51
|
Yu H, Ryan W, Yu H, Chen X. Characterization of a bifunctional cytidine 5'-monophosphate N-acetylneuraminic acid synthetase cloned from Streptococcus agalactiae. Biotechnol Lett 2006; 28:107-13. [PMID: 16369694 DOI: 10.1007/s10529-005-4955-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 11/30/2022]
Abstract
Recombinant CMP-sialic acid synthetase, cloned from Streptococcus agalactiae serotype V strain 2603 V/R, is bifunctional having both CMP-sialic acid synthetase and acetylhydrolase (acylesterase) activities. The enzyme is active over a wide pH range with an optimal CMP-sialic acid synthetase activity at pH 9.0 and an optimal acetylhydrolase activity at pH 8.0. A metal cofactor (either Mg(2+) or Mn(2+)) is required for the CMP-sialic acid synthetase activity but is not for acetylhydrolase activity. Both catalytic functions, however, are impaired by high concentrations of Mn(2+).
Collapse
Affiliation(s)
- Hui Yu
- Department of Chemistry, University of California, Davis, 95616, USA
| | | | | | | |
Collapse
|
52
|
Chin KH, Chou CC, Wang AHJ, Chou SH. Crystal structure of a putative acyl-CoA thioesterase from Xanthomonas campestris (XC229) adopts a tetrameric hotdog fold of ϵγ mode. Proteins 2006; 64:823-6. [PMID: 16763992 DOI: 10.1002/prot.21037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
53
|
Shahi P, Kumar I, Sharma R, Sanger S, Jolly RS. Characterization of a novel long-chain acyl-CoA thioesterase from Alcaligenes faecalis. FEBS J 2006; 273:2374-87. [PMID: 16704412 DOI: 10.1111/j.1742-4658.2006.05244.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel long-chain acyl-CoA thioesterase from Alcaligenes faecalis has been isolated and characterized. The protein was extracted from the cells with 1 m NaCl, which required 1.5-fold, single-step purification to yield near-homogeneous preparations. In solution, the protein exists as homomeric aggregates, of mean diameter 21.6 nm, consisting of 22-kDa subunits. MS/MS data for peptides obtained by trypsin digestion of the thiosterase did not match any peptide from Escherichia coli thioesterases or any other thioesterases in the database. The thioesterase was associated exclusively with the surface of cells as revealed by ultrastructural studies using electron microscopy and immunogold labeling. It hydrolyzed saturated and unsaturated fatty acyl-CoAs of C12 to C18 chain length with Vmax and Km of 3.58-9.73 micromol x min(-1) x (mg protein)(-1) and 2.66-4.11 microm, respectively. A catalytically important histidine residue is implicated in the active site of the enzyme. The thioesterase was active and stable over a wide range of temperature and pH. Maximum activity was observed at 65 degrees C and pH 10.5, and varied between 60% and 80% at temperatures of 25-70 degrees C and pH 6.5-10. The thioesterase also hydrolyzed p-nitrophenyl esters of C2 to C12 chain length, but substrate competition experiments demonstrated that the long-chain acyl-CoAs are better substrates for thioesterase than p-nitrophenyl esters. When assayed at 37 and 20 degrees C, the affinity and catalytic efficiency of the thioesterase for palmitoleoyl-CoA and cis-vaccenoyl-CoA were reduced approximately twofold at the lower temperature, but remained largely unaltered for palmitoyl-CoA.
Collapse
Affiliation(s)
- Puja Shahi
- Institute of Microbial Technology, Chandigarh, India
| | | | | | | | | |
Collapse
|
54
|
Rao A, Ranganathan A. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol Genet Genomics 2004; 272:571-9. [PMID: 15668773 DOI: 10.1007/s00438-004-1088-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Polyketide synthases (PKSs) of Mycobacterium tuberculosis are increasingly being seen as producers of virulence factors that are important for pathogenesis by the bacterium. Thus, the phenolphthiocerol synthase PKS cluster of M. tuberculosis is responsible, in part, for the synthesis of a virulence determinant called phthiocerol dimycocerosate (PDIM). Here, we provide evidence that the PpsE protein, which is part of that cluster, interacts with the type II thioesterase TesA of M. tuberculosis. The interaction was demonstrated by employing a two-hybrid system, and confirmed using a GST (glutathione S-transferase) pull-down' assay after both proteins had been purified to homogeneity. Based on the present findings, a revised model for the processing of polyketides during the synthesis of PDIM is presented.
Collapse
Affiliation(s)
- A Rao
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, PO Box 10504, 110067 New Delhi, India
| | | |
Collapse
|
55
|
Abstract
GDSL esterases and lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity and regiospecificity. They have potential for use in the hydrolysis and synthesis of important ester compounds of pharmaceutical, food, biochemical, and biological interests. This new subclass of lipolytic enzymes possesses a distinct GDSL sequence motif different from the GxSxG motif found in many lipases. Unlike the common lipases, GDSL enzymes do not have the so called nucleophile elbow. Studies show that GDSL hydrolases have a flexible active site that appears to change conformation with the presence and binding of the different substrates, much like the induced fit mechanism proposed by Koshland. Some of the GDSL enzymes have thioesterase, protease, arylesterase, and lysophospholipase activity, yet they appear to be the same protein with similar molecular weight ( approximately 22-60 kDa for most esterases), although some have multiple glycosylation sites with higher apparent molecular weight. GDSL enzymes have five consensus sequence (I-V) and four invariant important catalytic residues Ser, Gly, Asn, and His in blocks I, II, III, and V, respectively. The oxyanion structure led to a new designation of these enzymes as SGNH-hydrolase superfamily or subfamily. Phylogenetic analysis revealed that block IIA which belonged to the SGNH-hydrolases was found only in clade I. Therefore, this family of hydrolases represents a new example of convergent evolution of lipolytic enzymes. These enzymes have little sequence homology to true lipases. Another important differentiating feature of GDSL subfamily of lipolytic enzymes is that the serine-containing motif is closer to the N-terminus unlike other lipases where the GxSxG motif is near the center. Since the first classification of these subclass or subfamily of lipases as GDSL(S) hydrolase, progress has been made in determining the consensus sequence, crystal structure, active site and oxyanion residues, secondary structure, mechanism of catalysis, and understanding the conformational changes. Nevertheless, much still needs to be done to gain better understanding of in vivo biological function, 3-D structure, how this group of enzymes evolved to utilize many different substrates, and the mechanism of reactions. Protein engineering is needed to improve the substrate specificity, enantioselectivity, specific activity, thermostability, and heterologous expression in other hosts (especially food grade microorganisms) leading to eventual large scale production and applications. We hope that this review will rekindle interest among researchers and the industry to study and find uses for these unique enzymes.
