51
|
Raines DJ, Moroz OV, Wilson KS, Duhme-Klair AK. Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angew Chem Int Ed Engl 2013; 52:4595-8. [PMID: 23512642 DOI: 10.1002/anie.201300751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 11/10/2022]
Abstract
Iron-bound structure: The ferric complex of a tetradentate siderophore mimic was synthesized and co-crystallized with the periplasmic binding protein CeuE of Campylobacter jejuni. In addition to electrostatic and hydrogen-bonding interactions between the binding pocket and the substrate, the structure showed direct coordination of two amino acid side chains to the Fe(III) center (orange, see figure).
Collapse
Affiliation(s)
- Daniel J Raines
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | |
Collapse
|
52
|
Piggot TJ, Holdbrook DA, Khalid S. Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: A molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:284-93. [DOI: 10.1016/j.bbamem.2012.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/02/2012] [Accepted: 08/23/2012] [Indexed: 11/25/2022]
|
53
|
Schalk IJ. Innovation and Originality in the Strategies Developed by Bacteria To Get Access to Iron. Chembiochem 2013; 14:293-4. [DOI: 10.1002/cbic.201200738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Indexed: 11/10/2022]
|
54
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
55
|
Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer. Proc Natl Acad Sci U S A 2012; 109:16829-34. [PMID: 23027976 DOI: 10.1073/pnas.1210131109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.
Collapse
|
56
|
Schalk IJ, Mislin GLA, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. CURRENT TOPICS IN MEMBRANES 2012; 69:37-66. [PMID: 23046646 DOI: 10.1016/b978-0-12-394390-3.00002-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To get access to iron, microorganisms produce and release into their environment small organic metal chelators called siderophores. In parallel, they produce siderophore-iron outer membrane transporters (also called TonB-Dependent Transporters or TBDT) embedded in the outer membrane; these proteins actively reabsorb the siderophore loaded with iron from the extracellular medium. This active uptake requires energy in the form of the proton motive force transferred from the inner membrane to the outer membrane transporter via the inner membrane TonB complex. Siderophores produced by microorganisms are structurally very diverse with molecular weights of 150 up to 2000Da. Siderophore-iron uptake from the extracellular medium by TBDTs is a highly selective and sometimes even stereoselective process, with each siderophore having a specific TBDT. Unlike the siderophores, all TBDTs have similar structures and belong to the outer membrane β-barrel protein superfamily. The way in which the siderophore-iron complex passes through the TBDT is still unclear. In some bacteria, TBDTs are also partners of signaling cascades regulating the expression of proteins involved in siderophore biosynthesis and siderophore-iron acquisition.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Boulevard Sébastien Brant, Strasbourg, France.
| | | | | |
Collapse
|
57
|
Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 2011; 13:2844-54. [PMID: 21883800 DOI: 10.1111/j.1462-2920.2011.02556.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Siderophores are chelators with extremely strong affinity for ferric iron and are best known for their capacity to feed microorganisms with this metal. Despite their preference for iron, they can also chelate numerous other metals with variable affinities. There is also increasing evidence that metals other than iron can activate the production of siderophores by bacteria, thereby implicating siderophores in the homeostasis of metals other than iron and especially heavy metal tolerance. This article considers this new concept that siderophores play a role in protecting bacteria against metal toxicity and discusses the possible contribution of these chelators to the transport of biological relevant metals in addition to iron.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR7242, University of Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|
58
|
Abstract
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.
Collapse
Affiliation(s)
- Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
59
|
Nader M, Journet L, Meksem A, Guillon L, Schalk IJ. Mechanism of Ferripyoverdine Uptake by Pseudomonas aeruginosa Outer Membrane Transporter FpvA: No Diffusion Channel Formed at Any Time during Ferrisiderophore Uptake. Biochemistry 2011; 50:2530-40. [DOI: 10.1021/bi101821n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirella Nader
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laure Journet
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Ahmed Meksem
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laurent Guillon
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Isabelle J. Schalk
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| |
Collapse
|
60
|
Lensbouer JJ, Doyle RP. Secondary transport of metal-citrate complexes: the CitMHS family. Crit Rev Biochem Mol Biol 2011; 45:453-62. [PMID: 20735204 DOI: 10.3109/10409238.2010.504701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primary and secondary transport of citrate has been extensively studied in pathogenic and non-pathogenic bacteria. Primary transporters of citrate complexed with metal ions, particularly Fe, have also garnered attention, with the fec system of E. coli being a classic example. In contrast, little is known about secondary transporters of metal-citrate complexes. Recently, a family of proteins responsible for secondary metal-citrate transport in bacteria was discovered and designated as the CitMHS transporter family. Several members have been functionally characterized to date and serve as the foundation for understanding this family. Three subfamilies have been categorized, depending on the main metal ion transported. These subfamilies are the Mg(2+)-citrate transporter, the Ca(2+)-citrate transporter, and the Fe(3+)-citrate transporter. Each subfamily is believed to be substrate-selective due to the metal-citrate complexes being abundantly present in their environment and/or the ability of the complex to be metabolized by the organism. The implication of this family in the pathogenic access to Fe, information about transcriptional control, putative structure, predicted family members, members characterized to date and potential use in bioremediation are discussed.
