51
|
Guennoun R, Fréchou M, Gaignard P, Liere P, Slama A, Schumacher M, Denier C, Mattern C. Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology 2018; 145:283-291. [PMID: 29885423 DOI: 10.1016/j.neuropharm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Department of Neurology and Stroke Center, Bicêtre Hospital, 94276, Kremlin-Bicêtre, France
| | - Claudia Mattern
- M et P Pharma AG, Schynweg 7, P.O. Box 138, 6376, Emmetten, Switzerland; Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
52
|
Ciobanu O, Elena Sandu R, Tudor Balseanu A, Zavaleanu A, Gresita A, Petcu EB, Uzoni A, Popa‐Wagner A. Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 2017; 16:1394-1403. [PMID: 28961383 PMCID: PMC5676058 DOI: 10.1111/acel.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Obesity and hyperinsulinemia are risk factors for stroke. We tested the hypothesis that caloric restriction, which reduces the incidence of age‐related obesity and metabolic syndrome, may represent an efficient and cost‐effective strategy for preventing stroke and its devastating consequences. To this end, we placed aged, obese Sprague‐Dawley aged rats on a calorie‐restricted diet for 8 weeks prior to the experimental infarction. Stroke in this animal model caused a progressive decrease in weight that reached a minimum at day 6 for the young rats, and at day 10 for the aged, ad libitum‐fed rats. However, in aged animals that were calorie‐restricted prior to stroke, body weight did not decrease after stroke, but we noted accelerated body weight gain shortly thereafter starting at day 5 poststroke. Moreover, calorie‐restricted aged animals showed improved behavioral recovery in tasks requiring complex sensorimotor skills, or in tasks requiring cutaneous sensitivity and sensorimotor integration or spatial memory. Likewise, calorie‐restricted aged rats showed significant poststroke increases in serum glucose, insulin, and IGF1 levels, as well as CR‐specific changes in the expression of gene transcripts involved in glycogen metabolism, IGF signaling, apoptosis, arteriogenesis, and hypoxia. In conclusion, our study shows that recovery from stroke is enhanced in aged rats by a dietary regimen that reduces body weight prior to infarct.
Collapse
Affiliation(s)
| | - Raluca Elena Sandu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Adrian Tudor Balseanu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Alexandra Zavaleanu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Andrei Gresita
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Eugen Bogdan Petcu
- University Psychiatric Center Basel Switzerland
- Griffith University School of Medicine Gold Coast Campus Gold Coast Qld 4222 Australia
| | - Adriana Uzoni
- Department of Psychiatry Aging & Psychiatric Disorders Group University of Medicine Rostock Rostock Germany
| | - Aurel Popa‐Wagner
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
- Griffith University School of Medicine Gold Coast Campus Gold Coast Qld 4222 Australia
| |
Collapse
|
53
|
Grinberg YY, Zitzow LA, Kraig RP. Intranasally administered IGF-1 inhibits spreading depression in vivo. Brain Res 2017; 1677:47-57. [PMID: 28951235 DOI: 10.1016/j.brainres.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
Spreading depression (SD) is a wave of cellular depolarization that travels slowly through susceptible gray matter brain areas. SD is the most likely cause of migraine aura and perhaps migraine pain, and is a well-accepted animal model of migraine. Identification of therapeutics that can prevent SD may have clinical relevance toward migraine treatment. Here we show that insulin-like growth factor-1 (IGF-1) significantly inhibited neocortical SD in vivo after intranasal delivery to rats. A single dose of IGF-1 inhibited SD within an hour, and continued to protect for at least seven days thereafter. A two-week course of IGF-1, administered every third day, further decreased SD susceptibility and showed no aberrant effects on glial activation, nasal mucosa, or serum markers of toxicity. SD begets SD in vitro by mechanisms that involve microglial activation. We add to this relationship by showing that recurrent SD in vivo increased susceptibility to subsequent SD, and that intervention with IGF-1 significantly interrupted this pathology. These findings support nasal administration of IGF-1 as a novel intervention capable of mitigating SD susceptibility, and as a result, potentially migraine.
Collapse
Affiliation(s)
- Yelena Y Grinberg
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States
| | - Lois A Zitzow
- Animal Resources Center, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States
| | - Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States.
| |
Collapse
|
54
|
Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release 2017; 268:364-389. [PMID: 28887135 DOI: 10.1016/j.jconrel.2017.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) restricts the transport of potential therapeutic moieties to the brain. Direct targeting the brain via olfactory and trigeminal neural pathways by passing the BBB has gained an important consideration for delivery of wide range of therapeutics to brain. Intranasal route of transportation directly delivers the drugs to brain without systemic absorption, thus avoiding the side effects and enhancing the efficacy of neurotherapeutics. Over the last several decades, different drug delivery systems (DDSs) have been studied for targeting the brain by the nasal route. Novel DDSs such as nanoparticles (NPs), liposomes and polymeric micelles have gained potential as useful tools for targeting the brain without toxicity in nasal mucosa and central nervous system (CNS). Complex geometry of the nasal cavity presented a big challenge to effective delivery of drugs beyond the nasal valve. Recently, pharmaceutical firms utilized latest and emerging nasal drug delivery technologies to overcome these barriers. This review aims to describe the latest development of brain targeted DDSs via nasal administration. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE Carbopol 934p (PubChem CID: 6581) Carboxy methylcellulose (PubChem CID: 24748) Penetratin (PubChem CID: 101111470) Poly lactic-co-glycolic acid (PubChem CID: 23111554) Tween 80 (PubChem CID: 5284448).
