51
|
Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. AMB Express 2021; 11:39. [PMID: 33675438 PMCID: PMC7936999 DOI: 10.1186/s13568-021-01199-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics.
Collapse
|
52
|
Peng H, Tang L, Wu C, Li J, Tao L, Li C, Chen Z, Xie Y. Recombinant Expression And Indirect ELISA For COWP And HSP70 Proteins From Cryptosporidium andersoni. Acta Trop 2021; 214:105767. [PMID: 33245908 DOI: 10.1016/j.actatropica.2020.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Cryptosporidium spp. infect cattle at a high rates, and reduce milk production. Cryptosporidiosis has caused economic losses for the dairy industry. Studies in Western countries have shown that Cryptosporidium can also infect humans. Therefore, the development of methods for the early detection of Cryptosporidium is an important public health objective. Total RNA isolated from C. andersoni was used as template for generating cDNA encoding the COWP and HSP70 proteins. The recombinant plasmid, pET-32a(+)-COWP-HSP70, was constructed by double digestion and subcloning. The expression of the three recombinant proteins was induced in Escherichia coli BL21 using isopropyl-β-D-thiogalactopyranoside. The antigenicity of the recombinant proteins was examined using western blotting and indirect ELISA. The identities of the COWP fusion protein (CFP), HSP70 fusion protein (HFP), and COWP-HSP70 fusion protein (CHFP) were confirmed by BLAST searches of known sequences in GenBank respectively. The ELISA and western blot analyses indicated that all three of the proteins were highly immunogenic and antigenic. An indirect ELISA method was developed using the three recombinant proteins as coating antigens for the analysis of 40 clinical samples. The results showed that CHFP was the best candidate antigen for clinical testing, with a detection rate of 100%, compared with general parasitological screening. Above of all, the recombinant CHFP protein represents the best candidate antigen among three ones for detecting anti-Cryptosporidium antibodies in clinical samples. The development of the indirect ELISA lays the foundation for further research in immunodiagnosis and disease prevention of cryptosporidiosis.
Collapse
|
53
|
PiP 2 favors an α-helical structure of non-recombinant Hsp12 of Saccharomyces cerevisiae. Protein Expr Purif 2021; 181:105830. [PMID: 33485946 DOI: 10.1016/j.pep.2021.105830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP). Hsp12 gains in structure in the presence of specific lipids (PiP2). The helical form binds to liposomes models membrane with high affinity, leading to their rigidification. These results suggest that hydrophobic and ionic interactions are involved. Hsp12 is most likely a membrane chaperone expressed during stresses in Saccharomyces cerevisiae.
Collapse
|
54
|
Heat Stress Responses and Thermotolerance in Maize. Int J Mol Sci 2021; 22:ijms22020948. [PMID: 33477941 PMCID: PMC7833377 DOI: 10.3390/ijms22020948] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.
Collapse
|
55
|
Štorkánová H, Oreská S, Špiritović M, Heřmánková B, Bubová K, Komarc M, Pavelka K, Vencovský J, Distler JHW, Šenolt L, Bečvář R, Tomčík M. Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study. Sci Rep 2021; 11:1. [PMID: 33414495 PMCID: PMC7791137 DOI: 10.1038/s41598-020-79139-8] [Citation(s) in RCA: 3469] [Impact Index Per Article: 1156.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/03/2020] [Indexed: 11/11/2022] Open
Abstract
Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Hana Štorkánová
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sabína Oreská
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Maja Špiritović
- Institute of Rheumatology, Prague, Czech Republic
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Kristýna Bubová
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ladislav Šenolt
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radim Bečvář
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, Prague, Czech Republic.
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
56
|
Yamaguchi D, Takeuchi K, Ueno A, Kato D, Miyamae S, Murakami H. Experimental Repositioning of Geranylgeranylacetone to Enhance Bone Remodeling. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Kazuo Takeuchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Atsuko Ueno
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Daisuke Kato
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Shin Miyamae
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Murakami
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
57
|
Un H, Ugan RA, Gurbuz MA, Bayir Y, Kahramanlar A, Kaya G, Cadirci E, Halici Z. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation. Life Sci 2020; 266:118869. [PMID: 33309722 DOI: 10.1016/j.lfs.2020.118869] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
AIM Cisplatin (Cis) is widely used chemotherapeutic and has some serious side effects as nephrotoxicity. Phloretin (PH) and Phloridzin (PZ) are known their anti-oxidant anti-inflammatory effects. We aimed to examine the protective effects of PH and PZ on cisplatin-induced nephrotoxicity. MAIN METHODS Totally, 48 Balb/C female mice were separated into eight groups (n = 6). First day, single dose of cisplatin (20 mg/kg intraperitoneal) was administered to induce toxicity. PH and PZ were given (50 and 100 mg/kg orally) to treatment groups during 3 days. After the experimental procedures serum renal function enzymes (BUN and Creatinine), oxidative parameters (SOD, GSH and MDA), nuclear agent NFKβ, inflammatory cytokines (Tnf-α and IL1β) and HSP70 expressions and histopathological assessments were analyzed. KEY FINDINGS Serum enzymes, tissue cytokines and oxidative stress were increased after the Cis treatment. PH and PZ treatments normalized all parameters compared to Cis administrated group. After the treatments, SOD activities and GSH levels were increased while MDA levels were decreased. PH and PZ treatments decreased Tnf-α, IL1β and NFKβ mRNA expressions. Cis significantly increased the HSP70 expression while PH and PZ administrations significantly decreased. Similar the biochemical and molecular results, PH and PZ showed positive effects on tissue pathological parameters. Cisplatin cause a lot of abnormal structures as tubular and glomeruli damages on the kidney. SIGNIFICANCE PH and PZ play important physiological roles in the prevention of nephrotoxicity. Antioxidant and anti-inflammatory effects of PH and PZ demonstrated visible protective effects in the cisplatin-induced nephrotoxicity model.
Collapse
Affiliation(s)
- Harun Un
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, Agri, Turkey.
| | - Rustem Anil Ugan
- Ataturk University, Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey
| | - Muhammet Ali Gurbuz
- Ataturk University, Faculty of Medicine, Department of Histology and Embryology, Erzurum, Turkey
| | - Yasin Bayir
- Ataturk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | - Aysenur Kahramanlar
- Ataturk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | - Gokce Kaya
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
58
|
Knekt P, Järvinen R, Rissanen H, Heliövaara M, Aromaa A. Does sauna bathing protect against dementia? Prev Med Rep 2020; 20:101221. [PMID: 33088678 PMCID: PMC7560162 DOI: 10.1016/j.pmedr.2020.101221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Frequent sauna bathing predicted decreased risk of dementia in a cohort from Finland. Result was independent of several dementia risk factors, and was not modified by sex. Findings support suggested benefits of sauna and passive body heating in the brain.