Collapse
Affiliation(s)
- Joshua J Lensbouer
- Department of Chemistry, Center for Science and Technology, Syracuse University, Syracuse, NY 13244-4100, USA
| | | |
Collapse
|
61
|
Gomez MA, Alisaraie L, Shio MT, Berghuis AM, Lebrun C, Gautier-Luneau I, Olivier M. Protein tyrosine phosphatases are regulated by mononuclear iron dicitrate. J Biol Chem 2010; 285:24620-8. [PMID: 20519508 DOI: 10.1074/jbc.m110.107037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of macrophages (Mvarphis) as host, accessory, and effector cells in the development of infectious diseases, together with their central role in iron homeostasis, place these immune cells as key players in the interface between iron and infection. Having previously shown that the functional expression of NRAMP-1 results in increased protein phosphorylation mediated in part by an iron-dependent inhibition of Mvarphi protein-tyrosine phosphatase (PTP) activity, we sought to study the mechanism(s) underlying this specific event. Herein we have identified the mononuclear dicitrate iron complex [Fe(cit)(2)H(4-x)]((1+x)-) as the species responsible for the specific inhibition of Mvarphi PTP activity. By using biochemical and computational approaches, we show that [Fe(cit)(2)](5-) targets the catalytic pocket of the PTP SHP-1, competitively inhibiting its interaction with an incoming phosphosubstrate. In vitro and in vivo inhibition of PTP activity by iron-citrate results in protein hyperphosphorylation and enhanced MAPK signaling in response to LPS stimulation. We propose that iron-citrate-mediated PTP inhibition represents a novel and biologically relevant regulatory mechanism of signal transduction.
Collapse
Affiliation(s)
- Maria Adelaida Gomez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
62
|
Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci U S A 2010; 107:5363-8. [PMID: 20203010 DOI: 10.1073/pnas.0912872107] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS) is the major glycolipid that is present in the outer membranes (OMs) of most Gram-negative bacteria. LPS molecules are assembled with divalent metal cations in the outer leaflet of the OM to form an impervious layer that prevents toxic compounds from entering the cell. For most Gram-negative bacteria, LPS is essential for growth. In Escherichia coli, eight essential proteins have been identified to function in the proper assembly of LPS following its biosynthesis. This assembly process involves release of LPS from the inner membrane (IM), transport across the periplasm, and insertion into the outer leaflet of the OM. Here, we describe the biochemical characterization of the two-protein complex consisting of LptD and LptE that is responsible for the assembly of LPS at the cell surface. We can overexpress and purify LptD and LptE as a stable complex in a 1:1 stoichiometry. LptD contains a soluble N-terminal domain and a C-terminal transmembrane domain. LptE stabilizes LptD by interacting strongly with the C-terminal domain of LptD. We also demonstrate that LptE binds LPS specifically and may serve as a substrate recognition site at the OM.
Collapse
|
63
|
Cobessi D, Meksem A, Brillet K. Structure of the heme/hemoglobin outer membrane receptor ShuA fromShigella dysenteriae: Heme binding by an induced fit mechanism. Proteins 2010; 78:286-94. [DOI: 10.1002/prot.22539] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
64
|
Rellán-Alvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JA, García-Alonso JI, Abadía J, Alvarez-Fernández A. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. PLANT & CELL PHYSIOLOGY 2010; 51:91-102. [PMID: 19942594 DOI: 10.1093/pcp/pcp170] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The identification of Fe transport forms in plant xylem sap is crucial to the understanding of long-distance Fe transport processes in plants. Previous studies have proposed that Fe may be transported as an Fe-citrate complex in plant xylem sap, but such a complex has never been detected. In this study we report the first direct and unequivocal identification of a natural Fe complex in plant xylem sap. A tri-Fe(III), tri-citrate complex (Fe(3)Cit(3)) was found in the xylem sap of Fe-deficient tomato (Solanum lycopersicum Mill. cv. 'Tres Cantos') resupplied with Fe, by using an integrated mass spectrometry approach based on exact molecular mass, isotopic signature and Fe determination and retention time. This complex has been modeled as having an oxo-bridged tri-Fe core. A second complex, a di-Fe(III), di-citrate complex was also detected in Fe-citrate standards along with Fe(3)Cit(3), with the allocation of Fe between the two complexes depending on the Fe to citrate ratio. These results provide evidence for Fe-citrate complex xylem transport in plants. The consequences for the role of Fe to citrate ratio in long-distance transport of Fe in xylem are also discussed.
Collapse
Affiliation(s)
- Rubén Rellán-Alvarez
- Department of Plant Nutrition, Aula Dei Experimental Station, CSIC, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates, called siderophores, as well as vitamin B(12), nickel complexes, and carbohydrates. The transport process requires energy in the form of proton motive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins such as serum transferrin and hemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years, many new structures of TBDTs have been solved in various states, resulting in a more complete understanding of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with the TonB-ExbB-ExbD complex. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure, and function in TBDTs and questions remaining to be answered.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Maude Guillier
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005 Paris, France
| | - Travis J. Barnard
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
66
|
Lensbouer JJ, Li QW, Estlinbaum M, Doyle RP. R161, K452 and R460 residues are vital for metal–citrate complex transport in CitSc from Streptomyces coelicolor. Metallomics 2010; 2:342-7. [DOI: 10.1039/b920689b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Affiliation(s)
- Moriah Sandy
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
68
|
Beasley FC, Vinés ED, Grigg JC, Zheng Q, Liu S, Lajoie GA, Murphy MEP, Heinrichs DE. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 2009; 72:947-63. [PMID: 19400778 DOI: 10.1111/j.1365-2958.2009.06698.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Iron is critical for virtually all forms of life. The production of high-affinity iron chelators, siderophores, and the subsequent uptake of iron-siderophore complexes are a common strategy employed by microorganisms to acquire iron. Staphylococcus aureus produces siderophores but genetic information underlying their synthesis and transport is limited. Previous work implicated the sbn operon in siderophore synthesis and the sirABC operon in uptake. Here we characterize a second siderophore biosynthetic locus in S. aureus; the locus consists of four genes (in strain Newman these open reading frames are designated NWMN_2079-2082) which, together, are responsible for the synthesis and export of staphyloferrin A, a polycarboxylate siderophore. While deletion of the NWMN_2079-2082 locus did not affect iron-restricted growth of S. aureus, strains bearing combined sbn and NWMN_2079-2082 locus deletions produced no detectable siderophore and demonstrated severely attenuated iron-restricted growth. Adjacent to NWMN_2079-2082 resides the htsABC operon, encoding an ABC transporter previously implicated in haem acquisition. We provide evidence here that HtsABC, along with the FhuC ATPase, is required for the uptake of staphyloferrin A. The crystal structure of apo-HtsA was determined and identified a large positively charged region in the substrate-binding pocket, in agreement with a role in binding of anionic staphyloferrin A.