Collapse
Affiliation(s)
- Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602-7610, USA
| | | | | | | | | |
Collapse
|
56
|
Tyukhtenko SI, Huang YT, Lin TH, Chen C, Chang CF, Lee SJ, Litvinchuk AV, Shaw JF, Liaw YC, Huang TH. Probing the Enzyme Catalytic Mechanism by Nuclear Magnetic Resonance - A Case Study of a Serine Protease. J CHIN CHEM SOC-TAIP 2004. [DOI: 10.1002/jccs.200400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
57
|
Zheng Z, Gong Q, Liu T, Deng Y, Chen JC, Chen GQ. Thioesterase II of Escherichia coli plays an important role in 3-hydroxydecanoic acid production. Appl Environ Microbiol 2004; 70:3807-13. [PMID: 15240249 PMCID: PMC444760 DOI: 10.1128/aem.70.7.3807-3813.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Hydroxydecanoic acid (3HD) was produced in Escherichia coli by mobilizing (R)-3-hydroxydecanoyl-acyl carrier protein-coenzyme A transacylase (PhaG, encoded by the phaG gene). By employing an isogenic tesB (encoding thioesterase II)-negative knockout E. coli strain, CH01, it was found that the expressions of tesB and phaG can up-regulate each other. In addition, 3HD was synthesized from glucose or fructose by recombinant E. coli harboring phaG and tesB. This study supports the hypothesis that the physiological role of thioesterase II in E. coli is to prevent the abnormal accumulation of intracellular acyl-coenzyme A.
Collapse
Affiliation(s)
- Zhong Zheng
- MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
58
|
Ishizuka M, Toyama Y, Watanabe H, Fujiki Y, Takeuchi A, Yamasaki S, Yuasa S, Miyazaki M, Nakajima N, Taki S, Saito T. Overexpression of human acyl-CoA thioesterase upregulates peroxisome biogenesis. Exp Cell Res 2004; 297:127-41. [PMID: 15194431 DOI: 10.1016/j.yexcr.2004.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 02/10/2004] [Indexed: 10/26/2022]
Abstract
The biological functions of human acyl-CoA thioesterase III (ACTEIII/PTE-1), initially identified as an HIV-1 Nef binding protein, have remained unclear. We report herein that the stable overexpression of ACTEIII/PTE-1 in human and murine T-cell lines resulted in an increase in both peroxisome number and lipid droplet formation in a manner dependent on the amount of the protein. Peroxisome proliferation was evidenced by immunofluorescence staining for catalase, a peroxisome marker protein, as well as by direct peroxisome enumeration on electron micrographs. Consistently, the amount of catalase was elevated as the amount of ACTEIII/PTE-1 was increased. ACTEIII/PTE-1 mutants with reduced enzymatic activity or with the defect in peroxisome localization did not induce peroxisome proliferation, indicating that peroxisome proliferation was mediated by metabolites generated by ACTEIII/PTE-1 within peroxisomes. Finally, thymocytes isolated from a T-cell-specific ACTEIII/PTE-1 transgenic mouse as well as human and murine cell lines of lymphoid and non-lymphoid origins exhibited a similar proliferation of peroxisomes. Thus, ACTEIII/PTE-1 may be involved in the metabolic regulation of peroxisome proliferation.
Collapse
Affiliation(s)
- Mitsuru Ishizuka
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ro HS, Hong HP, Kho BH, Kim S, Chung BH. Genome-wide cloning and characterization of microbial esterases. FEMS Microbiol Lett 2004; 233:97-105. [PMID: 15043875 DOI: 10.1016/j.femsle.2004.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2003] [Revised: 01/13/2004] [Accepted: 01/26/2004] [Indexed: 10/26/2022] Open
Abstract
We have isolated putative esterase genes from various bacterial chromosomes. Thirty open reading frames predicted to encode esterases were randomly selected from 13 sequenced bacterial chromosomes and were cloned into an expression vector. The esterase activity of the resulting clones was tested on a tributyrin plate at different pH values and temperatures. Nine out of thirty tested clones exhibited significant tributyrin hydrolyzing activity. The enzyme S5 from the gene b0494 of Escherichia coli, the enzyme S12 from the gene STM0506 of Salmonella typhimurium, and the enzyme S28 from the gene AF1716 of Archaeoglobus fulgidus exhibited high activity at an alkaline pH range. The esterase S11 encoded by the gene PA3859 of Pseudomonas aeruginosa PAO1 and the esterase S21 from the gene SMc01033 of Sinorhizobium meliloti 1021, both showed a sharp increase in enzyme activity above pH 8.0. Furthermore, the enzymes S5, S12, S21, and S28 retained the esterase activity when they were incubated at 50 degrees C, suggesting that these enzymes are thermostable. Subsequent pH vs. activity and temperature vs. activity experiments with selected enzymes in a solution assay system confirmed the validity of the above data. The genome-wide exploration strategy of proteins provided valuable information on the esterases by revealing subtle biochemical differences between the esterases of different sources.