Repeated heat exposure like sauna bathing is suggested to beneficially affect against dementia development. The epidemiological evidence is, however, scarce. Therefore, we studied the association between heat exposure during sauna bathing (i.e., the frequency of sauna bathing, frequency of heat sessions, length of stay in heat, sauna temperature) and the subsequent risk of dementia. A prospective cohort study was conducted based on 13,994 men and women aged 30–69 and free from dementia diagnosis from the Finnish Mobile Clinic Follow-up Survey. During a follow-up of 39 years, a total of 1805 dementia patients were diagnosed. The sauna bathing data was gathered from a questionnaire. Analyses based on the Cox model included the sauna bathing variables and the potential confounding factors. Sauna bathing frequency was related to a reduced risk of dementia after adjustment for the potential sociodemographic, lifestyle, and metabolic risk factors of dementia considered. The hazard ratio of dementia between individuals sauna bathing 9–12 times per month in comparison with those not sauna bathing or sauna bathing less than four times per month was 0.47 (95% CI = 0.25–0.88) during the first 20 years of follow-up and 0.81 (95% CI = 0.69–0.97) during the whole follow-up. The results are in line with the hypothesis that sauna bathing provides protection against dementia. Further studies are required to verify the suggested benefits of sauna bathing.
Collapse
Affiliation(s)
- Paul Knekt
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Harri Rissanen
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Arpo Aromaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
59
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
60
|
Photobiomodulation therapy on expression of HSP70 protein and tissue repair in experimental acute Achilles tendinitis. Lasers Med Sci 2020; 36:1201-1208. [PMID: 33037560 DOI: 10.1007/s10103-020-03155-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the effects of photobiomodulation (PBM) therapy on the expression of heat shock protein 70 (HSP70) and tissue repair in an experimental model of collagenase-induced Achilles tendinitis. Thirty Wistar rats (aged 12 weeks) were randomly distributed among control group (n = 8), tendinitis group (n = 11), and LED group (n = 11). Tendinitis was induced in the tendinitis and LED groups through a peritendinous injection of collagenase (100 μl). The LED group animals received the first irradiation 1 h after injury. A 630 ± 20 nm, 300-mW continuous wave light-emitting diode (LED), spot size 1 cm2, was placed in contact with the skin. One point over the tendon was irradiated for 30 s, delivering 9 J (9 J/cm2). LED irradiation was performed once daily for 7 days, with the total energy delivered being 63 J. The tendons were surgically removed and expression of the HSP70 protein was calculated using semi-quantitative analyses of immunohistochemistry (HSCORE). Number of fibroblasts and amount of collagen were measured using histological and histochemical analyses. An increase in the mean HSCORE for HSP70, in the number of fibroblasts, and in the amount of collagen were found in the LED group compared with those in the tendinitis and control group (P ≤ 0.05). PBM therapy increased the expression of the HSP70, number of fibroblasts, and amount of collagen in the acute Achilles tendinitis in rats.
Collapse
|
61
|
Effects of Initial Periodontal Therapy on Heat Shock Protein 70 Levels in Gingival Crevicular Fluid from Periodontitis Patients. J Clin Med 2020; 9:jcm9103072. [PMID: 32987652 PMCID: PMC7598651 DOI: 10.3390/jcm9103072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023] Open
Abstract
Periodontitis is an inflammatory disease of periodontium which is caused by periodontopathic bacteria. Moreover, various cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 are expressed in the inflamed periodontium. Heat shock proteins (HSPs) protect cells from abnormal conditions including inflammation, microbial infection and diseases. The 70-kDa HSPs (HSP70s) are major HSPs that express in the inflamed tissues. In this study, an enzyme-linked immunosorbent assay was applied to measure the levels of HSP70 in gingival crevicular fluid (GCF) from two periodontal pockets in each of 10 patients with Stage III, Grade B periodontitis. Sites with probing pocket depth (PPD) of ≤3 mm were named the healthy control (HC) sites, and sites with PPD of ≥5 mm were named the diseased sites. HSP70 levels in GCF were expressed higher at diseased sites than at HC sites, and decreased after initial periodontal therapy at diseased sites. These results suggest the association of HSP70 with the stage of periodontitis.
Collapse
|
62
|
Seclì L, Sorge M, Morotti A, Brancaccio M. Blocking Extracellular Chaperones to Improve Cardiac Regeneration. Front Bioeng Biotechnol 2020; 8:411. [PMID: 32528937 PMCID: PMC7264090 DOI: 10.3389/fbioe.2020.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic or acute insults to the myocardium are responsible for the onset of cardiomyopathy and heart failure. Due to the poor regenerative ability of the human adult heart, the survival of cardiomyocytes is a prerequisite to support heart function. Chaperone proteins, by regulating sarcomeric protein folding, function, and turnover in the challenging environment of the beating heart, play a fundamental role in myocardial physiology. Nevertheless, a number of evidences indicate that, under stress conditions or during cell damage, myocardial cells release chaperone proteins that, from the extracellular milieu, play a detrimental function, by perpetuating inflammation and inducing cardiomyocyte apoptosis. Blocking the activity of extracellular chaperones has been proven to have beneficial effects on heart function in preclinical models of myocardial infarction and cardiomyopathy. The application of this approach in combination with tissue engineering strategies may represent a future innovation in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
63
|
Thanner J, Bekos C, Veraar C, Janik S, Laggner M, Boehm PM, Schiefer AI, Müllauer L, Klepetko W, Ankersmit HJ, Moser B. Heat shock protein 90α in thymic epithelial tumors and non-thymomatous myasthenia gravis. Oncoimmunology 2020; 9:1756130. [PMID: 32923112 PMCID: PMC7458630 DOI: 10.1080/2162402x.2020.1756130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Thymic epithelial tumors (TETs) are rare malignancies with unique association to the autoimmune disease myasthenia gravis (MG). Heat shock proteins (HSPs) harbor great potential as cancer biomarkers and HSP inhibitors approach clinical cancer therapy. Methods To explore HSP pathophysiology, we assessed sera (immunoassays) and tissues (immunohistochemistry) of TETs (and thymic tissues) for HSP27, phosphorylated (p)HSP27, HSP70 and HSP90α expression in 114 TETs and 26 non-thymomatous MG patients undergoing extended thymectomy. Results Serum concentrations of HSP90α were significantly increased in patients with thymic carcinomas, thymomas, thymic neuroendocrine tumors and non-thymomatous MG compared to patients who underwent thymectomy revealing regular thymic morphology or controls. In thymoma patients, high serum HSP90α represented a significantly worse prognostic factor for free-from-recurrence, and complete tumor resection led to decreased levels. The expression of HSP90 in nuclei and cytoplasm of tumor cells and non-neoplastic lymphocytes varied with WHO histological subtype. HSP90 was expressed in centroblasts of thymic germinal centers in MG patients. Higher pHSP27 serum concentrations were observed in seropositive MG and those not treated with steroids. Conclusions HSP data suggest high potential for HSPs as TET cancer biomarkers or as candidates for targeted therapy. Caution is warranted in TET patients with associated MG overexpressing HSPs.