Collapse
Affiliation(s)
- Federico C Beasley
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Structure-function relationships in the bifunctional ferrisiderophore FpvA receptor from Pseudomonas aeruginosa. Biometals 2009; 22:671-8. [PMID: 19153809 DOI: 10.1007/s10534-008-9203-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning beta-barrel occluded by a plug domain. The beta-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.
Collapse
|
70
|
|
71
|
Barnard TJ, Wally JL, Buchanan SK. Crystallization of integral membrane proteins. ACTA ACUST UNITED AC 2008; Chapter 17:Unit 17.9. [PMID: 18429311 DOI: 10.1002/0471140864.ps1709s47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the last 20 years, the use of X-ray crystallography has become a viable technique for the structure determination of integral membrane proteins. However, standard crystallizaton protocols must be modified to account for difficulties involved in handling membrane proteins, which arise primarily from having detergent present. This unit provides protocols that can be used to crystallize a purified membrane protein, including detergent exchange, sample concentration, initial screening using a crystallization robot, and finally, optimization of crystallization conditions to obtain diffraction-quality crystals. These protocols were established for outer membrane proteins, but can be used for inner membrane proteins as well. Advice on alternative protocols, detergent selection, and optimization of crystallization conditions is provided.
Collapse
|
72
|
James KJ, Hancock MA, Moreau V, Molina F, Coulton JW. TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli. Protein Sci 2008; 17:1679-88. [PMID: 18653801 DOI: 10.1110/ps.036244.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
FhuA, outer membrane receptor of Escherichia coli, transports hydroxamate-type siderophores into the periplasm. Cytoplasmic membrane-anchored TonB transduces energy to FhuA to facilitate siderophore transport. Because the N-terminal cork domain of FhuA occludes the C-terminal beta-barrel lumen, conformational changes must occur to enable siderophore passage. To localize conformational changes at an early stage of the siderophore transport cycle, four anti-FhuA monoclonal antibodies (mAbs) were purified to homogeneity, and the epitopes that they recognize were determined by phage display. We mapped continuous and discontinuous epitopes to outer surface-exposed loops 3, 4, and 5 and to beta-barrel strand 14. To probe for conformational changes of FhuA, surface plasmon resonance measured mAb binding to FhuA in its apo- and siderophore-bound states. Changes in binding kinetics were observed for mAbs whose epitopes were mapped to outer surface-exposed loops. Further, we measured mAb binding in the absence and presence of TonB. After forming immobilized FhuA-TonB complexes, changes in kinetics of mAb binding to FhuA were even more pronounced compared with kinetics of binding in the absence of TonB. Measurement of extrinsic fluorescence of the dye MDCC conjugated to residue 336 in outer surface-exposed loop 4 revealed 33% fluorescence quenching upon ferricrocin binding and up to 56% quenching upon TonB binding. Binding of mAbs to apo- and ferricrocin-bound FhuA complemented by fluorescence spectroscopy studies showed that their cognate epitopes on loops 3, 4, and 5 undergo conformational changes upon siderophore binding. Further, our data demonstrate that TonB binding promotes conformational changes in outer surface-exposed loops of FhuA.
Collapse
Affiliation(s)
- Karron J James
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
73
|
The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA. J Bacteriol 2008; 190:6548-58. [PMID: 18641139 DOI: 10.1128/jb.00784-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To acquire iron, Pseudomonas aeruginosa secretes the fluorescent siderophore pyoverdine (Pvd), which chelates iron and shuttles it into the cells via the specific outer membrane transporter FpvA. We studied the role of iron and other metals in the binding and transport of Pvd by FpvA and conclude that there is no significant affinity between FpvA and metal-free Pvd. We found that the fluorescent in vivo complex of iron-free FpvA-Pvd is in fact a complex with aluminum (FpvA-Pvd-Al) formed from trace aluminum in the growth medium. When Pseudomonas aeruginosa was cultured in a medium that had been treated with a metal affinity resin, the in vivo formation of the FpvA-Pvd complex and the recycling of Pvd on FpvA were nearly abolished. The accumulation of Pvd in the periplasm of Pseudomonas aeruginosa was also reduced in the treated growth medium, while the addition of 1 microM AlCl(3) to the treated medium restored the effects of trace metals observed in standard growth medium. Using fluorescent resonance energy transfer and surface plasmon resonance techniques, the in vitro interactions between Pvd and detergent-solubilized FpvA were also shown to be metal dependent. We demonstrated that FpvA binds Pvd-Fe but not Pvd and that Pvd did not compete with Pvd-Fe for FpvA binding. In light of our finding that the Pvd-Al complex is transported across the outer membrane of Pseudomonas aeruginosa, a model for siderophore recognition based on a metal-induced conformation followed by redox selectivity for iron is discussed.