Collapse
Affiliation(s)
- Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Mengrui Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Muhammad Wasim Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|
55
|
Gardner B, Dieriks BV, Cameron S, Mendis LHS, Turner C, Faull RLM, Curtis MA. Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease. Sci Rep 2017; 7:10454. [PMID: 28874699 PMCID: PMC5585381 DOI: 10.1038/s41598-017-10659-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
In Parkinson's disease (PD), the olfactory bulb is typically the first region in the body to accumulate alpha-synuclein aggregates. This pathology is linked to decreased olfactory ability, which becomes apparent before any motor symptoms occur, and may be due to a local metal imbalance. Metal concentrations were investigated in post-mortem olfactory bulbs and tracts from 17 human subjects. Iron (p < 0.05) and sodium (p < 0.01) concentrations were elevated in the PD olfactory bulb. Combining laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry, iron and copper were evident at very low levels in regions of alpha-synuclein aggregation. Zinc was high in these regions, and free zinc was detected in Lewy bodies, mitochondria, and lipofuscin of cells in the anterior olfactory nucleus. Increased iron and sodium in the human PD olfactory bulb may relate to the loss of olfactory function. In contrast, colocalization of free zinc and alpha-synuclein in the anterior olfactory nucleus implicate zinc in PD pathogenesis.
Collapse
Affiliation(s)
- Bronwen Gardner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Steve Cameron
- Waikato Mass Spectrometry Facility, University of Waikato, Hamilton, New Zealand
| | - Lakshini H S Mendis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
56
|
Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z. Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int 2017; 107:104-116. [PMID: 28245997 DOI: 10.1016/j.neuint.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Despite considerable efforts in research and clinical studies, stroke is still one of the leading causes of death and disability worldwide. Originally, stroke was considered a vascular thrombotic disease without significant immune involvement. However, over the last few decades it has become increasingly obvious that the immune responses can significantly contribute to both tissue injury and protection following stroke. Recently, much research has been focused on the immune system's role in stroke pathology and trying to elucidate the mechanism used by immune cells in tissue injury and protection. Since the discovery of tissue plasminogen activator therapy in 1996, there have been no new treatments for stroke. For this reason, research into understanding how the immune system contributes to stroke pathology may lead to better therapies or enhance the efficacy of current treatments. Here, we discuss the contrasting roles of immune cells to stroke pathology while emphasizing myeloid cells and T cells. We propose that focusing future research on balancing the beneficial-versus-detrimental roles of immunity may lead to the discovery of better and novel stroke therapies.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernández
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gerhart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
57
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
58
|
Choi YS, Cho DY, Lee HK, Cho JK, Lee DH, Bae YH, Lee JK, Kang HC. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction. Acta Biomater 2016; 41:147-60. [PMID: 27245429 DOI: 10.1016/j.actbio.2016.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/07/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Nucleotides (NTs) (e.g., adenosine triphosphate) are very important molecules in the body. They generate bioenergy through phosphate group release, are involved in various biological processes, and are used to treat various diseases that involve energy depletion. However, their highly anionic characteristics might limit delivery of exogenous NTs into the cell, which is required to realize their functions as bioenergy sources. In this study, ionic complexation between Ca(2+) and NT phosphates was used to form Ca(2+)/NT nanocomplexes (NCs), and branched polyethyleneimine (bPEI1.8kDa) was coated on the surface of Ca(2+)/NT NCs via a simple electrostatic coating. The resultant Ca(2+)/NT/bPEI1.8kDa NCs were approximately 10-25nm in size and had positive zeta-potentials, and their NT loading efficiency and content were approximately 60-75% and 10-20 wt%, respectively. Faster NT release from Ca(2+)/NT/bPEI1.8kDa NCs was induced by lower pH and by NTs with fewer phosphates. Reductions in cell viability in response to low temperature, serum deprivation, or hypoxia were recovered by NT delivery in Ca(2+)/NT/bPEI1.8kDa NCs. In a middle cerebral artery occlusion (MCAO)-induced post-ischemic rat model, the BBB (blood brain barrier)-detoured intranasal administration of Ca(2+)/ATP/bPEI1.8kDa NCs induced a better reduction in infarct volume and neurological deficits than did free ATP. In conclusion, intracellular NT delivery using Ca(2+)/NT/bPEI1.8kDa NCs might potentially enhance cell survival and reduce infarction in energy-/oxygen-depleted environments. STATEMENT OF SIGNIFICANCE This study describes bioenergetic nucleotide delivery systems and their preparation, physicochemical characterization, and biological characterization both in vitro and in vivo. Nucleotides, such as adenosine triphosphate (ATP) and guanosine triphosphate (GTP), are very important signaling and energy molecules in the body. However, research on these nucleotides using nanosized carriers has been very limited. Liposomal ATP delivery has been reported in heart and renal ischemia studies. Notably, although this delivery system has potential in energy-depleted environments (e.g., low temperature, serum deprivation, and hypoxia) and in brain ischemia, studies are lacking regarding these systems. Thus, we designed polycation-shielded Ca(2+)/nucleotide nanocomplexes using simple mixing, which produced 10- to 25-nm-sized particles. The nanocomplexes released nucleotides in response to acidic pH, and they enhanced cell survival rates under conditions of low temperature, serum deprivation, or hypoxia. Importantly, the nanocomplexes reduced cerebral infarct volumes in a post-ischemic rat model. Thus, our study demonstrates that a novel nucleotide nanocomplex could have potential for preventing or treating diseases that involve energy depletion, such as cardiac, cerebral, and retinal ischemia, and liver failure.
Collapse
Affiliation(s)
- Yeon Su Choi
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Dong Youl Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Jung-Kyo Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Don Haeng Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon 22332, Republic of Korea; Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea
| | - You Han Bae
- Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea; Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Rm 2972, Salt Lake City, UT 84112, USA
| | - Ja-Kyeong Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
59
|
Mattlage AE, Rippee MA, Abraham MG, Sandt J, Billinger SA. Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke. Neurorehabil Neural Repair 2016; 31:65-71. [PMID: 27377914 DOI: 10.1177/1545968316656056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO2) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg-1 min-1) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg-1 min-1; P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function.