Collapse
Affiliation(s)
- Hyeon-Su Ro
- Laboratory of Integrative Biotechnology, Korea Research Institute of Bioscience and Biotechnology, P.O. BOX 115, Yuseong-gu, Daejeon 305-600, South Korea
| | | | | | | | | |
Collapse
|
60
|
van de Mortel M, Halverson LJ. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol Microbiol 2004; 52:735-50. [PMID: 15101980 DOI: 10.1111/j.1365-2958.2004.04008.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria in terrestrial habitats frequently reside as biofilm communities on surfaces that are unsaturated, i.e. biofilms are covered in water films varying in thickness depending on the environmental conditions. Water availability in these habitats is influenced by the osmolarity of the water (solute stress) and by cellular dehydration imposed by matric stress, which increases as water content decreases. Unfortunately, we understand relatively little about the molecular mechanisms required for bacterial growth in low-water-content habitats. Here, we describe the use of mini-Tn5-'phoA to identify genes in Pseudomonas putida that are matric water stress controlled and to generate mutants defective in desiccation tolerance. We identified 20 genes that were induced by a matric stress but not by a thermodynamically equivalent solute stress, 11 genes were induced by both a matric and a solute stress, three genes were induced by a solute stress and three genes were repressed by a matric stress. Their patterns of expression were analysed in laboratory media, and their contribution to desiccation tolerance was evaluated. Twenty-six genes were homologous to sequences present in the completed P. putida KT2440 genome sequence or plasmid pWWO sequence that are involved in protein fate, nutrient or solute acquisition, energy generation, motility, alginate biosynthesis or cell envelope structure, and the function of five could not be predicted from the sequence. Together, these genes and their importance to desiccation tolerance provide a view of the environment perceived by bacteria in low-water-content habitats, and suggest that the mechanisms for adaptation for growth in low-water-content habitats are different from those for growth in high-osmolarity habitats.
Collapse
Affiliation(s)
- Martijn van de Mortel
- Interdepartmental Graduate Program in Microbiology, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
61
|
Tilton GB, Shockey JM, Browse J. Biochemical and Molecular Characterization of ACH2, an Acyl-CoA Thioesterase from Arabidopsis thaliana. J Biol Chem 2004; 279:7487-94. [PMID: 14660652 DOI: 10.1074/jbc.m309532200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using computer-based homology searches of the Arabidopsis genome, we identified the gene for ACH2, a putative acyl-CoA thioesterase. With the exception of a unique 129-amino acid N-terminal extension, the ACH2 protein is 17-36% identical to members of a family of acyl-CoA thioesterases that are found in both prokaryotes and eukaryotes. The eukaryotic homologs of ACH2 are peroxisomal acyl-CoA thioesterases that are up-regulated during times of increased fatty acid oxidation, suggesting potential roles in peroxisomal beta-oxidation. We investigated ACH2 to determine whether it has a similar role in the plant cell. Like its eukaryotic homologs, ACH2 carries a putative type 1 peroxisomal targeting sequence (-SKL(COOH)), and maintains all the catalytic residues typical of this family of acyl-CoA thioesterases. Analytical ultracentrifugation of recombinant ACH2-6His shows that it associates as a 196-kDa homotetramer in vitro, a result that is significant in light of the cooperative kinetics demonstrated by ACH2-6His in vitro. The cooperative effects are most pronounced with medium chain acyl-CoAs, where the Hill coefficient is 3.8 for lauroyl-CoA, but decrease for long chain acyl-CoAs, where the Hill coefficient is only 1.9 for oleoyl-CoA. ACH2-6His hydrolyzes both medium and long chain fatty acyl-CoAs but has highest activity toward the long chain unsaturated fatty acyl-CoAs. Maximum rates were found with palmitoleoyl-CoA, which is hydrolyzed at 21 micromol/min/mg protein. Additionally, ACH2-6His is insensitive to feedback inhibition by free CoASH levels as high as 100 microm. ACH2 is most highly expressed in mature tissues such as young leaves and flowers rather than in germinating seedlings where beta-oxidation is rapidly proceeding. Taken together, these results suggest that ACH2 activity is not linked to fatty acid oxidation as has been suggested for its eukaryotic homologs, but rather has a unique role in the plant cell.
Collapse
Affiliation(s)
- Gregory B Tilton
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | |
Collapse
|
62
|
Ren Y, Aguirre J, Ntamack AG, Chu C, Schulz H. An alternative pathway of oleate beta-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase. J Biol Chem 2004; 279:11042-50. [PMID: 14707139 DOI: 10.1074/jbc.m310032200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, by the purified complex of fatty acid oxidation from Escherichia coli was studied to determine how much of the metabolite is converted to 3,5-cis-tetradecadienoyl-CoA and thereby diverted from the classical, isomerase-dependent pathway of oleate beta-oxidation. Approximately 10% of the 2,5-intermediate was converted to the 3,5-isomer. When the latter compound was allowed to accumulate, it strongly inhibited the flux through the main pathway. Since Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase was not detected in E. coli cells grown on oleate, the 3,5-intermediate cannot be metabolized via the reductase-dependent pathway. However, it was hydrolyzed by a thioesterase, which was most active with 3,5-cis-tetradecadienoyl-CoA as substrate and which was induced by growth of E. coli on oleate. An analysis of fatty acids present in the medium after growth of E. coli on oleate revealed the presence of 3,5-tetradecadienoate, which was not detected after cells were grown on palmitate or glucose. Altogether, these data prompt the conclusion that oleate is mostly degraded via the classical, isomerase-dependent pathway in E. coli but that a small amount of 2-trans,5-cis-tetradecadienoyl-CoA is diverted from the pathway via conversion to 3,5-cis-tetradecadienoyl-CoA by Delta(3),Delta(2)-enoyl-CoA isomerase. The 3,5-intermediate, which would strongly inhibit beta-oxidation if allowed to accumulate, is hydrolyzed, and the resultant 3,5-tetradecadienoate is excreted into the growth medium. This study provides evidence for the novel function of a thioesterase in beta-oxidation.