Collapse
Affiliation(s)
- Jürgen Thanner
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Bekos
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Cecilia Veraar
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Division of Cardiac Thoracic Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Janik
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Panja M Boehm
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Division of Cardiac Thoracic Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Head FFG Project "APOSEC", FOLAB Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Moser
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel) 2020; 12:E1047. [PMID: 32340275 PMCID: PMC7226590 DOI: 10.3390/cancers12041047] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Ali Baradaran
- Research & Development Lab, BSD Robotics, 4500 Brisbane, Australia;
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | | | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
65
|
Khan S, Zaidi S, Alouffi AS, Hassan I, Imran A, Khan RA. Computational Proteome-Wide Study for the Prediction of Escherichia coli Protein Targeting in Host Cell Organelles and Their Implication in Development of Colon Cancer. ACS OMEGA 2020; 5:7254-7261. [PMID: 32280866 PMCID: PMC7143404 DOI: 10.1021/acsomega.9b04042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 05/08/2023]
Abstract
Enterohemorrhagic Escherichia coli infection is associated with gastrointestinal disorders, including diarrhea and colorectal cancer. Although evidences have established the involvement of E. coli in the growth of colon cancer, the molecular mechanisms of carcinogenesis of cancer growth and development are not well understood. We analyzed E. coli protein targeting in host cell organelles and the implication in colon cancer using in silico approaches. Our results indicated that many E. coli proteins targeted the endoplasmic reticulum (ER), ER membranes, Golgi apparatus, Golgi apparatus membranes, peroxisomes, nucleus, nuclear membrane, mitochondria, and mitochondrial membrane of host cells. These targeted proteins in ER, Golgi apparatus, peroxisomes, nucleus, and mitochondria may alter the normal functioning of various pathways including DNA repair, apoptosis, replication, transcription, and protein folding in E. coli-infected host cells. The results of the current in silico study provide insights into E. coli pathogenesis and may aid in designing new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Bioinformatics
and Biotechnology Unit, Department of Biosciences, SRGC, Muzaffarnagar 251001, UP, India
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- . Phone: +91
9219993262
| | - Sabika Zaidi
- Bioinformatics
and Biotechnology Unit, Department of Biosciences, SRGC, Muzaffarnagar 251001, UP, India
| | | | - Iftekhar Hassan
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmad Imran
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
66
|
Saadeldin IM, Swelum AAA, Zakri AM, Tukur HA, Alowaimer AN. Effects of Acute Hyperthermia on the Thermotolerance of Cow and Sheep Skin-Derived Fibroblasts. Animals (Basel) 2020; 10:ani10040545. [PMID: 32218166 PMCID: PMC7222367 DOI: 10.3390/ani10040545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary We compared the thermotolerance of cow and sheep fibroblasts after exposure to acute hyperthermia (45 °C for 4 h). The primary culture, first passage, and cryopreserved cow fibroblasts resisted acute hyperthermia in terms of cell viability, proliferation, and migration to close cell scratch, in addition to increased expression of heat shock protein (HSP70 and HSP90) mRNA transcripts. Abstract This study was conducted to compare the effects of acute hyperthermia (45 °C for 4 h) on the viability, proliferation, and migratory activity through wound-healing assays of cow and sheep fibroblasts. The study examined the effects on primary cultures and first passage skin-derived fibroblasts. Relative quantification of HSP70, HSP90, P53, BAX, BCL2, and BECN1 was investigated after normalization to housekeeping genes GAPDH and beta-actin. The results revealed that cultured cow primary fibroblasts exhibited increased viability and reinitiated cell migration to close the cell monolayer scratch earlier than sheep cells. Similar patterns were observed in the first passage fibroblasts, with severe effects on sheep cells. Both cow and sheep cells exhibited decreased cell viability and failed to regain migratory activity after re-exposure of recovered heat-shocked cells. Effects of hyperthermia on sheep cells were potentiated by cell cryopreservation. The qPCR results showed that cow cells significantly increased HSP70 and HSP90 expression, which decreased the elevation of P53, and ameliorated the effects of the increased BAX/BCL2 ratio. The results provide a paradigm to compare thermotolerance among different animal species and revealed that trypsin could be an additional stress, which potentiates the effects of heat shock in in vitro experiments.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel M Zakri
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
67
|
Jahangirizadeh Z, Ghafouri H, Sajedi RH, Sariri R, Hossienkhani S. Rapid and simple screening of the apoptotic compounds based on Hsp70 inhibition using luciferase as an intracellular reporter. Anal Bioanal Chem 2020; 412:149-158. [PMID: 31897564 DOI: 10.1007/s00216-019-02220-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/08/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
HSP70 is a powerful antiapoptotic protein that can block the extrinsic and intrinsic pathways of apoptosis. The present study describes a rapid, sensitive, and inexpensive system using luciferase as a reporter for the functional analysis of apoptotic compounds. For this approach, the co-transformation of Escherichia coli cells was performed with two expression vectors containing Hsp70 and firefly luciferase. It was found that the luciferase inactivated by heat treatment (40-46 °C for 10 min) was approximately reactivated at room temperature and regained 70% of its initial activity before heat inactivation after 60 min. The results show that the reactivation of thermally inactivated luciferase was inhibited in living cells by treatment with VER-155008 and pifitrin-μ as Hsp70 inhibitors, with half-maximal inhibitory concentration of 124 and 384 μM, respectively. The sensitivity of this method for detecting VER-155008 and pifitrin-μ was about 8 and 25 μM, respectively. Also, this reporter system showed no response to doxorubicin and dactinomycin, which bind to DNA, and we used these anticancer compounds as control compounds. Therefore, for the first time, a rapid and simple real-time system using luciferase as a reporter is introduced for the screening of apoptosis-inducing compounds based on suppression of Hsp70 in E. coli cells.
Collapse
Affiliation(s)
- Zohreh Jahangirizadeh
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Saman Hossienkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
68
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
69
|
Rahmawati SF, Gosens R. Hot off the press: downregulation of PRMT1 for long-lasting effects of bronchial thermoplasty. Eur Respir J 2019; 54:54/6/1901898. [PMID: 31801822 DOI: 10.1183/13993003.01898-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Siti Farah Rahmawati
- Dept of Molecular Pharmacology and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.,Dept of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Reinoud Gosens
- Dept of Molecular Pharmacology and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
70
|
Expression of Heat Shock Protein 70 Is Insufficient To Extend Drosophila melanogaster Longevity. G3-GENES GENOMES GENETICS 2019; 9:4197-4207. [PMID: 31624139 PMCID: PMC6893204 DOI: 10.1534/g3.119.400782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.
