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Minako Ishibashi
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Louise Ménégaut
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Thomas Gautier
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Amalia Trousson
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Victoria Bergas
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Jean Paul Pais de Barros
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Michel Narce
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Jean Marc A Lobaccaro
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - Laurent Lagrost
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.)
| | - David Masson
- From the Centre de Recherche INSERM-UMR866, Université de Bourgogne, Dijon, France (A.V., C.T., M.I., L.M., T.G., V.B., J.P.P.d.B., M.N., L.L., D.M.); Centre Hospitalier Universitaire Dijon, Dijon, France (L.M., L.L., D.M.); Clermont Université, Université Blaise Pascal (A.T., J.M.A.L.) and Inserm, UMR 1103 (A.T., J.M.A.L.), GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France (A.T., J.M.A.L.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 6293, Aubière, France (A.T., J.M.A.L.).
| |
Collapse
|
78
|
Alvarenga TIRC, Chen Y, Furusho-Garcia IF, Perez JRO, Hopkins DL. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Compr Rev Food Sci Food Saf 2015; 14:189-204. [DOI: 10.1111/1541-4337.12131] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Tharcilla Isabella Rodrigues Costa Alvarenga
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| | - Yizhou Chen
- NSW Dept. of Primary Industries; Elizabeth Macarthur Agricultural Inst; Menangle NSW 2568 Australia
| | - Iraides Ferreira Furusho-Garcia
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - Juan Ramon Olalquiaga Perez
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - David L. Hopkins
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| |
Collapse
|
79
|
Morais S, Mourente G, Martínez A, Gras N, Tocher DR. Docosahexaenoic acid biosynthesis via fatty acyl elongase and Δ4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:588-97. [PMID: 25660580 DOI: 10.1016/j.bbalip.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
The present study presents the first "in vivo" evidence of enzymatic activity and nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 18%, LL and HL) with either 100% fish oil (FO) or 75% of the FO replaced by vegetable oils (VOs). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities were measured in isolated enterocytes and hepatocytes incubated with radiolabeled α-linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue distributions of elovl5 and Δ4fad transcripts were also determined, and the transcriptional regulation of these genes in liver and intestine was assessed at fasting and postprandially. DHA biosynthesis from EPA occurred in both cell types, although Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad activity was detected on (14)C-ALA, which was only elongated to 20:3n-3. Enzymatic activities and gene transcription were modulated by dietary lipid level (LL>HL) and fatty acid (FA) composition (VO>FO), more significantly in the liver than in the intestine, which was reflected in tissue FA compositions. Dietary VO induced a significant up-regulation of Δ4fad transcripts in the liver 6h after feeding, whereas in fasting conditions the effect of lipid level possibly prevailed over or interacted with FA composition in regulating the expression of elovl5 and Δ4fad, which were down-regulated in the liver of fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 LC-PUFA biosynthesis pathway in S. senegalensis.
Collapse
Affiliation(s)
- Sofia Morais
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | - Almudena Martínez
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Noélia Gras
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
80
|
Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 2015; 92:33-40. [PMID: 24986271 DOI: 10.1016/j.plefa.2014.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada.