Collapse
Affiliation(s)
| | | | | | - Janice Sandt
- University of Kansas Hospital, Kansas City, KS, USA
| | | |
Collapse
|
60
|
Guardia Clausi M, Paez P, Pasquini L, Pasquini J. Inhalation of growth factors and apo-transferrin to protect and repair the hypoxic-ischemic brain. Pharmacol Res 2016; 109:81-5. [DOI: 10.1016/j.phrs.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
61
|
Hernando S, Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM. Advances in nanomedicine for the treatment of Alzheimer’s and Parkinson’s diseases. Nanomedicine (Lond) 2016; 11:1267-85. [DOI: 10.2217/nnm-2016-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer‘s disease and Parkinson’s disease are the most common neurodegenerative diseases worldwide. Despite all the efforts made by the scientific community, current available treatments have limited effectiveness, without halting the progression of the disease. That is why, new molecules such as growth factors, antioxidants and metal chelators have been raised as new therapeutical approaches. However, these molecules have difficulties to cross the blood–brain barrier limiting its therapeutic effect. The development of nanometric drug delivery systems may permit a targeted and sustained release of old and new treatments offering a novel strategy to treat these neurodegenerative disorders. This review summarized the main investigated drug delivery systems as promising approaches to treat Alzheimer‘s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Oihane Gartziandia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Enara Herran
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
62
|
Mattlage AE, Rippee MA, Sandt J, Billinger SA. Decrease in Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-1 Ratio in the First Week of Stroke Is Related to Positive Outcomes. J Stroke Cerebrovasc Dis 2016; 25:1800-1806. [PMID: 27113779 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/13/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High insulin-like growth factor-1 (IGF-1), measured once during acute stroke, is associated with greater survival rates and lower stroke severity. However, information is lacking regarding how IGF-1 availability, determined by IGF-1's ratio to insulin-like growth factor binding protein-3 (IGFBP-3), relates to recovery and how the response of IGF-1 during the first week of stroke relates to outcomes. The purpose of this study was to determine the following: (1) the relationship between percent change in IGF-1 and IGF-1 ratio during the first week of stroke and stroke outcomes; and (2) the difference in percent change in IGF-1 and IGF-1 ratio in individuals being discharged home and individuals being discharged to inpatient facilities. METHODS IGF-1 and IGFBP-3 were quantified from blood sampled twice (<72 hours of admission; 1 week post stroke) in 15 individuals with acute stroke. Length of stay, modified Rankin Scale at 1 month, and discharge destination were obtained from electronic medical records. RESULTS Percent change in IGF-1 ratio was related to length of stay (r = .54; P = .04). Modified Rankin Scale (n = 10) was related to percent change in IGF-1 (r = .90; P < .001) and IGF-1 ratio (r = .75 P = .01). Individuals who went home (n = 7) had decreases in IGF-1 (-24 + 25%) and IGF-1 ratio (-36 + 50%), whereas individuals who went to inpatient facilities (n = 8) had increases in IGF-1 (37 + 46%) and IGF-1 ratio (30 + 40%). These differences were significant (IGF-1: P = .008; IGF-1 ratio: P = .01). CONCLUSION Our findings suggest that a decrease in IGF-1 and IGF-1 ratio during the first week of stroke is associated with favorable outcomes: shorter length of stay, greater independence at 1 month on the modified Rankin Scale, and discharging home.
Collapse
Affiliation(s)
- Anna E Mattlage
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael A Rippee
- Department of Neurology, The University of Kansas Hospital, Kansas City, Kansas
| | - Janice Sandt
- Advanced Comprehensive Stroke Center, The University of Kansas Hospital, Kansas City, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
63
|
Steinmetz AB, Johnson SA, Iannitelli DE, Pollonini G, Alberini CM. Insulin-like growth factor 2 rescues aging-related memory loss in rats. Neurobiol Aging 2016; 44:9-21. [PMID: 27318130 DOI: 10.1016/j.neurobiolaging.2016.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments.
Collapse
Affiliation(s)
- Adam B Steinmetz
- Center for Neural Science, New York University, New York, NY, USA
| | - Sarah A Johnson
- Center for Neural Science, New York University, New York, NY, USA
| | | | | | | |
Collapse
|
64
|
Jia SW, Liu XY, Wang SC, Wang YF. Vasopressin Hypersecretion-Associated Brain Edema Formation in Ischemic Stroke: Underlying Mechanisms. J Stroke Cerebrovasc Dis 2016; 25:1289-300. [PMID: 27068863 DOI: 10.1016/j.jstrokecerebrovasdis.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury. METHODS Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them. RESULTS This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood-brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood-brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion. CONCLUSIONS VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.
Collapse
Affiliation(s)
- Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Surgery, Albany Medical Center, Albany, New York
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
65
|
Kim ID, Sawicki E, Lee HK, Lee EH, Park HJ, Han PL, Kim KK, Choi H, Lee JK. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1219-29. [PMID: 26945975 DOI: 10.1016/j.nano.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
The therapeutic efficacy of intranasal iNOS siRNA delivery was investigated in the postischemic rat brain after encapsulating on in gelatin nanoparticles (GNPs; diameter 188.0 ± 60.9 nm) cross-linked with 0.0667% glutaraldehyde (GA). Intranasally delivered GNPs were found in extracellular and intracellular compartments of many brain regions, including the olfactory bulb, cerebral cortex, and striatum at 1 hour after infusion and continued to be detected for days. Infarct volumes were markedly suppressed (maximal reduction to 42.1 ± 2.6%) at 2 days after 60 minutes of middle cerebral artery occlusion (MCAO) when iNOS siRNA/GNPs were delivered at 6 hours post-MCAO. In addition, this protective effect was manifested by reductions in neurological and behavioral deficits that were sustained for 2 weeks. Therapeutic potency of iNOS siRNA/GNPs was significantly greater and sustained longer than that of bare siRNA and prolonged and efficient iNOS by iNOS siRNA/GNP is responsible for the robust neuroprotective effect.