Collapse
|
71
|
Lin C, Chen J. Regulation of immune cell trafficking by febrile temperatures. Int J Hyperthermia 2019; 36:17-21. [DOI: 10.1080/02656736.2019.1647357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- ChangDong Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
72
|
Cheng J, Li H, Huang Z, Zhang F, Bao L, Li Y, Chen L, Xue L, Chu W, Zhang J. Expression analysis of the heat shock protein genes and cellular reaction in dojo loach (Misgurnus anguillicaudatus) under the different pathogenic invasion. FISH & SHELLFISH IMMUNOLOGY 2019; 95:506-513. [PMID: 31683001 DOI: 10.1016/j.fsi.2019.10.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
As molecular chaperones, heat shock proteins (HSPs) play essential roles in cells in response to stress conditions. Recent studies about immune functions of HSPs in fish have also been reported. In this study, based on the reported cDNA sequences of the four HSP genes, HSP70, HSC70, HSP90α and HSP90β, the temporal expression patterns of the four genes during embryonic development of dojo loach(Misgurnus anguillicaudatus) was assayed with qRT-PCR. All of the four genes were ubiquitously expressed in all detected embryonic developmental stages. Among of them, HSP70, HSC70 and HSP90β were highly expressed in the organ formation stage, while HSP90α was the highest expressed in myotome formation stage. Further, the immune responses of the four HSP genes were assayed when loach were infected with three different pathogens, bacterium (Flavobacterium cloumnare G4), parasite (Ichthyophthirius multifiliis) and fungus (Saprolegnia). All of the four genes were differentially expressed in four tissues such as skin, gills, spleen and kidney in response to the pathogenic invasion, but both HSP70 and HSP90α expressions were dramatically up-regulated. Further, the cellular responses of the loach skinand gill tissues were observed, in which the number of the skin goblet cells were significantly increased, and the gill lamellae became shorter and wider after infected. Thus, our work indicated that the HSPs may directly or indirectly involved in immune defense in fish, at least in the loach.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China; College of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Honghui Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China; College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Fangliang Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Lingsheng Bao
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Yulong Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China.
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, China.
| |
Collapse
|
73
|
Liu K, Hao X, Wang Q, Hou J, Lai X, Dong Z, Shao C. Genome-wide identification and characterization of heat shock protein family 70 provides insight into its divergent functions on immune response and development of Paralichthys olivaceus. PeerJ 2019; 7:e7781. [PMID: 31737440 PMCID: PMC6855204 DOI: 10.7717/peerj.7781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Flatfish undergo extreme morphological development and settle to a benthic in the adult stage, and are likely to be more susceptible to environmental stress. Heat shock proteins 70 (hsp70) are involved in embryonic development and stress response in metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean. Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there were few structure variants compared to other fish species. We constructed a maximum likelihood tree to understand the evolutionary relationship of the hsp70 genes among surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9, hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome data on the Japanese flounder with Edwardsiella tarda to induce stress, and found that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in different developmental stages of the Japanese flounder. We found that at least one hsp70 gene was always highly expressed at various stages of embryonic development of the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed in the Japanese flounder. Our findings provide basic and useful resources to better understand hsp70 genes in flatfish.
Collapse
Affiliation(s)
- Kaiqiang Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Xiancai Hao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| | - Qian Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Beidaihe, China
| | - Xiaofang Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Changwei Shao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, QingDao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, QingDao, China
| |
Collapse
|
74
|
Bickel D, Gohlke H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action. Bioorg Med Chem 2019; 27:115080. [DOI: 10.1016/j.bmc.2019.115080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
75
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
76
|
Alternative Splicing in Heat Shock Protein Transcripts as a Mechanism of Cell Adaptation in Trichophyton rubrum. Cells 2019; 8:cells8101206. [PMID: 31590387 PMCID: PMC6830096 DOI: 10.3390/cells8101206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) are involved in critical processes like host tissue invasion, resistance, and pathogenicity in dermatophytes. RNA-Seq analysis of Trichophyton rubrum exposed to undecanoic acid (UDA) revealed intron retention events in HSP transcripts. Because HSPs are modulated in response to various stimuli and as alternative splicing (AS) can result in a broad diversity in the proteome of eukaryotic cells, our objective was to confirm the aforementioned retention events, investigating their consequences and extent. Furthermore, we aimed to determine: (1) the expression profile of HSP genes in an infection-like scenario and (2) the importance of Hsp90 for the keratinolytic potential of T. rubrum. RT and qPCR analyses comparing the exposure to UDA and terbinafine (TRB) confirmed the presence of two mRNA isoforms of the hsp7-like gene, with distinct expression patterns in response to UDA and TRB. The HSP expression profile revealed two upregulated, three downregulated, and four unmodulated transcripts; Hsp90 inhibition by 17-AAG resulted in a significant decrease in keratinolytic potential at 37 °C. Altogether, these results broaden the current knowledge on the importance of HSP-mediated pathways for cell adaptation and other aspects of dermatophyte biology, indicating that HSP network proteins can be potential targets for antifungal therapy.
Collapse
|
77
|
Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM. Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress. Int J Mol Sci 2019; 20:ijms20194901. [PMID: 31623305 PMCID: PMC6801751 DOI: 10.3390/ijms20194901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Margarida C Sobral
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Patrícia L Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | - Maria Carmen Alpoim
- Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Ana M Urbano
- Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
78
|
Xie J, Peng J, Yi Z, Zhao X, Li S, Zhang T, Quan M, Yang S, Lu J, Zhou P, Xia L, Ding X. Role of hsp20 in the Production of Spores and Insecticidal Crystal Proteins in Bacillus thuringiensis. Front Microbiol 2019; 10:2059. [PMID: 31551991 PMCID: PMC6737285 DOI: 10.3389/fmicb.2019.02059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/20/2019] [Indexed: 01/04/2023] Open
Abstract
The small heat shock protein plays an important role in response to stresses. We wanted to investigate how Hsp20 affects sporulation and production of insecticidal crystal proteins (ICPs) in Bacillus thuringiensis (Bt) at the stationary growth phase when cells are starved. The hsp20 gene was knocked out in Bt4.0718 (wide type), which is a B. thuringiensis strain screened in our laboratory, using endonuclease I-SceI mediated unmarked gene replacement method. Deletion of Hsp20 resulted in a decrease in both sporulation and ICPs production. Bt4-Δhsp20 cells and its ICP did not have a significant difference in shape and size but entered the decline phase 2 h earlier than the Bt4.0718. In order to find the mechanism that underlies these phenotypes, we completed a proteomic study of differentially expressed proteins (DEPs). In Bt4-Δhsp20 cells, 11 DEPs were upregulated and 184 DEPs downregulated. These affected DEPs are involved in multiple metabolic pathways: (1) six DEPs (two upregulated and four downregulated) are directly related to the sporulation and ICPs synthesis; (2) supply of amino acids including amino acid synthesis and protein recycling; (3) the energy supplementation (the tricarboxylic acid cycle and glycolysis); (4) purine metabolism and mRNA stability. These results suggest that hsp20 may be critical in maintaining the homeostasis of B. thuringiensis during the production of spores and ICPs, and could provide new sight into the sporulation and ICPs formation in B. thuringiensis.