| |
Collapse
|
81
|
Suo R, Li H, Yoshinaga K, Nagai T, Mizobe H, Kojima K, Nagao K, Beppu F, Gotoh N. Generation of Tetracosahexaenoic Acid in Benthic Marine Organisms. J Oleo Sci 2015; 64:721-7. [DOI: 10.5650/jos.ess15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rei Suo
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Haoqi Li
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | | | - Koji Nagao
- Department of Applied Biochemistry and Food Science, Saga University
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
82
|
Role of the Non-enzymatic Metabolite of Eicosapentaenoic Acid, 5-epi-5-F3t-Isoprostane in the Regulation of [3H]d-Aspartate Release in Isolated Bovine Retina. Neurochem Res 2014; 39:2360-9. [DOI: 10.1007/s11064-014-1436-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
|
83
|
Dittrich M, Jahreis G, Bothor K, Drechsel C, Kiehntopf M, Blüher M, Dawczynski C. Benefits of foods supplemented with vegetable oils rich in α-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trail. Eur J Nutr 2014; 54:881-93. [PMID: 25216712 DOI: 10.1007/s00394-014-0764-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of the study was to investigate the influence of foods enriched with vegetable oils varying in their n-3 polyunsaturated fatty acids profile on cardiovascular risk factors for hypertriglyceridemic subjects. METHODS Fifty-nine hypertriglyceridemic subjects (triglycerides ≥ 1.5 mmol/L) were included in the randomized, double-blind, placebo-controlled, crossover study. The placebo group received sunflower oil [linoleic acid (LA) group; 10 g LA/day]. The intervention groups received linseed oil [α-linolenic acid (ALA) group; 7 g ALA/day], echium oil [stearidonic acid (SDA) group; 2 g SDA/day] or microalgae oil [docosahexaenoic acid (DHA) group; 2 g DHA/day] over 10 weeks. Blood samples were collected at baseline and at the end of each period. RESULTS Total cholesterol (TC) and low-density-lipoprotein cholesterol decreased significantly in the LA and ALA groups (LA: P ≤ 0.01, ALA: P ≤ 0.05). No changes in blood lipids were observed in the SDA group. Significant increases in TC and high-density-lipoprotein cholesterol occurred in the DHA group (P ≤ 0.05). In the ALA and SDA groups, the content of eicosapentaenoic acid in erythrocyte lipids increased significantly (P ≤ 0.05) after 10 weeks (ALA group: 38 ± 37 %, SDA group: 73 ± 59 %). CONCLUSION Foods enriched with different vegetable oils rich in ALA or SDA are able to increase the n-3 long-chain polyunsaturated fatty acids content in erythrocyte lipids; echium oil is more potent in comparison with linseed oil. Blood lipids were beneficially modified through the consumption of food products enriched with sunflower, linseed and microalgae oils, whereas echium oil did not affect blood lipids. ClinicalTrials.gov: NCT01437930.
Collapse
Affiliation(s)
- Manja Dittrich
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 2014; 70:163-78. [PMID: 24859185 DOI: 10.1016/j.fct.2014.05.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an essential fatty acid needed for human health and can be acquired via regular dietary intake of foods that contain ALA or dietary supplementation of foods high in ALA, for example flaxseed. ALA has been reported to have cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and antioxidative effects. ALA is the precursor of longer chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but its beneficial effects on risk factors for cardiovascular diseases are still inconclusive. The recommended intake of ALA for cardiovascular health is reported to be 1.1-2.2g/day. Although there are limited toxicological data for ALA, no serious adverse effects have been reported. The evidence on an increased prostate cancer risk in association with dietary ALA is not conclusive. Based on the limited data currently available, it may be concluded that ALA may be beneficial as a nutraceutical/pharmaceutical candidate and is safe for use as a food ingredient.
Collapse
Affiliation(s)
- Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yoon A Nam
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - A Wallace Hayes
- Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
85
|
Pauter AM, Olsson P, Asadi A, Herslöf B, Csikasz RI, Zadravec D, Jacobsson A. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 2014; 55:718-28. [PMID: 24489111 PMCID: PMC3966705 DOI: 10.1194/jlr.m046151] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The potential role of endogenously synthesized PUFAs is a highly overlooked area. Elongation of very long-chain fatty acids (ELOVLs) in mammals is catalyzed by the ELOVL enzymes to which the PUFA elongase ELOVL2 belongs. To determine its in vivo function, we have investigated how ablation of ELOVL2, which is highly expressed in liver, affects hepatic lipid composition and function in mice. The Elovl2(-/-) mice displayed substantially decreased levels of 22:6(n-3), DHA, and 22:5(n-6), docosapentaenoic acid (DPA) n-6, and an accumulation of 22:5(n-3) and 22:4(n-6) in both liver and serum, showing that ELOVL2 primarily controls the elongation process of PUFAs with 22 carbons to produce 24-carbon precursors for DHA and DPAn-6 formation in vivo. The impaired PUFA levels positively influenced hepatic levels of the key lipogenic transcriptional regulator sterol-regulatory element binding protein 1c (SREBP-1c), as well as its downstream target genes. Surprisingly, the Elovl2(-/-) mice were resistant to hepatic steatosis and diet-induced weight gain, implying that hepatic DHA synthesis via ELOVL2, in addition to controlling de novo lipogenesis, also regulates lipid storage and fat mass expansion in an SREBP-1c-independent fashion. The changes in fatty acid metabolism were reversed by dietary supplementation with DHA.
Collapse
Affiliation(s)
- Anna M Pauter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden; and
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.