Collapse
|
74
|
Expression, purification, and structural characterization of CfrA, a putative iron transporter from Campylobacter jejuni. J Bacteriol 2008; 190:5650-62. [PMID: 18556796 DOI: 10.1128/jb.00298-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene for the Campylobacter ferric receptor (CfrA), a putative iron-siderophore transporter in the enteric food-borne pathogen Campylobacter jejuni, was cloned, and the membrane protein was expressed in Escherichia coli, affinity purified, and then reconstituted into model lipid membranes. Fourier transform infrared spectra recorded from the membrane-reconstituted CfrA are similar to spectra that have been recorded from other iron-siderophore transporters and are highly characteristic of a beta-sheet protein (approximately 44% beta-sheet and approximately 10% alpha-helix). CfrA undergoes relatively extensive peptide hydrogen-deuterium exchange upon exposure to (2)H(2)O and yet is resistant to thermal denaturation at temperatures up to 95 degrees C. The secondary structure, relatively high aqueous solvent exposure, and high thermal stability are all consistent with a transmembrane beta-barrel structure containing a plug domain. Sequence alignments indicate that CfrA contains many of the structural motifs conserved in other iron-siderophore transporters, including the Ton box, PGV, IRG, RP, and LIDG motifs of the plug domain. Surprisingly, a homology model reveals that regions of CfrA that are expected to play a role in enterobactin binding exhibit sequences that differ substantially from the sequences of the corresponding regions that play an essential role in binding/transport by the E. coli enterobactin transporter, FepA. The sequence variations suggest that there are differences in the mechanisms used by CfrA and FepA to interact with bacterial siderophores. It may be possible to exploit these structural differences to develop CfrA-specific therapeutics.
Collapse
|
75
|
Schalk IJ. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 2008; 102:1159-69. [DOI: 10.1016/j.jinorgbio.2007.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
76
|
Predicting the complex structure and functional motions of the outer membrane transporter and signal transducer FecA. Biophys J 2008; 94:2482-91. [PMID: 18178655 DOI: 10.1529/biophysj.107.116046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli requires an efficient transport and signaling system to successfully sequester iron from its environment. FecA, a TonB-dependent protein, serves a critical role in this process: first, it binds and transports iron in the form of ferric citrate, and second, it initiates a signaling cascade that results in the transcription of several iron transporter genes in interaction with inner membrane proteins. The structure of the plug and barrel domains and the periplasmic N-terminal domain (NTD) are separately available. However, the linker connecting the plug and barrel and the NTD domains is highly mobile, which may prevent the determination of the FecA structure as a whole assembly. Here, we reduce the conformation space of this linker into most probable structural models using the modeling tool CABS, then apply normal-mode analysis to investigate the motions of the whole structure of FecA by using elastic network models. We relate the FecA domain motions to the outer-inner membrane communication, which initiates transcription. We observe that the global motions of FecA assign flexibility to the TonB box and the NTD, and control the exposure of the TonB box for binding to the TonB inner membrane protein, suggesting how these motions relate to FecA function. Our simulations suggest the presence of a communication between the loops on both ends of the protein, a signaling mechanism by which a signal could be transmitted by conformational transitions in response to the binding of ferric citrate.
Collapse
|
77
|
Wei X, Sayavedra-Soto LA, Arp DJ. Characterization of the ferrioxamine uptake system of Nitrosomonas europaea. MICROBIOLOGY-SGM 2007; 153:3963-3972. [PMID: 18048911 DOI: 10.1099/mic.0.2007/010603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemolithoautotroph Nitrosomonas europaea has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by foxA(1) (NE1097) and foxA(2) (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of foxA(1), singly or in combination with foxA(2), prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The foxA(2)-disrupted single mutant grew poorly in the regular Fe-limited (0.2 microM) medium with 10 microM DFX, but grew well when the Fe level was raised to 1.0 microM with 10 microM DFX. For efficient acquisition of Fe-loaded ferrioxamine, N. europaea needs both ferrioxamine transporters FoxA(1) and FoxA(2). FoxA(1) probably regulates its own production, and it controls the production of FoxA(2) as well.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
78
|
Abstract
High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
Collapse
Affiliation(s)
- Marcus Miethke
- Philipps Universität Marburg, FB Chemie Biochemie, Hans Meerwein Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
79
|
A β Strand Lock Exchange for Signal Transduction in TonB-Dependent Transducers on the Basis of a Common Structural Motif. Structure 2007; 15:1383-91. [DOI: 10.1016/j.str.2007.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/24/2022]
|
80
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
81
|
Braun V, Herrmann C. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 2007; 189:6913-8. [PMID: 17660286 PMCID: PMC2045206 DOI: 10.1128/jb.00884-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrate-mediated iron transport across the cytoplasmic membrane is catalyzed by an ABC transporter that consists of the periplasmic binding protein FecB, the transmembrane proteins FecC and FecD, and the ATPase FecE. Salt bridges between glutamate residues of the binding protein and arginine residues of the transmembrane proteins are predicted to mediate the positioning of the substrate-loaded binding protein on the transmembrane protein, based on the crystal structures of the ABC transporter for vitamin B(12), consisting of the BtuF binding protein and the BtuCD transmembrane proteins (E. L. Borths et al., Proc. Natl. Acad. Sci. USA 99:16642-16647, 2002). Here, we examined the role of the residues predicted to be involved in salt-bridge formation between FecB and FecCD by substituting these residues with alanine, cysteine, arginine, and glutamate and by analyzing the citrate-mediated iron transport of the mutants. Replacement of E93 in FecB with alanine [FecB(E93A)], cysteine, or arginine nearly abolished citrate-mediated iron transport. Mutation FecB(E222R) nearly eliminated transport, and FecB(E222A) and FecB(E222C) strongly reduced transport. FecD(R54C) and FecD(R51E) abolished transport, whereas other R-to-C mutations in putative interaction sites between FecCD and FecB substantially reduced transport. The introduced cysteine residues in FecB and FecCD also served to examine the formation of disulfide bridges in place of salt bridges between the binding protein and the transmembrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggest cross-linking of FecB(E93C) to FecD(R54C) and FecB(E222C) to FecC(R60C). The data are consistent with the proposal that FecB(E93) is contained in the region that binds to FecD and FecB(E222) in the region that binds to FecC.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstasse 35, 72076 Tübingen, Germany.