Collapse
Affiliation(s)
- Junyan Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinli Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Zixian Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaoli Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Meifang Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuqing Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jiaoyang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Pengji Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
79
|
Alqarni AS, Ali H, Iqbal J, Owayss AA, Smith BH. Expression of heat shock proteins in adult honey bee ( Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J Biol Sci 2019; 26:1372-1376. [PMID: 31762598 PMCID: PMC6864156 DOI: 10.1016/j.sjbs.2019.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/01/2022] Open
Abstract
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.
Collapse
Affiliation(s)
- Abdulaziz S Alqarni
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussain Ali
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Entomology Section, Agricultural Research Institute, Tarnab, Peshawar, Pakistan
| | - Javaid Iqbal
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Owayss
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brian H Smith
- Arizona State University, School of Life Sciences, USA
| |
Collapse
|
80
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
81
|
Lin C, Zhang Y, Zhang K, Zheng Y, Lu L, Chang H, Yang H, Yang Y, Wan Y, Wang S, Yuan M, Yan Z, Zhang R, He Y, Ge G, Wu D, Chen J. Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and α4 Integrins. Immunity 2019; 50:137-151.e6. [PMID: 30650373 DOI: 10.1016/j.immuni.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/27/2018] [Accepted: 11/08/2018] [Indexed: 01/03/2023]
Abstract
Fever is an evolutionarily conserved response that confers survival benefits during infection. However, the underlying mechanism remains obscure. Here, we report that fever promoted T lymphocyte trafficking through heat shock protein 90 (Hsp90)-induced α4 integrin activation and signaling in T cells. By inducing selective binding of Hsp90 to α4 integrins, but not β2 integrins, fever increased α4-integrin-mediated T cell adhesion and transmigration. Mechanistically, Hsp90 bound to the α4 tail and activated α4 integrins via inside-out signaling. Moreover, the N and C termini of one Hsp90 molecule simultaneously bound to two α4 tails, leading to dimerization and clustering of α4 integrins on the cell membrane and subsequent activation of the FAK-RhoA pathway. Abolishment of Hsp90-α4 interaction inhibited fever-induced T cell trafficking to draining lymph nodes and impaired the clearance of bacterial infection. Our findings identify the Hsp90-α4-integrin axis as a thermal sensory pathway that promotes T lymphocyte trafficking and enhances immune surveillance during infection.
Collapse
Affiliation(s)
- ChangDong Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - YouHua Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - HaiShuang Chang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - YanRong Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - YaoYing Wan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiHui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - MengYa Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ZhanJun Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Orthopedics, First People's Hospital of Wujiang District, Suzhou City, Suzhou 215000, China
| | - RongGuang Zhang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - YongNing He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
82
|
Solé M, Monge M, André M, Quero C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci Rep 2019; 9:9340. [PMID: 31249355 PMCID: PMC6597576 DOI: 10.1038/s41598-019-45646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies, both in laboratory and sea conditions, have demonstrated damage after sound exposure in the cephalopod statocyst sensory epithelium, which secretes endolymph protein. Here, the proteomic analysis of the endolymph was performed before and after sound exposure to assess the effects of exposure to low intensity, low frequency sounds on the statocyst endolymph of the Mediterranean common cuttlefish (Sepia officinalis), determining changes in the protein composition of the statocyst endolymph immediately and 24 h after sound exposure. Significant differences in protein expression were observed, especially 24 h after exposure. A total of 37 spots were significantly different in exposed specimens, 17 of which were mostly related to stress and cytoskeletal structure. Among the stress proteins eight spots corresponding to eight hemocyanin isoforms were under-expressed possible due to lower oxygen consumption. In addition, cytoskeletal proteins such as tubulin alpha chain and intermediate filament protein were also down-regulated after exposure. Thus, endolymph analysis in the context of acoustic stress allowed us to establish the effects at the proteome level and identify the proteins that are particularly sensitive to this type of trauma.
Collapse
Affiliation(s)
- M Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain
| | - M Monge
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Edifici Collserola, 08035, Barcelona, Spain
| | - M André
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain.
| | - C Quero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
83
|
|
84
|
Alexander JE, Colyer A, Haydock RM, Hayek MG, Park J. Understanding How Dogs Age: Longitudinal Analysis of Markers of Inflammation, Immune Function, and Oxidative Stress. J Gerontol A Biol Sci Med Sci 2019; 73:720-728. [PMID: 29126143 DOI: 10.1093/gerona/glx182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
As in human populations, advances in nutrition and veterinary care have led to an increase in the lifespan of companion animals. Detrimental physiological changes occurring later in life must be understood before interventions can be made to slow or reduce them. One important aspect of human aging is upregulation of the inflammatory response and increase in oxidative damage resulting in pathologies linked to chronic inflammation. To determine whether similar processes occur in the aging dog, changes in markers of inflammation and oxidative stress were investigated in 80 Labrador retrievers from adulthood to the end of life. Serum levels of immunoglobulin M (p < .001) and 8-hydroxy-2-deoxyguanosine (p < .001) increased with age, whereas no effect of age was detected for immunoglobulin G or C-reactive protein unless the last year of life was included in the analysis (p = .002). Baseline levels of heat shock protein 70 decreased with age (p < .001) while those after exposure to heat stress were maintained (p = .018). However, when excluding final year of life data, a decline in the heat shock protein 70 response after heat stress was observed (p = .004). These findings indicate that aging dogs undergo changes similar to human inflammaging and offer the possibility of nutritional or pharmacological intervention to delay or reduce these effects.