Collapse
Affiliation(s)
- Hyungjae Lee
- 1 Department of Food Engineering, Dankook University , Cheonan, Korea
| | | |
Collapse
|
87
|
Chen Y, Meesapyodsuk D, Qiu X. Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: Accomplishment and challenge. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
88
|
Nagao K, Nakamitsu K, Ishida H, Yoshinaga K, Nagai T, Mizobe H, Kojima K, Yanagita T, Beppu F, Gotoh N. A Comparison of the Lipid-lowering Effects of Four Different n-3 Highly Unsaturated Fatty Acids in HepG2 Cells. J Oleo Sci 2014; 63:979-85. [DOI: 10.5650/jos.ess14118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
89
|
Abstract
Fish oil contains a complex mixture of omega-3 fatty acids, of which eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) are the three predominant forms. There has been a plethora of previous research on the effects and associations of fish oil supplementation with various clinical manifestations. While the majority of this work was focused on EPA and DHA as the active compounds, emerging research has begun to elucidate the specific role that DPA plays in these physiological processes and its differences with the other omega-3 fatty acids. The purpose of this review is to focus on the new studies undertaken with DPA. This review summarizes the biochemical mechanisms involved in the biosynthesis and metabolism of DPA before focusing on its effects in cardiovascular disease, immune function, and psychiatric and cognitive health. The limited studies point toward a positive role that DPA supplementation can play in these processes and that is separate and distinct from traditional supplementation with DHA and EPA.
Collapse
Affiliation(s)
- Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA, 92697, USA ; Department of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
90
|
Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes. Lipids 2013; 49:133-41. [PMID: 24174374 DOI: 10.1007/s11745-013-3856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/02/2013] [Indexed: 01/11/2023]
Abstract
The effects of a seaweed carotenoid, fucoxanthin, and its physiological metabolite, fucoxanthinol, on the biosynthesis of polyunsaturated fatty acids (PUFA) were investigated using cultured rat hepatoma BRL-3A. The metabolism of α-linolenic acid (18:3n-3) was suppressed by the addition of these carotenoids, resulting in a decrease in the content of eicosapentaenoic acid (20:5n-3), which suggested a down-regulation of metabolic enzymes such as fatty acid desaturase and elongase. An increase in the content of docosahexaenoic acid (22:6n-3), as observed in previous studies in vivo, might be a buffering action to maintain the membrane fluidity. The suppressive effect of fucoxanthinol on ∆6 fatty acid desaturase was not at the level of gene expression but due to specific modifications of the protein via a ubiquitin-proteasome system. A proteomic analysis revealed several factors such as phosphatidylethanolamine-binding protein that might be involved in the observed action of fucoxanthin. These findings will contribute to studies on the elucidation of the precise molecular mechanisms underlying the regulation of PUFA biosynthesis by fucoxanthin.
Collapse
|
91
|
Navarro-Guillén C, Engrola S, Castanheira F, Bandarra N, Hachero-Cruzado I, Tocher DR, Conceição LEC, Morais S. Effect of varying dietary levels of LC-PUFA and vegetable oil sources on performance and fatty acids of Senegalese sole post larvae: puzzling results suggest complete biosynthesis pathway from C18 PUFA to DHA. Comp Biochem Physiol B Biochem Mol Biol 2013; 167:51-8. [PMID: 24120522 DOI: 10.1016/j.cbpb.2013.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/04/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022]
Abstract
Lipid nutrition of marine fish larvae has focused on supplying essential fatty acids (EFA) at high levels to meet requirements for survival, growth and development. However, some deleterious effects have been reported suggesting that excessive supply of EFA might result in insufficient supply of energy substrates, particularly in species with lower EFA requirements such as Senegalese sole (Solea senegalensis). This study addressed how the balance between EFA and non-EFA (better energy sources) affects larval performance, body composition and metabolism and retention of DHA, by formulating enrichment emulsions containing two different vegetable oil sources (olive oil or soybean oil) and three DHA levels. DHA positively affected growth and survival, independent of oil source, confirming that for sole post-larvae it is advantageous to base enrichments on vegetable oils supplying higher levels of energy, and supplement these with a DHA-rich oil. In addition, body DHA levels were generally comparable considering the large differences in their dietary supply, suggesting that the previously reported ∆4 fatty acyl desaturase (fad) operates in vivo and that DHA was synthesized at physiologically significant rates through a mechanism involving transcriptional up-regulation of ∆4fad, which was significantly up-regulated in the low DHA treatments. Furthermore, data suggested that DHA biosynthesis may be regulated by an interaction between dietary n-3 and n-6 PUFA, as well as by levels of LC-PUFA, and this may, under certain nutritional conditions, lead to DHA production from C18 precursors. The molecular basis of putative fatty acyl ∆5 and ∆6 desaturation activities remains to be fully determined as thorough searches have found only a single (∆4) Fads2-type transcript. Therefore, further studies are required but this might represent a unique activity described within vertebrate fads.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Polyunsaturated fatty acid metabolism in enterocyte models: T84 cell line vs. Caco-2 cell line. In Vitro Cell Dev Biol Anim 2013; 50:111-20. [DOI: 10.1007/s11626-013-9682-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 02/03/2023]