Collapse
Affiliation(s)
- Ying Ren
- Department of Chemistry, City College and Graduate School of the City University of New York, New York, New York 10031, USA
| | | | | | | | | |
Collapse
|
63
|
Lo YC, Lin SC, Shaw JF, Liaw YC. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 2003; 330:539-51. [PMID: 12842470 DOI: 10.1016/s0022-2836(03)00637-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli thioesterase I (TAP) is a multifunctional enzyme possessing activities of thioesterase, esterase, arylesterase, protease, and lysophospholipase. In particular, TAP has stereoselectivity for amino acid derivative substrates, hence it is useful for the kinetic resolution of racemic mixtures of industrial chemicals. In the present work, the crystal structure of native TAP was determined at 1.9A, revealing a minimal SGNH-hydrolase fold. The structure of TAP in complex with a diethyl phosphono moiety (DEP) identified its catalytic triad, Ser10-Asp154-His157, and oxyanion hole, Ser10-Gly44-Asn73. The oxyanion hole of TAP consists of three residues each separated from the other by more than 3.5A, implying that all of them are highly polarized when substrate bound. The catalytic (His)C(epsilon1)-H...O=C hydrogen bond usually plays a role in the catalytic mechanisms of most serine hydrolases, however, there were none present in SGNH-hydrolases. We propose that the existence of the highly polarized tri-residue-constituted oxyanion hole compensates for the lack of a (His)C(epsilon1)-H...O=C hydrogen bond. This suggests that members of the SGNH-hydrolase family may employ a unique catalytic mechanism. In addition, most SGNH-hydrolases have low sequence identities and presently there is no clear criterion to define consensus sequence blocks. Through comparison of TAP and the three SGNH-hydrolase structures currently known, we have identified a unique hydrogen bond network which stabilizes the catalytic center: a newly discovered structural feature of SGNH-hydrolases. We have defined these consensus sequence blocks providing a basis for the sub-classification of SGNH-hydrolases.
Collapse
Affiliation(s)
- Yu-Chih Lo
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Neihu 114, Taiwan
| | | | | | | |
Collapse
|
64
|
Cloning, expression and characterization of a new 2-Cl-propionic acid ester hydrolase from B. subtilis. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00173-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
65
|
Tyukhtenko SI, Litvinchuk AV, Chang CF, Leu RJ, Shaw JF, Huang TH. NMR studies of the hydrogen bonds involving the catalytic triad ofEscherichia colithioesterase/protease I. FEBS Lett 2002; 528:203-6. [PMID: 12297305 DOI: 10.1016/s0014-5793(02)03308-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli thioesterase/protease I (TEP-I) is a lipolytic enzyme of the serine protease superfamily with Ser(10), Asp(154) and His(157) as the catalytic triad residues. Based on comparison of the low-field (1)H nuclear magnetic resonance spectra of two mutants (S10G and S12G) and two transition state analogue complexes we have assigned the exchangeable proton resonances at 16.3 ppm, 14.3 ppm, and 12.8 ppm at pH 3.5 to His(157)-N(delta1)H, Ser(10)-O(gamma)H and His(157)-N(epsilon2)H, respectively. Thus, the presence of a strong Asp(154)-His(157) hydrogen bond in free TEP-I was observed. However, Ser(10)-O(gamma)H was shown to form a H-bond with a residue other than His(157)-N(epsilon2).
Collapse
Affiliation(s)
- Sergiy I Tyukhtenko
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
66
|
Suematsu N, Okamoto K, Shibata K, Nakanishi Y, Isohashi F. Molecular cloning and functional expression of rat liver cytosolic acetyl-CoA hydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2700-9. [PMID: 11322891 DOI: 10.1046/j.1432-1327.2001.02162.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cytosolic acetyl-CoA hydrolase (CACH) was purified from rat liver to homogeneity by a new method using Triton X-100 as a stabilizer. We digested the purified enzyme with an endopeptidase and determined the N-terminal amino-acid sequences of the two proteolytic fragments. From the sequence data, we designed probes for RT-PCR, and amplified CACH cDNA from rat liver mRNA. The CACH cDNA contains a 1668-bp ORF encoding a protein of 556 amino-acid residues (62 017 Da). Recombinant expression of the cDNA in insect cells resulted in overproduction of functional acetyl-CoA hydrolase with comparable acyl-CoA chain-length specificity and Michaelis constant for acetyl-CoA to those of the native CACH. Database searching shows no homology to other known proteins, but reveals high similarities to two mouse expressed sequence tags (91% and 93% homology) and human mRNA for KIAA0707 hypothetical protein (50% homology) of unknown function.
Collapse
Affiliation(s)
- N Suematsu
- Department of Biochemistry, St Marianna University School of Medicine, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
67
|
Huang YT, Liaw YC, Gorbatyuk VY, Huang TH. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol 2001; 307:1075-90. [PMID: 11286557 DOI: 10.1006/jmbi.2001.4539] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli thioesterase/protease I (TEP-I) is a member of a novel subclass of the lipolytic enzymes with a distinctive GDSLS motif. In addition to possessing thioesterase and protease activities, TEP-I also exhibits arylesterase activity. We have determined the (15)N nuclear magnetic spin relaxation rates, R(1) and R(2), and the steady state (1)H-(15)N heteronuclear Overhauser effect, measured at both 11.74 T and 14.09 T, of (u-(15)N) TEP-I. These data were analyzed using model-free formalism (with axially symmetric rotational diffusion anisotropy) to extract the backbone dynamics of TEP-I. The results reveal that the core structure of the central beta-sheet and the long alpha-helices are rigid, while the binding pocket appears to be rather flexible. The rigid core serves as a scaffold to anchor the essential loops, which form the binding pocket. The most flexible residues display large amplitude fast (ps/ns time-scale) motion and lie on one stripe whose orientation is presumed to be the ligand-binding orientation. We also detected the presence of several residues displaying slow (microseconds/ms time-scale) conformational exchanging processes. These residues lie around the binding pocket and are oriented perpendicularly to the orientation of the flexible stripe. Two of the putative catalytic triads, Ser10 and His157, and their neighbors show motion on the microseconds/ms time-scale, suggesting that their slow motion may have a role in catalysis, in addition to their possible roles in ligand binding. The presence of a flexible substrate-binding pocket may also facilitate binding to a wide range of substrates and confer the versatile functional property of this protein.