Collapse
Affiliation(s)
- Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Korea; Medical Research Center, Inha University School of Medicine, Inchon, Korea
| | - Elizabeth Sawicki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Korea; Medical Research Center, Inha University School of Medicine, Inchon, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Heon Joo Park
- Medical Research Center, Inha University School of Medicine, Inchon, Korea; Department of Microbiology, Inha University School of Medicine, Inchon, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kyekyoon Kevin Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Korea; Medical Research Center, Inha University School of Medicine, Inchon, Korea.
| |
Collapse
|
66
|
Miyake MM, Bleier BS. The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy 2016; 29:124-7. [PMID: 25785753 DOI: 10.2500/ajra.2015.29.4149] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The blood-brain barrier (BBB) is a highly efficient system that separates the central nervous system (CNS) from general circulation and promotes selective transport of molecules that are essential for brain function. However, it also limits the distribution of systemically administered therapeutics to the brain; therefore, there is a restricted number of drugs available for the treatment of brain disorders. Several drug-targeting strategies have been developed to attempt to bypass the BBB, but none has proved sufficiently effective in reaching the brain. METHODS The objective of this study is to generally review these strategies of drug administration to the CNS. RESULTS Noninvasive methods of drug delivery, such as chemical and biologic transport systems, do not represent a feasible platform, whereas for most drugs, it is still not possible to achieve therapeutic levels within the brain tissue after intravenous or oral administration, and the use of higher potency or more concentrated doses may cause serious toxic side effects. Direct intrathecal drug delivery through a catheter into the CNS also presents several problems. Intranasal drug delivery is a potential alternative method due to the direct transport into the cerebrospinal fluid (CSF) compartment along the olfactory pathway, but the study's conclusions are controversial. An endoscopic intranasal surgical procedure using established skull base surgery reconstruction techniques based on the use of a nasal mucosa surgical flap as the only obstacle between the nose and the subarachnoid space has appeared as a potential solution to increase the absorption of intranasal drugs to the CNS. CONCLUSION Despite extensive efforts to develop new techniques to cross the BBB, none has proved sufficiently effective in reaching the brain, whereas minimizing adverse effects and the endoscopic mucosal grafting technique offers new potential promise.
Collapse
Affiliation(s)
- Marcel Menon Miyake
- Department of Otolaryngology, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
67
|
Zhang H, Meng J, Zhou S, Liu Y, Qu D, Wang L, Li X, Wang N, Luo X, Ma X. Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect Against Cerebral Ischemia in Mice. AAPS JOURNAL 2015; 18:385-94. [PMID: 26689204 DOI: 10.1208/s12248-015-9854-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/04/2015] [Indexed: 01/28/2023]
Abstract
Exendin-4 is now considered as a promising drug for the treatment of cerebral ischemia. To determine the neuroprotective effects of intranasal exendin-4, C57BL/6J mice were intranasally administered with exendin-4 daily for 7 days before middle cerebral artery occlusion (MCAO) surgery. Intranasally administered exendin-4 produced higher brain concentrations and lower plasma concentrations when compared to identical doses administered interperitoneally. Neurological deficits and volume of infarcted lesions were analyzed 24 h after ischemia. Intranasal administration of exendin-4 exhibited significant neuroprotection in C57BL/6 mice subjected to MCAO by reducing neurological deficit scores and infarct volume. The neuroprotective effects of exendin-4 were blocked by the knockdown of GLP-1R with shRNA. However, exendin-4 has no impact on glucose and insulin levels which indicated that the neuroprotective effect was mediated by the activation of GLP-1R in the brain. Exendin-4 intranasal administration restored the balance between pro- and anti-apoptotic proteins and decreased the expression of Caspase-3. The anti-apoptotic effect was mediated by the cAMP/PKA and PI3K/Akt pathway. These findings provided evidence that exendin-4 intranasal administration exerted a neuroprotective effect mediated by an anti-apoptotic mechanism in MCAO mice and protected neurons against ischemic injury through the GLP-1R pathway in the brain. Intranasal delivery of exendin-4 might be a promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huinan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Jingru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Shimeng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Yunhan Liu
- School of Nursing, The Fourth Military Medical University, Xi'an, China
| | - Di Qu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Ling Wang
- Department of Health Statistics, Faculty of Preventative Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xubo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Ning Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China.
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, 169 Changle West Rd., Xi'an, 710032, China.
| |
Collapse
|
68
|
Appu AP, Arun P, Krishnan JKS, Moffett JR, Namboodiri AMA. Rapid intranasal delivery of chloramphenicol acetyltransferase in the active form to different brain regions as a model for enzyme therapy in the CNS. J Neurosci Methods 2015; 259:129-134. [PMID: 26688469 DOI: 10.1016/j.jneumeth.2015.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. NEW METHOD The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. RESULTS We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). COMPARISON WITH EXISTING METHOD (S) Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. CONCLUSION The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders.