| | | |
Collapse
|
82
|
Kim M, Fanucci GE, Cafiso DS. Substrate-dependent transmembrane signaling in TonB-dependent transporters is not conserved. Proc Natl Acad Sci U S A 2007; 104:11975-80. [PMID: 17606918 PMCID: PMC1924579 DOI: 10.1073/pnas.0702172104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin labeling (SDSL) was used to examine and compare transmembrane signaling events in the bacterial outer-membrane transport proteins BtuB, FecA, and FhuA. These proteins extract energy for transport by coupling to the transperiplasmic protein TonB, an interaction that is thought to be mediated by the Ton box, a highly conserved energy-coupling motif in these transporters. In the ferric citrate transporter, FecA, SDSL indicates that the Ton box undergoes a substrate-induced disorder transition similar to that seen for BtuB, the vitamin B(12) transporter. This conformational change produces an aqueous exposed, highly disordered protein fragment, which likely regulates transporter-TonB interactions. However, in the ferrichrome transporter, FhuA, SDSL does not reveal a substrate-induced unfolding transition. In this protein, with or without substrate, the Ton box conformation is found to be highly dynamic and constitutively unfolded. In addition, SDSL indicates that structural features seen in high-resolution models are not found in membrane-associated FhuA. Taken together, these data indicate that the Ton box of FhuA may always be available for interactions with TonB, implying that transporter-TonB interactions in FhuA are either constitutive or not regulated by the Ton box configuration.
Collapse
Affiliation(s)
- Miyeon Kim
- Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, VA 22904-4319
| | - Gail E. Fanucci
- Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, VA 22904-4319
| | - David S. Cafiso
- Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, VA 22904-4319
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Abstract
Colicin B is a 55 kDa dumbbell-shaped protein toxin that uses the TonB system (outer membrane transporter, FepA, and three cytoplasmic membrane proteins TonB/ExbB/ExbD) to enter and kill Escherichia coli. FepA is a 22-stranded beta-barrel with its lumen filled by an amino-terminal globular domain containing an N-terminal semiconserved region, known as the TonB box, to which TonB binds. To investigate the mechanism of colicin B translocation across the outer membrane, we engineered cysteine (Cys) substitutions in the globular domain of FepA. Colicin B caused increased exposure to biotin maleimide labelling of all Cys substitutions, but to different degrees, with TonB as well as the FepA TonB box required for all increases. Because of the large increases in exposure for Cys residues from T13 to T51, we conclude that colicin B is translocated through the lumen of FepA, rather than along the lipid-barrel interface or through another protein. Part of the FepA globular domain (residues V91-V142) proved relatively refractory to labelling, indicating either that the relevant Cys residues were sequestered by an unknown protein or that a significant portion of the FepA globular domain remained inside the barrel, requiring concomitant conformational rearrangement of colicin B during its translocation. Unexpectedly, TonB was also required for colicin-induced exposure of the FepA TonB box, suggesting that TonB binds FepA at a different site prior to interaction with the TonB box.
Collapse
|
84
|
Brooks BE, Buchanan SK. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1930-45. [PMID: 17673165 PMCID: PMC2562455 DOI: 10.1016/j.bbamem.2007.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/23/2007] [Accepted: 06/06/2007] [Indexed: 11/27/2022]
Abstract
A variety of mechanisms are used to signal extracytoplasmic conditions to the cytoplasm. These mechanisms activate extracytoplasmic function (ECF) sigma factors which recruit RNA-polymerase to specific genes in order to express appropriate proteins in response to the changing environment. The two best understood ECF signaling pathways regulate sigma(E)-mediated expression of periplasmic stress response genes in Escherichia coli and FecI-mediated expression of iron-citrate transport genes in E. coli. Homologues from other Gram-negative bacteria suggest that these two signaling mechanisms and variations on these mechanisms may be the general schemes by which ECF sigma factors are regulated in Gram-negative bacteria.
Collapse
|
85
|
Buchanan SK, Lukacik P, Grizot S, Ghirlando R, Ali MMU, Barnard TJ, Jakes KS, Kienker PK, Esser L. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO J 2007; 26:2594-604. [PMID: 17464289 PMCID: PMC1868905 DOI: 10.1038/sj.emboj.7601693] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/29/2007] [Indexed: 11/09/2022] Open
Abstract
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 A above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane.