Collapse
Affiliation(s)
- Y T Huang
- Institute of Biomedical Sciences, Nankang Taipei, Taiwan, 11529, Rupublic of China
| | | | | | | |
Collapse
|
68
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|
69
|
Suwa M, Sugino H, Sasaoka A, Mori E, Fujii S, Shinkawa H, Nimi O, Kinashi H. Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene 2000; 246:123-31. [PMID: 10767533 DOI: 10.1016/s0378-1119(00)00060-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 200kb linear plasmid pSLA2-L was suggested to be involved in the production of two macrolide antibiotics, lankamycin (Lm) and lankacidin (Lc), in Streptomyces rochei 7434AN4. Hybridization experiments with the polyketide synthase (PKS) genes for erythromycin and actinorhodin identified two eryAI-homologous regions and an actI-homologous region on pSLA2-L. The nucleotide sequence of a 3.6kb SacI fragment carrying one of the eryAI-homologs revealed that it codes for part of a large protein with four domains for ketoreductase, acyl carrier protein, ketosynthase, and acyltransferase. Gene disruption confirmed that the two eryAI-homologs are parts of a large type-I PKS gene cluster for Lm. A 4.8kb DNA carrying the actI-homologous region contains four open reading frames (ORF1-ORF4) as well as an additional ORF, i.e. ORF5, which might code for a thioesterase. Deletion of the ORF2-ORF4 region showed that it is not involved in the synthesis of Lm or Lc. Thus, it was confirmed that pSLA2-L contains two PKS gene clusters for Lm and an unknown type-II polyketide.
Collapse
Affiliation(s)
- M Suwa
- Department of Molecular Biotechnology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Fenster KM, Parkin KL, Steele JL. Characterization of an arylesterase from Lactobacillus helveticus CNRZ32. J Appl Microbiol 2000; 88:572-83. [PMID: 10792515 DOI: 10.1046/j.1365-2672.2000.00993.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An esterase gene (estA) was isolated from a previously constructed genomic library of Lactobacillus helveticus CNRZ32. The estA gene consisted of a 558 bp open reading frame encoding a putative peptide of 21.3 kDa. Protein sequence homology searches using BLAST revealed that EstA had low amino acid sequence identity with the serine-dependent arylesterases TesI (24%) and EtpA (26%) from Escherichia coli and Vibrio mimicus, respectively. A recombinant EstA fusion protein containing a C-terminal six-histidine tag was constructed and purified to electrophoretic homogeneity. Characterization of EstA revealed that it was a serine-dependent enzyme having a monomeric Mr of 22.6-25.1 kDa. Optimum temperature, NaCl concentration and pH for EstA activity were determined to be 35-40 degrees C, 3.5% NaCl and 7.5-8.0, respectively. EstA had significant activity under conditions simulating those of ripening cheese (10 degrees C, 4% NaCl, pH 5.1). EstA hydrolysed a variety of ester compounds and preferred those with substituted phenyl alcohol and short-chain fatty acid groups. Site-directed mutagenesis suggested that the S10 and H164 residues were essential for EstA activity.
Collapse
Affiliation(s)
- K M Fenster
- Department of Food Science, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|
71
|
C-terminal His-tagging results in substrate specificity changes of the thioesterase I fromEscherichia coli. J AM OIL CHEM SOC 1999. [DOI: 10.1007/s11746-999-0082-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999; 63:266-92. [PMID: 10357851 PMCID: PMC98966 DOI: 10.1128/mmbr.63.2.266-292.1999] [Citation(s) in RCA: 530] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.
Collapse
Affiliation(s)
- C L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078-3032, USA.
| | | | | |
Collapse
|
73
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
74
|
The bile acid-inducible baiF gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A hydrolase. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33335-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
75
|
Benning MM, Wesenberg G, Liu R, Taylor KL, Dunaway-Mariano D, Holden HM. The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3. J Biol Chem 1998; 273:33572-9. [PMID: 9837940 DOI: 10.1074/jbc.273.50.33572] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soil-dwelling microbe, Pseudomonas sp. strain CBS-3, has attracted recent attention due to its ability to survive on 4-chlorobenzoate as its sole carbon source. The biochemical pathway by which this organism converts 4-chlorobenzoate to 4-hydroxybenzoate consists of three enzymes: 4-chlorobenzoyl-CoA ligase, 4-chlorobenzoyl-CoA dehalogenase, and 4-hydroxybenzoyl-CoA thioesterase. Here we describe the three-dimensional structure of the thioesterase determined to 2.0-A resolution. Each subunit of the homotetramer is characterized by a five-stranded anti-parallel beta-sheet and three major alpha-helices. While previous amino acid sequence analyses failed to reveal any similarity between this thioesterase and other known proteins, the results from this study clearly demonstrate that the molecular architecture of 4-hydroxybenzoyl-CoA thioesterase is topologically equivalent to that observed for beta-hydroxydecanoyl thiol ester dehydrase from Escherichia coli. On the basis of the structural similarity between these two enzymes, the active site of the thioesterase has been identified and a catalytic mechanism proposed.
Collapse
Affiliation(s)
- M M Benning
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin- Madison, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
77
|
Rangaswamy V, Mitchell R, Ullrich M, Bender C. Analysis of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine. J Bacteriol 1998; 180:3330-8. [PMID: 9642184 PMCID: PMC107286 DOI: 10.1128/jb.180.13.3330-3338.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. The genes involved in CFA biosynthesis are encoded by a single transcript which encompasses 19 kb of the COR gene cluster. In the present study, the nucleotide sequence was determined for a 4-kb region located at the 3' end of the CFA biosynthetic gene cluster. Three open reading frames were identified and designated cfa8, cfa9, and tnp1; the predicted translation products of these genes showed relatedness to oxidoreductases, thioesterases, and transposases, respectively. The translational products of cfa8 and cfa9 were overproduced in Escherichia coli BL21; however, tnp1 was not translated in these experiments. Mutagenesis and complementation analysis indicated that cfa8 is required for the production of CFA and COR. Analysis of a cfa9 mutant indicated that this gene is dispensable for CFA and COR production but may increase the release of enzyme-bound products from the COR pathway; tnp1, however, had no obvious function in CFA or COR biosynthesis. A genetic strategy was used to produce CFA in a P. syringae strain which lacks the COR gene cluster; this approach will be useful in future studies designed to investigate biosynthetic products of the CFA gene cluster.