Collapse
Affiliation(s)
- Abhilash P Appu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Jishnu K S Krishnan
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| |
Collapse
|
69
|
Schultz I, Wurzel J, Meinel L. Drug delivery of Insulin-like growth factor I. Eur J Pharm Biopharm 2015; 97:329-37. [DOI: 10.1016/j.ejpb.2015.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
|
70
|
Pusic AD, Kraig RP. Phasic Treatment with Interferon Gamma Stimulates Release of Exosomes that Protect Against Spreading Depression. J Interferon Cytokine Res 2015; 35:795-807. [PMID: 26083947 PMCID: PMC4589269 DOI: 10.1089/jir.2015.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/13/2015] [Indexed: 01/30/2023] Open
Abstract
The detrimental effects of T-cell-secreted interferon gamma (IFNγ) on oxidative stress (OS) and demyelination in multiple sclerosis (MS) are well recognized. Recently, we demonstrated that IFNγ-mediated damage to myelin also increases susceptibility to spreading depression (SD; the likely basis of migraine with aura). However, before onset of MS, induction of physiological levels of IFNγ, like that produced by environmental enrichment (EE), protects against demyelination and OS. Accordingly, we focused on the potential for physiological levels of IFNγ to protect against SD. EE, which occurs with a moderate and phasic increase in proinflammatory cytokines, reduces migraine frequency. Thus, we applied phasic or pulsed IFNγ to brain slice cultures to emulate EE. This treatment reduced OS, increased myelin basic protein, a marker for myelin, and reduced susceptibility to SD. Building on our research on exosomes in EE-based neuroprotection, we found that IFNγ stimulation of slice cultures induced release of exosomes, likely from the microglia that produce the same protective effects as IFNγ treatment when applied to naive cultures. Finally, nasal administration of IFNγ to rats recapitulated in vitro effects, reducing OS, increasing myelin, and reducing SD. These results support phasic IFNγ signaling as a therapeutic target for prevention of SD and, by extension, migraine.
Collapse
Affiliation(s)
- Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
71
|
Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res 2015; 6:264-75. [PMID: 26040423 DOI: 10.1007/s12975-015-0409-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS.
Collapse
Affiliation(s)
- Vasileios-Arsenios Lioutas
- Department of Neurology, Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA, 02215, USA,
| | | | | | | | | | | |
Collapse
|
72
|
The effects of testosterone and insulin-like growth factor 1 on motor system form and function. Exp Gerontol 2015; 64:81-6. [PMID: 25681641 DOI: 10.1016/j.exger.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines.
Collapse
|
73
|
Wang PF, Zhou Y, Fang H, Lin S, Wang YC, Liu Y, Xia J, Eslick GD, Yang QW. Treatment of acute cerebral ischemia using animal models: a meta-analysis. Transl Neurosci 2015; 6:47-58. [PMID: 28123790 PMCID: PMC4936615 DOI: 10.1515/tnsci-2015-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There are numerous potential treatments assessed for acute cerebral ischemia using animal models. This study aimed to assess the effect of these treatments in terms of infarct size and neurobehavioral change. This meta-analysis was conducted to determine if any of these treatments provide a superior benefit so that they might be used on humans. METHODS A systematic search was conducted using several electronic databases for controlled animal studies using only nonsurgical interventions for acute cerebral ischemia. A random-effects model was used. RESULTS After an extensive literature search, 145 studies were included in the analysis. These studies included 1408 treated animals and 1362 control animals. Treatments that had the most significant effect on neurobehavioral scales included insulin, various antagonists, including N-methyl-D-aspartate (NMDA) receptor antagonist ACEA1021, calmodulin antagonist DY-9760e, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist YM872, and antiviral agents. Treatments providing the greatest effect on infarct size included statins, sphingosine-1-phosphate agonist (fingolimod), alcohol, angiotensin, and leukotrienes. Treatments offering the greatest reduction in brain water content included various agonists, including sphingosine-1-phosphate agonist fingolimod, statins, and peroxisome proliferator-activated receptor gamma (PPAR-γ). Treatment groups with more than one study all had high heterogeneity (I2 > 80%), however, using meta-regression we determined several sources of heterogeneity including sample size of the treatment and control groups, the occlusion time, but not the year when the study was conducted. CONCLUSIONS Some treatments stand out when compared to others for acute cerebral ischemia in animals. Greater replication of treatment studies is required before any treatments are selected for future human trials.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Zhou
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huang Fang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Sen Lin
- Department of Development and Regeneration Key Laboratory of Sichuan Province, Department of Histoembryology and Neurobiology, Chengdu Medical College, Chengdu, China
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yong Liu
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jun Xia
- Systematic Review Solutions, China
| | - Guy D Eslick
- Department of Surgery, The University of Sydney, Nepean Hospital, Penrith, Australia
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
74
|
Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats. PLoS One 2015; 10:e0116549. [PMID: 25658940 PMCID: PMC4319949 DOI: 10.1371/journal.pone.0116549] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation has been reported to be associated with Alzheimer’s disease (AD) pathogenesis. Neuroinflammation is generally considered as an outcome of glial activation; however, we recently demonstrated that T helper (Th)17 cells, a subpopulation of proinflammatory CD4+ T cells, are also involved in AD pathogenesis. Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, can be immunosuppressive, but its effects on lymphocyte-mediated neuroinflammation in AD pathogenesis have not been well addressed. In the current study we administered TGF-β1 via intracerebroventricle (ICV) and intranasal (IN) routes in AD model rats to investigate its antiinflammatory and neuroprotective effects. The AD rat model was prepared by bilateral hippocampal injection of amyloid-β (Aβ)1–42. TGF-β1 was administered via ICV one hour prior to Aβ1–42 injection or via both nares seven days after Aβ1–42 injection. ICV administration of TGF-β1 before Aβ1–42 injection remarkably ameliorated Aβ1–42-induced neurodegeneration and prevented Aβ1–42-induced increases in glia-derived proinflammatory mediators (TNF-α, IL-1β and iNOS), as well as T cell-derived proinflammatory cytokines (IFN-γ, IL-2, IL-17 and IL-22), in the hypothalamus, serum or cerebrospinal fluid (CSF) in a concentration-dependent manner. TGF-β1 pretreatment also prevented Aβ1–42-induced decreases in the neurotrophic factors, IGF-1, GDNF and BDNF, and in the antiinflammatory cytokine, IL-10. Similarly, IN administration of TGF-β1 after Aβ1–42 injection reduced neurodegeneration, elevation of proinflammatory mediators and cytokines, and reduction of neurotrophic and antiinflammatory factors, in the hypothalamus, serum or CSF. These findings suggest that TGF-β1 suppresses glial and T cell-mediated neuroinflammation and thereby alleviates AD-related neurodegeneration. The effectiveness of IN administered TGF-β1 in reducing Aβ1–42 neurotoxicity suggests a possible therapeutic approach in patients with AD.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Affiliated Hospital, Nantong University, Nantong, China
| | - Kai-Fu Ke
- Department of Neurology, Affiliated Hospital, Nantong University, Nantong, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (YHQ); (YPP)
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (YHQ); (YPP)
| |
Collapse
|
75
|
The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv 2014; 5:709-33. [PMID: 25090283 DOI: 10.4155/tde.14.41] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intricate pathophysiology of brain disorders, difficult access to the brain, and the complexity and high risks and costs of drug development represent major hurdles for improving therapies. Nose-to-brain drug transport offers an attractive alternative or addition to formulation-only strategies attempting to enhance drug penetration into the CNS. Although still a matter of controversy, many studies in animals claim direct nose-to-brain transport along the olfactory and trigeminal nerves, circumventing the traditional barriers to CNS entry. Some clinical trials in man also suggest nose-to-brain drug delivery, although definitive proof in man is lacking. This review focuses on new nasal delivery technologies designed to overcome inherent anatomical and physiological challenges and facilitate more efficient and targeted drug delivery for CNS disorders.