Collapse
Affiliation(s)
- Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gumbart J, Wiener MC, Tajkhorshid E. Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys J 2007; 93:496-504. [PMID: 17449669 PMCID: PMC1896255 DOI: 10.1529/biophysj.107.104158] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the uptake of scarce yet essential organometallic compounds, outer membrane transporters of Gram-negative bacteria work in concert with an energy-generating inner membrane complex, thus spanning the periplasmic space to drive active transport. Here, we examine the interaction of TonB, an inner membrane protein, with an outer membrane transporter based upon a recent crystal structure of a TonB-transporter complex to characterize two largely unknown steps of the transport cycle: how energy is transmitted from TonB to the transporter and how energy transduction initiates transport. Simulations of TonB in complex with BtuB reveal that force applied to TonB is transmitted to BtuB without disruption of the very small connection between the two, supporting a mechanical mode of coupling. Based on the results of different pulling simulations, we propose that the force transduction instigates a partial unfolding of the pore-occluding luminal domain of the transporter, a potential step in the transport cycle. Furthermore, analysis of the electrostatic potentials and salt bridge interactions between the two proteins during the simulations hints at involvement of electrostatic forces in long-range interaction and binding of TonB and BtuB.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
87
|
López CS, Alice AF, Chakraborty R, Crosa JH. Identification of amino acid residues required for ferric-anguibactin transport in the outer-membrane receptor FatA of Vibrio anguillarum. MICROBIOLOGY-SGM 2007; 153:570-584. [PMID: 17259629 DOI: 10.1099/mic.0.2006/001735-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio anguillarum 775 is a fish pathogen that causes a disease characterized by a fatal haemorrhagic septicaemia. It harbours the 65 kbp pJM1 plasmid, which encodes an iron sequestering system specific for the siderophore anguibactin and is essential for virulence. The genes involved in the biosynthesis of anguibactin are located on both the pJM1 plasmid and the chromosome. However, the genes for the outer-membrane receptor FatA and the other transport proteins are only carried on the plasmid. With the aim of elucidating the mechanism of ferric-anguibactin transport mediated by FatA, this work focuses on the identification of FatA amino acid residues that play a role in the transport of ferric-anguibactin, by analysing the transport kinetics of site-directed mutants. The mutations studied were located in conserved residues of the lock region, which contains a cluster of ten residues belonging to the N-terminal and barrel domains, and of the channel region of FatA, which contains conserved glycines located in the beta5-beta6 loop and a conserved arginine located in strand 11 of the beta-barrel. In the case of the FatA lock region, it is clear that although the residues analysed in this work (R95, K130, E505 and E550) are conserved among various outer-membrane receptors, their involvement in the transport process might differ among receptors. Furthermore, it was determined that in the FatA channel region double substitutions of the conserved glycines 131 and 143 with alanine resulted in a variant receptor unable to transport ferric-anguibactin. It was also shown that the conserved arginine 428 located in strand 11 is essential for transport. The results suggest that a conformational change or partial unfolding of the plug domain occurs during ferric-anguibactin transport.
Collapse
Affiliation(s)
- Claudia S López
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alejandro F Alice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranjan Chakraborty
- Department of Health Sciences, College of Public and Allied Health, East Tennessee State University, Johnson City, TN, USA
| | - Jorge H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
88
|
Braun V, Endriss F. Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 2007; 20:219-31. [PMID: 17370038 DOI: 10.1007/s10534-006-9072-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes.
Collapse
Affiliation(s)
- Volkmar Braun
- Microbiology/Membrane Physiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
89
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2007; 2:e224. [PMID: 17311090 PMCID: PMC1790865 DOI: 10.1371/journal.pone.0000224] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/26/2007] [Indexed: 01/12/2023] Open
Abstract
TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent evolution of TBDRs in Proteobacteria and Bacteroidetes.
Collapse
Affiliation(s)
- Servane Blanvillain
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Damien Meyer
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Alice Boulanger
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Martine Lautier
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Catherine Guynet
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Nicolas Denancé
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Jacques Vasse
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
- * To whom correspondence should be addressed. E-mail: (EL); (MA)
| | - Matthieu Arlat
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA) UMR2594/441, Castanet-Tolosan, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
- * To whom correspondence should be addressed. E-mail: (EL); (MA)
| |
Collapse
|
91
|
Wirth C, Meyer-Klaucke W, Pattus F, Cobessi D. From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor. J Mol Biol 2007; 368:398-406. [PMID: 17349657 DOI: 10.1016/j.jmb.2007.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/20/2022]
Abstract
The pyoverdine outer membrane receptor, FpvA, from Pseudomonas aeruginosa translocates ferric pyoverdine across the outer membrane through an energy consuming mechanism using the proton motive force and the TonB-ExbB-ExbD energy transducing complex from the inner membrane. We solved the crystal structure of the full-length FpvA bound to iron-pyoverdine at 2.7 A resolution. Signal transduction to an anti-sigma protein of the inner membrane and to TonB-ExbB-ExbD involves the periplasmic domain, which displays a beta-alpha-beta fold composed of two alpha-helices sandwiched by two beta-sheets. One iron-pyoverdine conformer is bound at the extracellular face of FpvA, revealing the conformer selectivity of the binding site. The loop that contains the TonB box, involved in interactions with TonB, and connects the signaling domain to the plug domain of FpvA is not defined in the electron density following the binding of ferric pyoverdine. The high flexibility of this loop is probably necessary for signal transduction through the outer membrane.