Collapse
Affiliation(s)
- V Rangaswamy
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078-3032, USA
| | | | | | | |
Collapse
|
78
|
Tojo H, Ichida T, Okamoto M. Purification and characterization of a catalytic domain of rat intestinal phospholipase B/lipase associated with brush border membranes. J Biol Chem 1998; 273:2214-21. [PMID: 9442064 DOI: 10.1074/jbc.273.4.2214] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A brush border membrane-associated phospholipase B/lipase was solubilized from the distal two-thirds of rat small intestine by autolysis during storage at -35 degrees C over 1 month, and then the enzyme was purified to homogeneity and characterized enzymatically and structurally. The purified enzyme exhibited broad substrate specificity including esterase, phospholipase A2, lysophospholipase, and lipase activities. SDS-gel electrophoretic and reverse-phase high performance liquid chromatographic analyses demonstrated that a single enzyme catalyzes these activities. It preferred hydrolysis at the sn-2 position of diacylphospholipid and diacylglycerol without strict stereoselectivity, whereas it apparently exhibited no positional specificity toward triacylglycerol. Diisopropyl fluorophosphate, an irreversible inhibitor of serine esterases and lipases inhibited purified enzyme. When the position of enzyme on SDS-gel electrophoresis under the non-reducing conditions was determined by assaying the activity eluted from sliced gels, brush border membrane-associated enzyme corresponded to a approximately 150-kDa protein; autolysis gave a 35-kDa product, in agreement with the results of immunoblot analysis. The purified 35-kDa enzyme consisted of a 14-kDa peptide and a glycosylated 21-kDa peptide. Their NH2-terminal amino acid sequences were determined and found in the second repeat of 161-kDa phospholipase B/lipase with 4-fold tandem repeats of approximately 38 kDa each, which we cloned and sequenced in the accompanying paper (Takemori, H., Zolotaryov, F., Ting, L., Urbain, T., Komatsubara, T., Hatano, O., Okamoto, M., and Tojo, H. (1988) J. Biol. Chem. 273, 2222-2231). These results indicate that the purified enzyme is the catalytic domain derived from the second repeat of brush border membrane-associated phospholipase B/lipase.
Collapse
Affiliation(s)
- H Tojo
- Department of Molecular Physiological Chemistry, Osaka University Medical School, Japan.
| | | | | |
Collapse
|
79
|
DiRusso CC, Nyström T. The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 1998; 27:1-8. [PMID: 9466250 DOI: 10.1046/j.1365-2958.1998.00645.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fluidity and phase state of bacterial lipid bilayers commonly change in response to ambient environmental conditions to maintain the critical functions of the envelope as a semipermeable and selective boundary. A special, and intricate, set of alterations in membrane lipid metabolism is elicited by conditions causing growth arrest. Under such conditions, specific alterations in the membrane lipid-fatty acid composition are required for survival of the cell and, concurrently, the membrane lipids are suggested to serve as endogenous reserves providing carbon/energy for maintenance requirements. It appears that the global regulator FadR is required for both of these activities to be performed properly and that the FadR regulon is interconnected to the universal stress response of Escherichia coli. FadR, in conjunction with long-chain fatty acyl-CoA, long-chain acyl-ACP, ppGpp and cAMP, are key players in regulating the activities of enzymes and expression of genes involved in fatty acid and phospholipid metabolism in dividing and ageing E. coli cells.
Collapse
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, The Albany Medical College, USA
| | | |
Collapse
|
80
|
Facile purification of a C-terminal extended His-taggedVibrio mimicusarylesterase and characterization of the purified enzyme. J AM OIL CHEM SOC 1997. [DOI: 10.1007/s11746-997-0239-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
81
|
Affiliation(s)
- B J Rawlings
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
82
|
Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 1997; 65:1659-68. [PMID: 9125544 PMCID: PMC175193 DOI: 10.1128/iai.65.5.1659-1668.1997] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have identified an approximately 22-kb region of the pgm locus of Yersinia pestis KIM6+ which encodes a number of iron-regulated proteins involved in the biosynthesis of the Y. pestis cognate siderophore, yersiniabactin (Ybt), and which is located immediately upstream of the pesticin/yersiniabactin receptor gene (psn). Sequence analysis and the construction of insertion and deletion mutants allowed us to determine the putative location of the irp1 gene and the positions of irp2, ybtT, and ybtE within the ybt operon. Mutations in the irp1, irp2, or ybtE gene yielded strains defective in siderophore production. Mutant strains were unable to grow on iron-deficient media at 37 degrees C but could be cross-fed by culture supernatants from yersiniabactin-producing strains of Y. pestis grown under iron-limiting conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of whole-cell extracts from Ybt+ and Ybt- strains grown in iron-deficient media revealed that expression of ybt-encoded proteins is not only iron regulated but also influenced by the presence of the siderophore itself. Finally, Y. pestis strains with mutations in either the psn or irp2 gene were avirulent in mice when inoculated subcutaneously.
Collapse
Affiliation(s)
- S W Bearden
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
83
|
Yamada J, Furihata T, Iida N, Watanabe T, Hosokawa M, Satoh T, Someya A, Nagaoka I, Suga T. Molecular cloning and expression of cDNAs encoding rat brain and liver cytosolic long-chain acyl-CoA hydrolases. Biochem Biophys Res Commun 1997; 232:198-203. [PMID: 9125130 DOI: 10.1006/bbrc.1997.6246] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
cDNAs encoding the long-chain acyl-CoA hydrolases (ACHs) from rat brain and liver, referred to as rBACH and rLACH1, respectively, were isolated and sequenced. The rBACH cDNA contained an open reading frame encoding a 338-amino acid polypeptide with a calculated molecular weight of 37,559, of which the deduced amino acid sequence matched partial amino acid sequences directly determined for peptides generated by tryptic digestion or CNBr cleavage of purified rBACH. The rLACH1 cDNA contained an open reading frame encoding a 343-amino acid polypeptide with a molecular weight of 38,240. When expressed in Escherichia coli, these cDNAs produced palmitoyl-CoA hydrolase activity and 44-kDa proteins with molecular masses similar to those of purified rBACH and rLACH1 (43 kDa). These expressed proteins and enzyme activity were immunoblotted and neutralized, respectively, by anti-rBACH or anti-rLACH1 antibodies. rLACH1 cDNA had 84 and 94% identity with rBACH cDNA at the nucleotide and amino acid levels, respectively. However, the 5'-end of the former cDNA which contained the N-terminal coding region of rLACH1 was entirely different from the corresponding region of rBACH cDNA, suggesting that these enzymes may be generated by alternative use of exons of the same gene. Northern blot analysis showed that ACH mRNA was expressed constitutively in the rat brain and testis, whereas its expression in the liver was inducible by treatment with the peroxisome proliferator. This study demonstrated the molecular diversity of ACH and suggested the presence of tissue-specific mechanisms to regulate the ACH gene expression.