Collapse
|
76
|
Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, Guo R, Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 2014; 345:48-55. [DOI: 10.1016/j.jns.2014.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/15/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
77
|
Stern SA, Chen DY, Alberini CM. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. ACTA ACUST UNITED AC 2014; 21:556-63. [PMID: 25227250 PMCID: PMC4175499 DOI: 10.1101/lm.029348.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or the development of novel treatments against cognitive disorders. Here, we tested the effect of intracerebral injections of IGF1, IGF2, or insulin on memory consolidation and persistence in rats. We found that a bilateral injection of insulin into the dorsal hippocampus transiently enhances hippocampal-dependent memory and an injection of IGF1 has no effect. None of the three peptides injected into the amygdala affected memories critically engaging this region. Together with previous data on IGF2, these results indicate that IGF2 produces the most potent and persistent effect as a memory enhancer on hippocampal-dependent memories. We suggest that the memory-enhancing effects of insulin and IGF2 are likely mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Sarah A Stern
- Center for Neural Science, New York University, New York, New York 10003, USA Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dillon Y Chen
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
78
|
Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia 2014; 62:1176-94. [PMID: 24723305 PMCID: PMC4081540 DOI: 10.1002/glia.22672] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Microglia play an important role in fine-tuning neuronal activity. In part, this involves their production of tumor necrosis factor-alpha (TNFα), which increases neuronal excitability. Excessive synaptic activity is necessary to initiate spreading depression (SD). Increased microglial production of proinflammatory cytokines promotes initiation of SD, which, when recurrent, may play a role in conversion of episodic to high frequency and chronic migraine. Previous work shows that this potentiation of SD occurs through increased microglial production of TNFα and reactive oxygen species, both of which are associated with an M1-skewed microglial population. Hence, we explored the role of microglia and their M1 polarization in SD initiation. Selective ablation of microglia from rat hippocampal slice cultures confirmed that microglia are essential for initiation of SD. Application of minocycline to dampen M1 signaling led to increased SD threshold. In addition, we found that SD threshold was increased in rats exposed to environmental enrichment. These rats had increased neocortical levels of interleukin-11 (IL-11), which decreases TNFα signaling and polarized microglia to an M2a-dominant phenotype. M2a microglia reduce proinflammatory signaling and increase production of anti-inflammatory cytokines, and therefore may protect against SD. Nasal administration of IL-11 to mimic effects of environmental enrichment likewise increased M2a polarization and increased SD threshold, an effect also seen in vitro. Similarly, application of conditioned medium from M2a polarized primary microglia to slice cultures also increased SD threshold. Thus, microglia and their polarization state play an essential role in SD initiation, and perhaps by extension migraine with aura and migraine.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan Kemme
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
79
|
Westwood AJ, Beiser A, Decarli C, Harris TB, Chen TC, He XM, Roubenoff R, Pikula A, Au R, Braverman LE, Wolf PA, Vasan RS, Seshadri S. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology 2014; 82:1613-9. [PMID: 24706014 PMCID: PMC4013812 DOI: 10.1212/wnl.0000000000000382] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/29/2014] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To relate serum insulin-like growth factor-1 (IGF-1) to risk of Alzheimer disease (AD) dementia and to brain volumes in a dementia-free community sample spanning middle and older ages. METHODS Dementia-free Framingham participants from generation 1 (n = 789, age 79 ± 4 years, 64% women) and generation 2 (n = 2,793, age 61 ± 9 years, 55% women; total = 3,582, age 65 ± 11 years, 57% women) had serum IGF-1 measured in 1990-1994 and 1998-2001, respectively, and were followed prospectively for incident dementia and AD dementia. Brain MRI was obtained in stroke- and dementia-free survivors of both generations 1 (n = 186) and 2 (n = 1,867) during 1999-2005. Baseline IGF-1 was related to risk of incident dementia using Cox models and to total brain and hippocampal volumes using linear regression in multivariable models adjusted for age, sex, APOE ε4, plasma homocysteine, waist-hip ratio, and physical activity. RESULTS Mean IGF-1 levels were 144 ± 60 μg/L in generation 1 and 114 ± 37 μg/L in generation 2. We observed 279 cases of incident dementia (230 AD dementia) over a mean follow-up of 7.4 ± 3.1 years. Persons with IGF-1 in the lowest quartile had a 51% greater risk of AD dementia (hazard ratio = 1.51, 95% confidence interval: 1.14-2.00; p = 0.004). Among persons without dementia, higher IGF-1 levels were associated with greater total brain volumes (β/SD increment in IGF-1 was 0.55 ± 0.24, p = 0.025; and 0.26 ± 0.06, p < 0.001, for generations 1 and 2, respectively). CONCLUSION Lower serum levels of IGF-1 are associated with an increased risk of developing AD dementia and higher levels with greater brain volumes even among middle-aged community-dwelling participants free of stroke and dementia. Higher levels of IGF-1 may protect against subclinical and clinical neurodegeneration.