Collapse
Affiliation(s)
- Christophe Wirth
- Institut Gilbert-Laustriat UMR 7175 CNRS/Université-Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch, France
| | | | | | | |
Collapse
|
92
|
López CS, Crosa JH. Characterization of ferric-anguibactin transport in Vibrio anguillarum. Biometals 2007; 20:393-403. [PMID: 17287889 DOI: 10.1007/s10534-007-9084-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
The fish pathogen Vibrio anguillarum is the causative agent of a fatal hemorrhagic septicemia in salmonid fish. Many serotype O1 strains harbors a 65 Kbp plasmid (pJM1 encoding an iron sequestering system essential for virulence. The genes involved in the biosynthesis of the indigenous siderophore anguibactin are encoded by both the pJM1 plasmid and the chromosome, while those involved in the transport of the ferric-siderophore complex, including the outer membrane receptor, are plasmid-encoded. This work describes the role of specific amino acid residues of the outer membrane receptor FatA in the mechanism of transport of ferric-anguibactin. FatA modeling indicated that this protein has a 22 stranded beta-barrel blocked by the plug domain, the latter being formed by residues 51-154. Deletion of the plug domain resulted in a receptor unable to act as an open channel for the transport of the ferric anguibactin complex.
Collapse
Affiliation(s)
- Claudia S López
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
93
|
Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ. Real Time Fluorescent Resonance Energy Transfer Visualization of Ferric Pyoverdine Uptake in Pseudomonas aeruginosa. J Biol Chem 2007; 282:2987-95. [PMID: 17148441 DOI: 10.1074/jbc.m609238200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To acquire iron, Pseudomonas aeruginosa secretes a major fluorescent siderophore, pyoverdine (PvdI), that chelates iron and shuttles it into the cells via the specific outer membrane transporter, FpvAI. We took advantage of the fluorescence properties of PvdI and its metal chelates as well as the efficient FRET between donor tryptophans in FpvAI and PvdI to follow the fate of the siderophore during iron uptake. Our findings with PvdI-Ga and PvdI-Cr uptake indicate that iron reduction is required for the dissociation of PvdI-Fe, that a ligand exchange for iron occurs, and that this dissociation occurs in the periplasm. We also observed a delay between PvdI-Fe dissociation and the rebinding of PvdI to FpvAI, underlining the kinetic independence of metal release and siderophore recycling. Meanwhile, PvdI is not modified but recycled to the medium, still competent for iron chelation and transport. Finally, in vivo fluorescence microscopy revealed patches of PvdI, suggesting that uptake occurs via macromolecular assemblies on the cell surface.
Collapse
Affiliation(s)
- Jason Greenwald
- Métaux et Microorganismes: Chimie, Biologie, et Applications, UMR 7175-LC1 Institut Gilbert-Laustriat, CNRS-Université Louis Pasteur, ESBS, Boulevard Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Wally J, Buchanan SK. A structural comparison of human serum transferrin and human lactoferrin. Biometals 2007; 20:249-62. [PMID: 17216400 PMCID: PMC2547852 DOI: 10.1007/s10534-006-9062-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/28/2006] [Indexed: 12/01/2022]
Abstract
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences.
Collapse
Affiliation(s)
- Jeremy Wally
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| | - Susan K. Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| |
Collapse
|
95
|
Abstract
In this critical review we discuss recent advances in understanding the modes of interaction of metal ions with membrane proteins, including channels, pumps, transporters, ATP-binding cassette proteins, G-protein coupled receptors, kinases and respiratory enzymes. Such knowledge provides a basis for elucidating the mechanism of action of some classes of metallodrugs, and a stimulus for the further exploration of the coordination chemistry of metal ions in membranes. Such research offers promise for the discovery of new drugs with unusual modes of action. The article will be of interest to bioinorganic chemists, chemical biologists, biochemists, pharmacologists and medicinal chemists. (247 references).
Collapse
Affiliation(s)
- Xiangyang Liang
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ
| | | | | |
Collapse
|
96
|
Breidenstein E, Mahren S, Braun V. Residues involved in FecR binding are localized on one side of the FecA signaling domain in Escherichia coli. J Bacteriol 2006; 188:6440-2. [PMID: 16923915 PMCID: PMC1595354 DOI: 10.1128/jb.00741-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferric citrate transport in Escherichia coli involves proteins encoded by the fec genes, including the transport and signaling protein FecA and the signal transducing protein FecR. Randomly isolated FecA point mutants showed a reduced interaction with FecR and a reduced transcription initiation of the ferric citrate transport genes. The mutations were localized on one side of the FecA signaling domain, which might form the interface to FecR. Some of the mutants showed strongly reduced iron transport rates, which suggests that the signaling domain affects the structure of the FecA transporter domain.
Collapse
Affiliation(s)
- Elena Breidenstein
- Microbiology/Membrane Physiology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
97
|
Louvel H, Bommezzadri S, Zidane N, Boursaux-Eude C, Creno S, Magnier A, Rouy Z, Médigue C, Saint Girons I, Bouchier C, Picardeau M. Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 2006; 188:7893-904. [PMID: 16980464 PMCID: PMC1636298 DOI: 10.1128/jb.00711-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochetes of the Leptospira genus contain saprophytic and pathogenic members, the latter being responsible for leptospirosis. Despite the recent sequencing of the genome of the pathogen L. interrogans, the slow growth of these bacteria, their virulence in humans, and a lack of genetic tools make it difficult to work with these pathogens. In contrast, the development of numerous genetic tools for the saprophyte L. biflexa enables its use as a model bacterium. Leptospira spp. require iron for growth. In this work, we show that Leptospira spp. can acquire iron from different sources, including siderophores. A comparative genome analysis of iron uptake systems and their regulation in the saprophyte L. biflexa and the pathogen L. interrogans is presented in this study. Our data indicated that, for instance, L. biflexa and L. interrogans contain 8 and 12 genes, respectively, whose products share homology with proteins that have been shown to be TonB-dependent receptors. We show that some genes involved in iron uptake were differentially expressed in response to iron. In addition, we were able to disrupt several putative genes involved in iron acquisition systems or iron regulation in L. biflexa. Comparative genomics, in combination with gene inactivation, gives us significant functional information on iron homeostasis in Leptospira spp.