Collapse
Affiliation(s)
- Janet E Alexander
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | - Alison Colyer
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | - Richard M Haydock
- WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, UK
| | | | - JeanSoon Park
- Royal Canin Pet Health and Nutrition Centre, Lewisburg, Ohio
| |
Collapse
|
85
|
Chen W, Geng SL, Song Z, Li YJ, Wang H, Cao JY. Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2019; 75:1258-1269. [PMID: 30324758 DOI: 10.1002/ps.5238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diapause is the arrest of the development of insects and can be used for the development of effective agricultural pest management strategies. Heat shock protein 70 (Hsp70) is reported to be up-regulated during diapause to maintain survival in some insect species. However, its regulatory mechanism is unknown. RESULTS Expression of hsp70 in Helicoverpa armigera was found to be up-regulated in diapause pupal brains. To elucidate the molecular regulatory mechanisms of hsp70, we focused our attention on its transcription factor, heat shock factor 1 (HSF1). Four alternative splicing variants of HSF1 from pupal brains of H. armigera were identified, and subcellular localization analysis indicated that these variants were exclusively expressed in the nucleus. Real-time PCR analysis showed that all of these variants were up-regulated in diapause pupal brains, and their expression patterns were consistent with that of hsp70. Finally, promoter activity assay and Western blotting detection demonstrated that hsp70 was activated and up-regulated by these variants. CONCLUSION Expression of hsp70 in H. armigera during diapause is regulated by multiple alternatively spliced isoforms of HSF1. The results of this study may provide important information for understanding the regulatory mechanisms of hsps during insect diapause. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shao-Lei Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Juan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Medicine, Beijing City University, Beijing, China
| | - Jian-Yun Cao
- School of Economics and Trade, South China University of Technology, Guangzhou, China
| |
Collapse
|
86
|
Label-free quantification of protein expression in the rainbow trout (Oncorhynchus mykiss) in response to short-term exposure to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:158-168. [PMID: 30851505 DOI: 10.1016/j.cbd.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) are a cold-water salmonid species that is highly susceptible to heat stress. Summer temperature stress is a common issue in trout aquaculture. To better understand the molecular mechanisms of the heat-stress response in the trout, we used label-free quantitative proteome techniques to identify differentially expressed proteins in the livers of rainbow trout exposed to heat stress. We identified 3362 proteins and 152 differentially expressed proteins (p < 0.05; fold-change >2). Of these, 37 were uniquely expressed in the heat-stress group and 35 were uniquely expressed in the control group. In addition, 42 proteins were significantly upregulated (fold-change >2) and 38 proteins were significantly downregulated (fold-change >2). GO (Gene Ontology) analysis indicated that these differentially expressed proteins were primarily expressed in the nucleus, extracellular matrix, and cytoplasm, and were associated with a variety of functions, including protein binding/bridging and enzyme facilitation. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the differentially expressed proteins showed that, during high temperature stress, many biological processes were extensively altered, particularly the estrogen signaling pathway, the complement and coagulation cascades, and the platelet activation pathway. Our study focused on the identification of a systematic approach for the characterization of regulatory networks. Our results provide a framework for further studies of the heat-stress response in fish.
Collapse
|
87
|
Maher T, Mirzaei M, Pascovici D, Wright IJ, Haynes PA, Gallagher RV. Evidence from the proteome for local adaptation to extreme heat in a widespread tree species. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Timothy Maher
- Department of Biological Sciences Macquarie University North Ryde New South Wales Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences Macquarie University North Ryde New South Wales Australia
- Australian Proteome Analysis Facility Macquarie University North Ryde New South Wales Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility Macquarie University North Ryde New South Wales Australia
| | - Ian J. Wright
- Department of Biological Sciences Macquarie University North Ryde New South Wales Australia
| | - Paul A. Haynes
- Department of Molecular Sciences Macquarie University North Ryde New South Wales Australia
| | - Rachael V. Gallagher
- Department of Biological Sciences Macquarie University North Ryde New South Wales Australia
| |
Collapse
|
88
|
Pavlová T, Novák J, Zlámal F, Bienertová-Vašků J. HSPB7 gene polymorphism associated with anthropometric parameters of obesity and fat intake in a Central European population. Cent Eur J Public Health 2019; 26:272-277. [PMID: 30660137 DOI: 10.21101/cejph.a4921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Heat shock proteins act as chaperones at the molecular level and therefore they have been investigated in numerous diseases associated with oxidative stress, including obesity. The aim of this study was to investigate the possible associations of genetic variability in the 3´-untranslated region of the HSPB7 gene (rs1048261) with anthropometric and dietary parameters in a cohort of lean and obese Central European subjects. METHODS A total of 708 Central European Caucasian individuals were enrolled in this study, 415 obese subjects and 293 non-obese subjects. The rs1048261 genotypes were established using a conventional PCR-based methodology. RESULTS Significant differences were observed in the total daily fat intake between subjects with AT and TT genotypes (82.6 ± 29.2 g vs. 74.1 ± 31.3 g, p = 0.023) and also borderline significance in daily proportion of fat in the diet between AA and TT genotypes (36.0 ± 4.4% vs. 33.3 ± 5.9%, p = 0.061). Based on the linear regression model we found association between rs1048261 genotype and body fat percentage. CONCLUSIONS To the best of our knowledge, this is the first study which reports an association of defined genetic variability in the HSPB7 gene, rs1048261, with obesity and its associated anthropometric characteristics and dietary composition.
Collapse
Affiliation(s)
- Tereza Pavlová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Zlámal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
89
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
90
|
Apostolopoulos A, Nakamura A, Yokoyama S, Aoshima M, Fujimoto R, Nakamura K, Ito R, Goto K. Nuclear Accumulation of HSP70 in Mouse Skeletal Muscles in Response to Heat Stress, Aging, and Unloading With or Without Reloading. Front Genet 2018; 9:617. [PMID: 30619453 PMCID: PMC6307543 DOI: 10.3389/fgene.2018.00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to investigate the nuclear accumulation of heat shock protein 70 (HSP70), a molecular chaperonin in mouse skeletal muscle in response to aging, heat stress, and hindlimb unloading with or without reloading. Profiles of HSP70-specific nuclear transporter Hikeshi in skeletal muscles were also evaluated. Heat stress-associated nuclear accumulation of HSP70 was observed in slow soleus (SOL) and fast plantaris (PLA) muscles of young (10-week-old) mice. Mean nuclear expression level of HSP70 in slow medial gastrocnemius (MGAS) and PLA muscles of aged (100-week-old) mice increased ~4.8 and ~1.7 times, compared to that of young (10-week-old) mice. Reloading following 2-week hindlimb unloading caused accumulation of HSP70 in myonuclei in MGAS and PLA of young mice ( p < 0.05). However, reloading-associated nuclear accumulation of HSP70 was not observed in both types of muscles of aged mice. On the other hand, 2-week hindlimb unloading had no impact on the nuclear accumulation of HSP70 in both muscles of young and aged mice. Nuclear expression level of Hikeshi in both MGAS and PLA in mice was suppressed by aging. No significant changes in the nuclear Hikeshi in both muscles were induced by unloading with or without reloading. Results of this study indicate that the nuclear accumulation of HSP70 might show a protective response against cellular stresses in skeletal muscle and that the protective response may be suppressed by aging. Protective response to aging might depend on muscle fiber types.