|
93
|
Gruffat D, Cherfaoui M, Bonnet M, Thomas A, Bauchart D, Durand D. Breed and dietary linseed affect gene expression of enzymes and transcription factors involved in n-3 long chain polyunsaturated fatty acids synthesis in longissimus thoracis muscle of bulls1. J Anim Sci 2013; 91:3059-69. [DOI: 10.2527/jas.2012-6112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- D. Gruffat
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - M. Cherfaoui
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - M. Bonnet
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - A. Thomas
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - D. Bauchart
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - D. Durand
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| |
Collapse
|
94
|
Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. PLoS One 2013; 8:e57463. [PMID: 23460861 PMCID: PMC3583879 DOI: 10.1371/journal.pone.0057463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 01/08/2023] Open
Abstract
It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for Δ-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18∶2n-6) and α-linolenic acid (ALA, 18∶3n-3) (Δ-6 desaturase substrates) are in direct competition for access to Δ-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for Δ-6 desaturase, suggesting that, paradoxically, the activity of Δ-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18∶3n-3 and 18∶2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo.
Collapse
|
95
|
Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013; 88:139-46. [PMID: 22515943 DOI: 10.1016/j.plefa.2012.04.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).
Collapse
MESH Headings
- Algorithms
- Animals
- Diet, Fat-Restricted
- Diet, High-Fat/adverse effects
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/metabolism
- Eicosapentaenoic Acid/blood
- Eicosapentaenoic Acid/metabolism
- Fatty Acids, Essential/blood
- Fatty Acids, Essential/deficiency
- Fatty Acids, Essential/metabolism
- Fatty Acids, Omega-6/adverse effects
- Fatty Acids, Omega-6/blood
- Fatty Acids, Omega-6/chemistry
- Fatty Acids, Omega-6/metabolism
- Fatty Acids, Unsaturated/administration & dosage
- Fatty Acids, Unsaturated/adverse effects
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/blood
- Linoleic Acid/administration & dosage
- Linoleic Acid/adverse effects
- Linoleic Acid/blood
- Linoleic Acid/metabolism
- Linseed Oil/administration & dosage
- Linseed Oil/chemistry
- Linseed Oil/metabolism
- Male
- Phospholipids/blood
- Phospholipids/chemistry
- Phospholipids/metabolism
- Plant Oils/administration & dosage
- Plant Oils/adverse effects
- Plant Oils/chemistry
- Plant Oils/metabolism
- Rats
- Rats, Wistar
- Safflower Oil/administration & dosage
- Safflower Oil/adverse effects
- Safflower Oil/chemistry
- Safflower Oil/metabolism
- Sunflower Oil
- Weaning
- alpha-Linolenic Acid/administration & dosage
- alpha-Linolenic Acid/analysis
- alpha-Linolenic Acid/blood
- alpha-Linolenic Acid/metabolism
Collapse
Affiliation(s)
- R A Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
96
|
Effect of different contents of extruded linseed in the sow diet on piglet fatty acid composition and hepatic desaturase expression during the post-natal period. Animal 2013; 7:1671-80. [DOI: 10.1017/s1751731113001067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
97
|
Schrader M, Grille S, Fahimi HD, Islinger M. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 2013; 69:1-22. [PMID: 23821140 DOI: 10.1007/978-94-007-6889-5_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Peroxisomes are remarkably plastic and dynamic organelles, which fulfil important functions in hydrogen peroxide and lipid metabolism rendering them essential for human health and development. Despite great advances in the identification and characterization of essential components and molecular mechanisms associated with the biogenesis and function of peroxisomes, our understanding of how peroxisomes are incorporated into metabolic pathways and cellular communication networks is just beginning to emerge. Here we address the interaction of peroxisomes with other subcellular compartments including the relationship with the endoplasmic reticulum, the peroxisome-mitochondria connection and the association with lipid droplets. We highlight metabolic cooperations and potential cross-talk and summarize recent findings on peroxisome-peroxisome interactions and the interaction of peroxisomes with microtubules in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
98
|
Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One 2012; 7:e48852. [PMID: 23144998 PMCID: PMC3493609 DOI: 10.1371/journal.pone.0048852] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n = 12) and type 2 diabetic (n = 43) African-American women. Diabetes related NEFA patterns indicated ∼60% increase in steroyl-CoA desaturase activity and ∼40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes.