Collapse
Affiliation(s)
- J Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Cronan JE. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 1997; 179:1819-23. [PMID: 9045847 PMCID: PMC178900 DOI: 10.1128/jb.179.5.1819-1823.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vitro experiments point to fatty acyl coenzymes A (acyl-CoAs) rather than unesterified fatty acids as the small-molecule ligands regulating DNA binding by the FadR protein of Escherichia coli. To provide an in vivo test of this specificity, unesterified fatty acids were generated within the cellular cytosol. These fatty acids were found to be efficient modulators of FadR action only when the acids could be converted to acyl-CoAs.
Collapse
Affiliation(s)
- J E Cronan
- Department of Microbiology, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
85
|
Lee YL, Chen JC, Shaw JF. The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates. Biochem Biophys Res Commun 1997; 231:452-6. [PMID: 9070299 DOI: 10.1006/bbrc.1997.5797] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A thioesterase I gene was recloned and sequenced from Escherichia coli strain JM109. The overexpressed, matured enzyme from JM109 was purified to homogeneity. The enzyme showed broad hydrolytic activity toward three kinds of substrates including acyl-CoAs, esters, and amino acid derivatives. The enzyme had a kcat/Km value of 0.363 s-1 microM-1, for a typical thioesterase I substrate, palmitoyl-CoA. The arylesterase activity of the enzyme was observed by its ability to hydrolyze several aromatic esters including alpha-naphthyl acetate, alpha-naphthyl butyrate, phenyl acetate, benzyl acetate, and eight p-nitrophenyl esters. In kinetic studies a chymotrypsin-like substrate (an amino acid derivative), N-carbobenzoxy-L-phenylalanine p-nitrophenyl ester (L-NBPNPE), was the best substrate for the enzyme with a catalytic efficiency (kcat/Km) of 4.00 s-1 microM-1, which was 23 times higher than that of the enantiomer D-NBPNPE (0.171 s-1 microM-1). It was concluded that the thioesterase I of E. coli had arylesterase activity and it possessed stereospecificity for protease substrates.
Collapse
Affiliation(s)
- Y L Lee
- Department of Marine Food Science, National Taiwan Ocean University, Keelung
| | | | | |
Collapse
|
86
|
Rock CO, Cronan JE. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:1-16. [PMID: 8695652 DOI: 10.1016/0005-2760(96)00056-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C O Rock
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38101, USA.
| | | |
Collapse
|
87
|
Broustas CG, Larkins LK, Uhler MD, Hajra AK. Molecular cloning and expression of cDNA encoding rat brain cytosolic acyl-coenzyme A thioester hydrolase. J Biol Chem 1996; 271:10470-6. [PMID: 8631842 DOI: 10.1074/jbc.271.18.10470] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cDNA encoding rat brain cytosolic acyl-CoA thioester hydrolase (ACT) has been cloned and sequenced, and the primary structure of the enzyme has been deduced. A partial amino acid sequence (38 amino acids) of the enzyme was determined using the peptides generated after CNBr digestion of the purified enzyme. Primers synthesized on the basis of this information were used to isolate two cDNA clones, each encoding the full length of the enzyme. The nucleotide sequences of these clones contained an open reading frame encoding a 358-amino acid polypeptide with a calculated molecular mass of 39.7 kDa, similar to that determined for the purified enzyme (40.9 kDa). The deduced ACT sequence showed no homology to the known sequences of any other thioesterases nor to any other known protein sequence. However, there was a strong homology to a number of expressed sequence tag human brain cDNA clones. The identity of the ACT cDNA was confirmed by the expression of ACT activity in Escherichia coli. There was a 10-15-fold increase in ACT-specific activity in the bacterial extracts after induction with isopropyl thiogalactoside, and the properties of the expressed enzyme (fusion protein) were the same as those of the purified rat brain ACT. Northern blot analysis showed that a 1.65-kilobase ACT transcript was present in rat brain and testis but not in any other rat tissues examined. However, the ACT mRNA was induced in the liver of rats that were fed Wy-14,643, a peroxisome proliferator and inducer of rodent liver cytosolic acyl-CoA thioesterase. These results indicate that the induced rat liver ACT is homologous to the constitutive rat brain ACT.
Collapse
Affiliation(s)
- C G Broustas
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48104-1687, USA
| | | | | | | |
Collapse
|
88
|
Tesch C, Nikoleit K, Gnau V, Götz F, Bormann C. Biochemical and molecular characterization of the extracellular esterase from Streptomyces diastatochromogenes. J Bacteriol 1996; 178:1858-65. [PMID: 8606158 PMCID: PMC177879 DOI: 10.1128/jb.178.7.1858-1865.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An esterase of Streptomyces diastatochromogenes was purified to homogeneity from culture filtrate. The purified enzyme had a molecular mass of 30,862 +/- 5.8 Da, as determined by electrospray mass spectrometry. The esterase-encoding gene was cloned on a 5.1-kb MboI fragment from S. diastatochromogenes genomic DNA into Streptomyces lividans TK23 by using plasmid vector pIJ702. Nucleotide sequence analysis predicted a 978-bp open reading frame, estA, encoding a protein of 326 amino acids, a potential ribosome binding site, and a putative 35- or 36-residue signal peptide for secretion in S. lividans or S. diastatochromogenes, respectively. The transcriptional initiation site was mapped 29 nucleotides upstream from the predicted translational start codon of estA in S. diastatochromogenes. The protein sequence deduced from the estA gene was similar to that of the esterase from the plant pathogen Streptomyces scabies. Both enzymes lacked the conserved motif GXSXG carrying the active-site serine of hydrolytic enzymes. A serine modified by [1,3-3H]diisopropyl fluorophosphate was located at position 11 of the mature enzyme in the sequence GDSYT. This finding and results obtained by site-directed mutagenesis studies indicate that serine 11 may be the active-site nucleophile.