Collapse
Affiliation(s)
- Andrew J Westwood
- From the Department of Neurology (A.J.W., A.B., A.P., R.A., P.A.W., S.S.) and Sections of Preventative Medicine and Cardiology, Department of Medicine (R.S.V.), Boston University School of Medicine; Department of Biostatistics (A.B.), Boston University School of Public Health, Boston; Framingham Heart Study (A.B., A.P., R.A., P.A.W., R.S.V., S.S.), Framingham, MA; University of California at Davis (C.D.), Sacramento, CA; National Institute on Aging (T.B.H.), Bethesda, MD; Boston University Medical Center (T.C.C., X.-m.H., L.E.B.), Section of Endocrinology, Diabetes, and Nutrition, Boston; Novartis Institutes for Biomedical Research (R.R.), Cambridge, MA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kashiwayanagi M. [Characteristics of olfactory epithelium and manipulations of neural functions in the brain by the intranasal administration]. YAKUGAKU ZASSHI 2014; 132:1247-53. [PMID: 23123715 DOI: 10.1248/yakushi.12-00229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Olfactory cells receive numerous odorants including toxic substances. To avoid complete loss of the olfactory function by toxic odorants, continuous neurogenesis of olfactory cells occurs even at adulthood. Newly generated olfactory neurons extend their axons to the olfactory bulb. Various molecules including polypeptides, proteins, polynucleotides, virus, and cells administrated intranasally have been reported to move from the olfactory epithelium to the brain tissue via the olfactory epithelium-olfactory bulb pathway. I discuss the pathway of substances intranasally administrated to the brain from the view point of characteristics of the olfactory epithelium.
Collapse
Affiliation(s)
- Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
81
|
Harmon BT, Aly AE, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther 2014; 21:514-21. [PMID: 24670994 DOI: 10.1038/gt.2014.28] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
Viral vectors are a commonly used method for gene therapy because of their highly efficient transduction of cells. However, many vectors have a small genetic capacity, and their potential for immunogenicity can limit their usefulness. Moreover, for disorders of the central nervous system (CNS), the need for invasive surgical delivery of viruses to the brain also detracts from their clinical applicability. Here, we show that intranasal delivery of unimolecularly compacted DNA nanoparticles (DNA NPs), which consist of single molecules of plasmid DNA encoding enhanced green fluorescent protein (eGFP) compacted with 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK30PEG10k), successfully transfect cells in the rat brain. Direct eGFP fluorescence microscopy, eGFP-immunohistochemistry (IHC) and eGFP-ELISA all demonstrated eGFP protein expression 2 days after intranasal delivery. eGFP-positive cells were found throughout the rostral-caudal axis of the brain, most often adjacent to capillary endothelial cells. This localization provides evidence for distribution of the nasally administered DNA NPs via perivascular flow. These results are the first report that intranasal delivery of DNA NPs can bypass the blood-brain barrier and transfect and express the encoded protein in the rat brain, affording a non-invasive approach for gene therapy of CNS disorders.
Collapse
Affiliation(s)
- B T Harmon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - A E Aly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - L Padegimas
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - M J Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | - B L Waszczak
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
82
|
Fletcher L, Isgor E, Sprague S, Williams LH, Alajajian BB, Jimenez DF, Digicaylioglu M. Spatial distribution of insulin-like growth factor binding protein-2 following hypoxic-ischemic injury. BMC Neurosci 2013; 14:158. [PMID: 24359611 PMCID: PMC3911968 DOI: 10.1186/1471-2202-14-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2's endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies. The purpose of this study was to determine if there are any changes in IGFBP-2 protein levels and distribution in ischemic brain and also to determine if IGFBPs play a role in the transportation of intranasally administered IGF-I into the brain. RESULTS Using an in vitro approach, we show that ischemia causes changes in the distribution of IGFBP-2 in primary cortical neurons and astrocytes. In addition, we show using the transient middle cerebral artery occlusion (MCAO) model in mice that there is a significant increase in IGFBP-2 levels in the stroke penumbra and core after 72 h. This correlated with an overall increase in IGF-I after stroke, with the highest levels of IGF-I in the stroke core after 72 h. Brain sections from stroke mice indicate that neurons and astrocytes located in the penumbra both have increased expression of IGFBP-2, however, IGFBP-2 was not detected in microglia. We used binding competition studies to show that intranasally administered exogenous IGF-I uptake into the brain is not receptor mediated and is likely facilitated by IGFBPs. CONCLUSIONS The change in protein levels indicates that IGFBP-2 plays an IGF-I-dependent and -independent role in the brain's acute (neuroprotection) and chronic (tissue remodeling) response to hypoxic-ischemic injury. Competition studies indicate that IGFBPs may have a role in rapid transportation of exogenous IGF-I from the nasal tissue to the site of injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murat Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
83
|
Lopes C, Ribeiro M, Duarte AI, Humbert S, Saudou F, Pereira de Almeida L, Hayden M, Rego AC. IGF-1 intranasal administration rescues Huntington's disease phenotypes in YAC128 mice. Mol Neurobiol 2013; 49:1126-42. [PMID: 24347322 DOI: 10.1007/s12035-013-8585-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Pusic AD, Kraig RP. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 2013; 62:284-99. [PMID: 24339157 DOI: 10.1002/glia.22606] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 12/18/2022]
Abstract
Although commonly considered a disease of white matter, gray matter demyelination is increasingly recognized as an important component of multiple sclerosis (MS) pathogenesis, particularly in the secondary progressive disease phase. Extent of damage to gray matter is strongly correlated to decline in memory and cognitive dysfunction in MS patients. Aging likewise occurs with cognitive decline from myelin loss, and age-associated failure to remyelinate significantly contributes to MS progression. However, recent evidence demonstrates that parabiotic exposure of aged animals to a youthful systemic milieu can promote oligodendrocyte precursor cell (OPC) differentiation and improve remyelination. In the current study, we focus on this potential for stimulating remyelination, and show it involves serum exosomes that increase OPCs and their differentiation into mature myelin-producing cells-both under control conditions and after acute demyelination. Environmental enrichment (EE) of aging animals produced exosomes that mimicked this promyelinating effect. Additionally, stimulating OPC differentiation via exosomes derived from environmentally enriched animals is unlikely to deplete progenitors, as EE itself promotes proliferation of neural stem cells. We found that both young and EE serum-derived exosomes were enriched in miR-219, which is necessary and sufficient for production of myelinating oligodendrocytes by reducing the expression of inhibitory regulators of differentiation. Accordingly, protein transcript levels of these miR-219 target mRNAs decreased following exosome application to slice cultures. Finally, nasal administration of exosomes to aging rats also enhanced myelination. Thus, peripheral circulating cells in young or environmentally enriched animals produce exosomes that may be a useful therapy for remyelination.