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Ayane Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Shingo Yokoyama
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Megumi Aoshima
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Risa Fujimoto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Kodai Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Rika Ito
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan.,Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| |
Collapse
|
91
|
Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX. Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 2018; 96:3358-3369. [PMID: 29800308 DOI: 10.1093/jas/sky213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) functions as a molecular chaperone in its interaction with clients to influence multiple cellular and physiological processes. However, our current understanding on Hsp90's relationship with mammalian oocyte maturation is still very limited. Here, we aimed to investigate Hsp90's effect on pig oocyte meiotic maturation. Endogenous Hsp90α was constantly expressed at both mRNA and protein levels in porcine maturing oocytes. Addition of 2 µM 17-allylamino-17-demethoxygeldanamycin (17-AAG), the Hsp90 inhibitor, to in vitro mature cumulus-oocyte complexes (COC) significantly decreased Hsp90α protein level (P < 0.05), delayed germinal vesicle breakdown (GVBD) (P < 0.05), and impeded the first polar body (PB1) extrusion (P < 0.01) of porcine oocytes. 2 µM 17-AAG treatment during in vitro maturation also decreased the subsequent development competence as indicated by the lower cleavage (P < 0.001) and higher fragmentation (P < 0.001) rates of parthenotes, whereas no effects on the percentage and average cell number of blastocysts were found. Immunodepletion of Hsp90α by antibody microinjection into porcine oocytes at germinal vesicle and metaphase II stages induced similar defects of meiotic maturation and parthenote development, to that resulted from 2 µM inhibitor 17-AAG. For oocytes treated by 2 µM 17-AAG, the cytoplasm and membrane actin levels were weakened (P < 0.01), and the spindle assembly was disturbed (P < 0.05), due to decreased p-ERK1/2 level (P < 0.05). However, the mitochondrial function and early apoptosis were not affected, as demonstrated by rhodamine 123 staining and Annexin V assays. Our findings indicate that Hsp90α can couple with mitogen-activated protein kinase to regulate cytoskeletal structure and orchestrate meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
92
|
Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones 2018; 23:1153-1164. [PMID: 30187197 PMCID: PMC6237693 DOI: 10.1007/s12192-018-0932-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. In addition to their role as chaperones, they also play an important role in the cardiovascular, immune, and other systems. Normal bone tissue is maintained by bone metabolism, particularly by the balance between osteoblasts and osteoclasts, which are physiologically regulated by multiple hormones and cytokines. In recent years, studies have reported the vital role of HSPs in bone metabolism. However, the conclusions remain largely controversial, and the exact mechanisms are still unclear, so a review and analyses of previous studies are of importance. This article reviews the current understanding of the roles and effects of HSPs on bone cells (osteoblasts, osteoclasts, and osteocytes), in relation to bone metabolism.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Erman Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Deting Xue
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| | - Zhijun Pan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
- Orthopedics Research Institute, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009 China
| |
Collapse
|
93
|
Montague TG, Almansoori A, Gleason EJ, Copeland DS, Foley K, Kraves S, Alvarez Saavedra E. Gene expression studies using a miniaturized thermal cycler system on board the International Space Station. PLoS One 2018; 13:e0205852. [PMID: 30379894 PMCID: PMC6209215 DOI: 10.1371/journal.pone.0205852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/02/2018] [Indexed: 02/02/2023] Open
Abstract
The distance and duration of human spaceflight missions is set to markedly increase over the coming decade as we prepare to send astronauts to Mars. However, the health impact of long-term exposure to cosmic radiation and microgravity is not fully understood. In order to identify the molecular mechanisms underpinning the effects of space travel on human health, we must develop the capacity to monitor changes in gene expression and DNA integrity in space. Here, we report successful implementation of three molecular biology procedures on board the International Space Station (ISS) using a miniaturized thermal cycler system and C. elegans as a model organism: first, DNA extraction–the initial step for any type of DNA analysis; second, reverse transcription of RNA to generate complementary DNA (cDNA); and third, the subsequent semi-quantitative PCR amplification of cDNA to analyze gene expression changes in space. These molecular procedures represent a significant expansion of the budding molecular biology capabilities of the ISS and will permit more complex analyses of space-induced genetic changes during spaceflight missions aboard the ISS and beyond.
Collapse
Affiliation(s)
- Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | | | | | - Kevin Foley
- Boeing, Houston, TX, United States of America
| | | | | |
Collapse
|
94
|
López V, Alberdi P, Fuente JDL. Common Strategies, Different Mechanisms to Infect the Host: Anaplasma and Mycobacterium. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.71535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
An ex-vivo model to determine dental pulp responses to heat and light-curing of dental restorative materials. J Dent 2018; 79:11-18. [PMID: 30176259 DOI: 10.1016/j.jdent.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
AIM Based on histological studies from the 1960s, it is recommended that dental pulp temperature increases should not exceed 5.5 °C. However, no contemporary reliable models exist to explore the effects of heat on living dental pulp. The aim of this project was to develop a clinically valid model for studying temperature increases caused by three commonly-used light curing units (LCUs). METHODS Temperature increases caused by LCUs at varying exposure times and via various thicknesses of dentine were recorded using traditional approaches (i.e. thermocouple device on a laboratory bench) and an ex-vivo tooth slice model. Histomorphometric and immunohistochemical (IL-1β, HSP70, caspase-3) analysis was performed of the tooth slice model following varying exposure and culture times. RESULTS Reduced dentine thickness and increased exposure time led to increases in temperature. Whilst the majority of temperature increases recorded using the traditional approach (53 of 60) were greater than the recommended 5.5 °C, 52 of the 60 reference points recorded using the ex-vivo tooth slice model resulted in temperature increases of less than 5.5 °C. Temperature increases of 5.5 °C or more that are prolonged for 40 s caused an immediate decrease in cell number. IL-1β was not detected in any samples, while HSP70 was detectable immediately after exposure to a temperature increase of 6 °C or more. Higher levels of HSP70 were detected after 24 h culture in tooth slices that experienced a temperature increase of 7.5 °C or more. Low levels of caspase-3 were detected in tooth slices exposed to temperature increase of 7.5 °C or more. CONCLUSION Experimental arrangements for assessing LCU performance that measure temperature increases using a thermocouple device on a laboratory bench should no longer be used. Future studies in this area should include replication of the clinical environment using greater sophistication, such as the use of an ex-vivo tooth slice model as described here. Temperature increases of 5.5 °C or more for 40 s caused an immediate decrease in cell number, which supports previous findings. However, complex interactions at an immunohistochemical level suggest that while temperature increases of 5 °C or less are ideal, there may be some cell damage between 5-7 °C which might not result in pulpal death. Further investigations are indicated.