Collapse
Affiliation(s)
- C Tesch
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
89
|
Musayev FN, Lee YL, Shaw JF, Liaw YC. Crystallization and preliminary X-ray crystallographic analysis of arylesterase from Vibrio mimicus. Protein Sci 1995; 4:1931-3. [PMID: 8528091 PMCID: PMC2143213 DOI: 10.1002/pro.5560040928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Single crystals of arylesterase (EC 3.1.1.2) from Vibrio mimicus have been obtained from ammonium sulfate as a precipitant at room temperature for 2 months. The present crystals diffract up to 2.2 A resolution and belong to monoclinic space group P2(1). The cell dimensions are a = 55.65(1) A, b = 53.46(1) A, c = 65.79(1) A, and beta = 106.54(1) degrees. There are two molecules of molecular weight 22 kDa in an asymmetric unit with a solvent content of 43%.
Collapse
Affiliation(s)
- F N Musayev
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
90
|
Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39738-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
91
|
|
92
|
Cho H, Cronan JE. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 1995; 270:4216-9. [PMID: 7876180 DOI: 10.1074/jbc.270.9.4216] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli thioesterase I (TesA) encoded by the tesA gene is located in the cellular periplasm. The tesA gene was modified by deletion of the leader sequence such that the mature enzyme was instead localized to the cellular cytosol. Production of thioesterase I in the cytosol results in striking changes in the pattern of E. coli lipid synthesis. In contrast to normal E. coli cells, cells producing cytosolic TesA synthesize large amounts of free fatty acid at all stages of growth. Moreover, cultures of the cytosolic TesA-producing strain continue lipid synthesis (as free fatty acid) in stationary phase whereas lipid synthesis is normally strongly inhibited in such cultures. Surprisingly, production of cytosolic thioesterase I gave only modest inhibition of membrane phospholipid synthesis. These results demonstrate that internalization of a normally secreted enzyme can disrupt normal cellular regulatory mechanisms.
Collapse
Affiliation(s)
- H Cho
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | |
Collapse
|
93
|
Meurer G, Hutchinson CR. Functional analysis of putative beta-ketoacyl:acyl carrier protein synthase and acyltransferase active site motifs in a type II polyketide synthase of Streptomyces glaucescens. J Bacteriol 1995; 177:477-81. [PMID: 7814341 PMCID: PMC176615 DOI: 10.1128/jb.177.2.477-481.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The significance of potential active site motifs for acyltransferase and beta-ketoacyl:acyl carrier protein synthase regions within the TcmK protein was investigated by determining the effects of mutations in the proposed active sites on the production of tetracenomycins F2 and C. In a Streptomyces glaucescens tcmGHI JKLMNO null mutant, plasmids carrying the S351A mutation produced high amounts of tetracenomycin F2 but plasmids carrying the C173A or C173S mutation or the H350L-S351A double mutation produced no detectable amount of any known intermediate. In a tcmK mutant, plasmids with the S351A mutation restored high production of tetracenomycin C and plasmids carrying the other mutations were able to complement the chromosomal defect to some extent. None of the mutations affected the amount of TcmK produced.
Collapse
Affiliation(s)
- G Meurer
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
94
|
Camp L, Verkruyse L, Afendis S, Slaughter C, Hofmann S. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31641-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
95
|
Jiang P, Cronan JE. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol 1994; 176:2814-21. [PMID: 7910602 PMCID: PMC205434 DOI: 10.1128/jb.176.10.2814-2821.1994] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).
Collapse
Affiliation(s)
- P Jiang
- Department of Microbiology, University of Illinois at Urbana, Champaign 61801
| | | |
Collapse
|
96
|
Abstract
Escherichia coli protease I is assayed as an esterase active with certain synthetic model chymotrypsin substrates. However, the gene encoding protease I has the same DNA sequence and genomic location as tesA, a gene that encodes E. coli thioesterase I. We report that both hydrolase activities utilize the same active site and demonstrate that the protein functions as a thioesterase in vivo.
Collapse
Affiliation(s)
- H Cho
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | |
Collapse
|
97
|
Robertson D, Hilton S, Wong K, Koepke A, Buckley J. Influence of active site and tyrosine modification on the secretion and activity of the Aeromonas hydrophila lipase/acyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42147-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
98
|
Abstract
This chapter examines families of serine peptidases. Serine peptidases are found in viruses, bacteria, and eukaryotes. They include exopeptidases, endopeptidases, oligopeptidases, and omega peptidases. On the basis of three-dimensional structures, most of the serine peptidase families can be grouped together into about six clans that may have common ancestors. The structures are known for members of four of the clans, chymotrypsin, subtilisin, carboxypeptidase C, and Escherichia D-Ala-D-Ala peptidase A. The peptidases of chymotrypsin, subtilisin, and carboxypeptidase C clans have a common “catalytic triad” of three amino acids—namely, serine (nucleophile), aspartate (electrophile), and histidine (base). The geometric orientations of these are closely similar between families; however the protein folds are quite different. The arrangements of the catalytic residues in the linear sequences of members of the various families commonly reflect their relationships at the clan level. The members of the chymotrypsin family are almost entirely confined to animals. 10 families are included in chymotrypsin clan (SA), and all the active members of these families are endopeptidases. The order of catalytic residues in the polypeptide chain in clan SA is His/Asp/Ser.
Collapse
Affiliation(s)
- N D Rawlings
- Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|