Collapse
|
99
|
Turchini GM, Nichols PD, Barrow C, Sinclair AJ. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. Crit Rev Food Sci Nutr 2012; 52:795-803. [PMID: 22698270 DOI: 10.1080/10408398.2010.509553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are almost unanimously recognized for their health benefits, while only limited evidence of any health benefit is currently available specifically for the main precursor of these fatty acids, namely α-linolenic acid (ALA, 18:3n-3). However, both the n-3 LC-PUFA and the short-chain C₁₈ PUFA (i.e., ALA) are commonly referred to as "omega-3" fatty acids, and it is difficult for consumers to recognize this difference. A current gap of many food labelling legislations worldwide allow products containing only ALA and without n-3 LC-PUFA to be marketed as "omega-3 source" and this misleading information can negatively impact the ability of consumers to choose more healthy diets. Within the context of the documented nutritional and health promoting roles of omega-3 fatty acids, we briefly review the different metabolic fates of dietary ALA and n-3 LC-PUFA. We also review food sources rich in n-3 LC-PUFA, some characteristics of LC-PUFA and current industry and regulatory trends. A further objective is to present a case for regulatory bodies to clearly distinguish food products containing only ALA from foods containing n-3 LC-PUFA. Such information, when available, would then avoid misleading information and empower consumers to make a more informed choice in their food purchasing behavior.
Collapse
Affiliation(s)
- Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia.
| | | | | | | |
Collapse
|
100
|
Enser M, Hallett K, Hewitt B, Fursey GA, Wood JD. Fatty acid content and composition of english beef, lamb and pork at retail. Meat Sci 2012; 42:443-56. [PMID: 22060894 DOI: 10.1016/0309-1740(95)00037-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1995] [Revised: 06/20/1995] [Accepted: 06/30/1995] [Indexed: 11/29/2022]
Abstract
We have determined the fatty acid content and composition of retail samples of meat and assessed them with respect to UK dietary recommendations. Fifty beef sirloin steaks, pork chops and lamb chops were purchased from four supermarkets on separate occasions. The percentage of muscle (boneless basis) in the samples was 84.4 ± 4.3, 69.8 ± 7.7 and 78.9 ± 7.1 for beef, lamb and pork, respectively, with fatty acid contents of 3.84 ± 1.3, 4.73 ± 1.66 and 2.26 ± 0.7 g per 100 g muscle, respectively. Adipose tissue fatty acid contents were 70.0 ± 8.2, 70.6 ± 8.6 and 65.3 ± 9.4 g per 100 g tissue. A range of C20 and C22 polyunsaturated fatty acids (PUFA) was present in the muscle of all three species and pork adipose tissue but their concentrations in lamb and beef adipose tissue were too low to measure. The mean P:S ratios for beef, lamb and pork muscle were (adipose tissue values in parentheses): 0.11 (0.05); 0.15 (0.09) and 0.58 (0.61), and the n-6:n-3 ratios were 2.1 (2.3), 1.3 (1.4) and 7.2 (7.6). We conclude that the muscles of red meat species are a valuable source of PUFA, particularly the C20 and C22 n-3 fatty acids, in the human diet and that, considered as part of a varied diet, the low P:S ratio of the ruminant muscle, the high n-6:n-3 ratio of pork and the total fatty acid contents do not detract significantly from the nutritional value of lean meat.
Collapse
Affiliation(s)
- M Enser
- Division of Food Animal Science, University of Bristol, Langford, Bristol BS18 7DY, UK
| | | | | | | | | |
Collapse
|