Collapse
Affiliation(s)
- H Louvel
- Laboratoire des Spirochètes, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Voulhoux R, Filloux A, Schalk IJ. Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol 2006; 188:3317-23. [PMID: 16621825 PMCID: PMC1447448 DOI: 10.1128/jb.188.9.3317-3323.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under iron-limiting conditions, Pseudomonas aeruginosa PAO1 secretes a fluorescent siderophore called pyoverdine (Pvd). After chelating iron, this ferric siderophore is transported back into the cells via the outer membrane receptor FpvA. The Pvd-dependent iron uptake pathway requires several essential genes involved in both the synthesis of Pvd and the uptake of ferric Pvd inside the cell. A previous study describing the global phenotype of a tat-deficient P. aeruginosa strain showed that the defect in Pvd-mediated iron uptake was due to the Tat-dependent export of proteins involved in Pvd biogenesis and ferric Pvd uptake (U. Ochsner, A. Snyder, A. I. Vasil, and M. L. Vasil, Proc. Natl. Acad. Sci. USA 99:8312-8317, 2002). Using biochemical and biophysical tools, we showed that despite its predicted Tat signal sequence, FpvA is correctly located in the outer membrane of a tat mutant and is fully functional for all steps of the iron uptake process (ferric Pvd uptake and recycling of Pvd on FpvA after iron release). However, in the tat mutant, no Pvd was produced. This suggested that a key element in the Pvd biogenesis pathway must be exported to the periplasm by the Tat pathway. We located PvdN, a still unknown but essential component in Pvd biogenesis, at the periplasmic side of the cytoplasmic membrane and showed that its export is Tat dependent. Our results further support the idea that a critical step of the Pvd biogenesis pathway involving PvdN occurs at the periplasmic side of the cytoplasmic membrane.
Collapse
|
99
|
Shultis DD, Purdy MD, Banchs CN, Wiener MC. Crystallization and preliminary X-ray crystallographic analysis of the Escherichia coli outer membrane cobalamin transporter BtuB in complex with the carboxy-terminal domain of TonB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:638-41. [PMID: 16820681 PMCID: PMC2242962 DOI: 10.1107/s1744309106018240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/16/2006] [Indexed: 11/10/2022]
Abstract
The energy-dependent uptake of organometallic compounds and other micronutrients across the outer membranes of Gram-negative bacteria is carried out by outer membrane active-transport proteins that utilize the proton-motive force of the inner membrane via coupling to the TonB protein. The Escherichia coli outer membrane cobalamin transporter BtuB and a carboxy-terminal domain of the TonB protein, residues 147-239 of the wild-type protein, were expressed and purified individually. A complex of BtuB and TonB(147-239) was formed in the presence of the substrate cyanocobalamin (CN-Cbl; vitamin B12) and calcium and was crystallized. BtuB was purified in the detergent LDAO (n-dodecyl-N,N-dimethylamine-N-oxide) and the complex was formed in a detergent mixture of LDAO and C8E4 (tetraethylene glycol monooctylether). Crystals were obtained by sitting-drop vapor diffusion, with the reservoir containing 30%(v/v) polyethylene glycol (PEG 300) and 100 mM sodium acetate pH 5.2. The crystals belong to space group P2(1)2(1)2(1) (unit-cell parameters a = 74.3, b = 82.4, c = 122.6 angstroms). The asymmetric unit consists of a single BtuB-TonB complex. Data sets have been collected to 2.1 angstroms resolution at a synchrotron beamline (APS SER-CAT 22-ID).
Collapse
Affiliation(s)
- David D. Shultis
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Michael D. Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Christian N. Banchs
- Interdisciplinary Graduate Program in Biophysics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Michael C. Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
- Interdisciplinary Graduate Program in Biophysics, University of Virginia, Charlottesville, Virginia 22908, USA
- Correspondence e-mail:
| |
Collapse
|
100
|
Wirth C, Hoegy F, Pattus F, Cobessi D. Preliminary X-ray investigations of several crystal forms of the ferripyoverdine FpvA outer membrane receptor from Pseudomonas aeruginosa bound to ferripyoverdine. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:460-3. [PMID: 16682776 PMCID: PMC2219977 DOI: 10.1107/s1744309106012553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/06/2006] [Indexed: 11/10/2022]
Abstract
Ferripyoverdine transport across the outer membrane of Pseudomonas aeruginosa by the pyoverdine receptor FpvA and the transcriptional regulation of FpvA involve interactions of the FpvA N-terminal TonB box and signalling domain with proteins from the inner membrane. Several crystallization conditions of FpvA-Pvd-Fe solubilized in C8E4 detergent were obtained and X-ray data were collected from three crystal forms. The resolution limits range from 3.15 to 2.7 angstroms depending on the crystal form. From preliminary analysis of the electron-density maps, the first full-length structure of an outer membrane receptor including a signalling domain should be determined.
Collapse
Affiliation(s)
- Christophe Wirth
- Institut Gilbert-Laustriat UMR 7175 CNRS/Université Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch, France
| | - Françoise Hoegy
- Institut Gilbert-Laustriat UMR 7175 CNRS/Université Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch, France
| | - Franc Pattus
- Institut Gilbert-Laustriat UMR 7175 CNRS/Université Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch, France
| | - David Cobessi
- Institut Gilbert-Laustriat UMR 7175 CNRS/Université Strasbourg I, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, F-67412 Illkirch, France
| |
Collapse
|