Collapse
|
96
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
97
|
Huusko JM, Karjalainen MK, Graham BE, Zhang G, Farrow EG, Miller NA, Jacobsson B, Eidem HR, Murray JC, Bedell B, Breheny P, Brown NW, Bødker FL, Litterman NK, Jiang PP, Russell L, Hinds DA, Hu Y, Rokas A, Teramo K, Christensen K, Williams SM, Rämet M, Kingsmore SF, Ryckman KK, Hallman M, Muglia LJ. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet 2018; 14:e1007394. [PMID: 30001343 PMCID: PMC6042692 DOI: 10.1371/journal.pgen.1007394] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Preterm birth is a leading cause of morbidity and mortality in infants. Genetic and environmental factors play a role in the susceptibility to preterm birth, but despite many investigations, the genetic basis for preterm birth remain largely unknown. Our objective was to identify rare, possibly damaging, nucleotide variants in mothers from families with recurrent spontaneous preterm births (SPTB). DNA samples from 17 Finnish mothers who delivered at least one infant preterm were subjected to whole exome sequencing. All mothers were of northern Finnish origin and were from seven multiplex families. Additional replication samples of European origin consisted of 93 Danish sister pairs (and two sister triads), all with a history of a preterm delivery. Rare exonic variants (frequency <1%) were analyzed to identify genes and pathways likely to affect SPTB susceptibility. We identified rare, possibly damaging, variants in genes that were common to multiple affected individuals. The glucocorticoid receptor signaling pathway was the most significant (p<1.7e-8) with genes containing these variants in a subgroup of ten Finnish mothers, each having had 2-4 SPTBs. This pathway was replicated among the Danish sister pairs. A gene in this pathway, heat shock protein family A (Hsp70) member 1 like (HSPA1L), contains two likely damaging missense alleles that were found in four different Finnish families. One of the variants (rs34620296) had a higher frequency in cases compared to controls (0.0025 vs. 0.0010, p = 0.002) in a large preterm birth genome-wide association study (GWAS) consisting of mothers of general European ancestry. Sister pairs in replication samples also shared rare, likely damaging HSPA1L variants. Furthermore, in silico analysis predicted an additional phosphorylation site generated by rs34620296 that could potentially affect chaperone activity or HSPA1L protein stability. Finally, in vitro functional experiment showed a link between HSPA1L activity and decidualization. In conclusion, rare, likely damaging, variants in HSPA1L were observed in multiple families with recurrent SPTB.
Collapse
Affiliation(s)
- Johanna M. Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Minna K. Karjalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Britney E. Graham
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Emily G. Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri, United States of America
| | - Neil A. Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri, United States of America
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Haley R. Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Bruce Bedell
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah W. Brown
- Department of Epidemiology, College of Public Health and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Frans L. Bødker
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Pan-Pan Jiang
- 23andMe, Inc. Mountain View, California, United States of America
| | - Laura Russell
- 23andMe, Inc. Mountain View, California, United States of America
| | - David A. Hinds
- 23andMe, Inc. Mountain View, California, United States of America
| | - Youna Hu
- 23andMe, Inc. Mountain View, California, United States of America
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kari Teramo
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaare Christensen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Stephen F. Kingsmore
- Rady Children’s Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, United States of America
| | - Kelli K. Ryckman
- Department of Epidemiology, College of Public Health and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| |
Collapse
|
98
|
Kim H, Kim JS, Kim PJ, Won EJ, Lee YM. Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age - Specific patterns. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:28-36. [PMID: 29625344 DOI: 10.1016/j.cbpc.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 02/02/2023]
Abstract
To investigate oxidative stress responses to cadmium and lead, the freshwater water flea Daphnia magna was exposed to Cd and Pb for 48 h. Following treatment with sub-lethal concentrations, intracellular reactive oxygen species (ROS) levels, as well as modulation of multiple biomarker, such as superoxide dismutase (SOD) activity, glutathione (GSH) contents, glutathione S-transferase (GST) activity, antioxidant enzyme - coding genes (three GST isoforms, glutaredoxin [GRx], glutathione peroxidase [GPx], and thioredoxin [TRx]), and stress-response proteins (heat shock protein 70 [Hsp70] and Hsp90) were examined. The results showed that intracellular ROS level was not changed at 24 h, but reduced at 48 h. Levels of total GSH content were reduced by Cd, but highly induced by Pb. SOD and GST activities were stimulated 48 h after exposure to Cd and Pb. A significant modulation of oxidative stress marker genes was observed after exposure to each element with different expression patterns depending on the metal and developmental stages. In particular, the expression levels of GST-sigma, HSP70, and HSP90 genes were enhanced in Cd - and Pb - exposed neonates. These findings imply that oxidative stress markers appear to be actively involved in cellular protection against metal-induced oxidative stress in D. magna. This study would facilitate the understanding of the molecular response to Cd and Pb exposure in water fleas.
Collapse
Affiliation(s)
- Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ji-Soo Kim
- Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Pyoung-Joong Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
99
|
Espinosa PJ, Alberdi P, Villar M, Cabezas-Cruz A, de la Fuente J. Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-73377-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
100
|
Ujor VC, Adukwu EC, Okonkwo CC. Fungal wars: The underlying molecular repertoires of combating mycelia. Fungal Biol 2018; 122:191-202. [PMID: 29551193 DOI: 10.1016/j.funbio.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Non-self contact between fungi elicits strong morphological and biochemical reactions in the mycelia of interacting species. Although these reactions appear to be species- and interaction-specific, some responses such as pigmentation, increased secretion of phenol-oxidases, barrage formation and sealing of the mycelia front are common responses in most interactions. Hence, some species recruit similar molecular machineries in response to non-self. Increasing number of fully sequenced and annotated fungal genomes and advances in genome-wide and global proteome analytical tools now allow researchers to use techniques such as RNA sequencing, micro and macroarray analysis, 2-dimensional protein gel profiling, and differential display of mRNA to probe the underlying molecular mechanisms of combative mycelial interactions. This review provides an overview of the genes and proteins found to be differentially expressed in conflicting fungal mycelia by the use of 'omics' tools. Connections between observed gene and protein repertoires of competing mycelia and the attendant morphological and biochemical changes are presented.
Collapse
Affiliation(s)
- Victor C Ujor
- Bioenergy and Biological Waste Management Program, Agricultural Technical Institute, The Ohio State University, 1328 Dover Road, Wooster, OH, USA.
| | - Emmanuel C Adukwu
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Cold Harbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Christopher C Okonkwo
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA
| |
Collapse
|