Collapse
Affiliation(s)
- Aya D Pusic
- Department of Neurology, The University of Chicago, Chicago, Illinois; Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
85
|
IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol 2013; 266:12-23. [PMID: 24275061 DOI: 10.1016/j.jneuroim.2013.10.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/21/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) release exosomes with different characteristics based on stimulus. Here, we showed that DC cultures stimulated with low-level IFNγ released exosomes (IFNγ-DC-Exos) that contained microRNA species that can increase baseline myelination, reduce oxidative stress, and improve remyelination following acute lysolecithin-induced demyelination. Furthermore, nasally administered IFNγ-DC-Exos increased CNS myelination in vivo. IFNγ-DC-Exos were preferentially taken up by oligodendrocytes, suggesting that they directly impact oligodendrocytes to increase myelination. Thus, our results show great potential for use of these IFNγ-DC-Exos as a therapeutic to promote remyelination in multiple sclerosis and dysmyelinating syndromes.
Collapse
|
86
|
siRNA Treatment: "A Sword-in-the-Stone" for Acute Brain Injuries. Genes (Basel) 2013; 4:435-56. [PMID: 24705212 PMCID: PMC3924829 DOI: 10.3390/genes4030435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/17/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022] Open
Abstract
Ever since the discovery of small interfering ribonucleic acid (siRNA) a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.
Collapse
|
87
|
Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 2013; 6:834-51. [PMID: 24006091 DOI: 10.1007/s12265-013-9508-6] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | | | | | | | | |
Collapse
|
88
|
Grinberg YY, Dibbern ME, Levasseur VA, Kraig RP. Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. J Neurochem 2013; 126:662-72. [PMID: 23586526 PMCID: PMC3752330 DOI: 10.1111/jnc.12267] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/10/2013] [Indexed: 11/26/2022]
Abstract
Spreading depression (SD), the most likely cause of migraine aura and perhaps migraine, occurs with increased oxidative stress (OS). SD increases reactive oxygen species (ROS), and ROS, in turn, can signal to increase neuronal excitability,which includes increased SD susceptibility. SD also elevates tumor necrosis factor-α (TNF-α), which increases neuronal excitability. Accordingly, we probed for the cellular origin of OS from SD and its relationship to TNF-α, which might promote SD, using rat hippocampal slice cultures. We observed significantly increased OS from SD in astrocytes and microglia but not in neurons or oligodendrocytes. Since insulin-like growth factor-1 (IGF-1) mitigates OS from SD, we determined the cell types responsible for this effect. We found that IGF-1 significantly decreased microglial but not astrocytic OS from SD. We also show that IGF-1 abrogated the SD-induced TNF-α increase. Furthermore, TNF-α application increased microglial but not astrocytic OS, an effect abrogated by IGF-1. Next,we showed that SD increased SD susceptibility, and does so via TNF-α. This work suggests that microglia promote SD via increased and interrelated ROS and TNF-α signaling. Thus, IGF-1 mitigation of microglial ROS and TNF-α responses maybe targets for novel therapeutics development to prevent SD, and perhaps migraine.
Collapse
Affiliation(s)
- Yelena Y. Grinberg
- Department of Neurology, MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
- Committee on Neurobiology; MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
| | - Megan E. Dibbern
- Department of Neurology, MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
| | - Victoria A. Levasseur
- Department of Neurology, MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
| | - Richard P. Kraig
- Department of Neurology, MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
- Committee on Neurobiology; MC2030, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, U.S.A., Tel: 773-702-0802, Fax: 773-702-5175
| |
Collapse
|
89
|
De Geyter D, Stoop W, Sarre S, De Keyser J, Kooijman R. Neuroprotective efficacy of subcutaneous insulin-like growth factor-I administration in normotensive and hypertensive rats with an ischemic stroke. Neuroscience 2013; 250:253-62. [PMID: 23872393 DOI: 10.1016/j.neuroscience.2013.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to test the insulin-like growth factor-I (IGF-I) as a neuroprotective agent in a rat model for ischemic stroke and to compare its neuroprotective effects in conscious normotensive and spontaneously hypertensive rats. The effects of subcutaneous IGF-I injection were investigated in both rat strains using the endothelin-1 rat model for ischemic stroke. Motor-sensory functions were measured using the Neurological Deficit Score. Infarct size was assessed by Cresyl Violet staining. Subcutaneous administration of IGF-I resulted in significantly reduced infarct volumes and an increase in motor-sensory functions in normotensive rats. In these rats, IGF-I did not modulate blood flow in the striatum and had no effect on the activation of astrocytes as assessed by GFAP staining. In hypertensive rats, the protective effects of IGF-I were smaller and not always significant. Furthermore, IGF-I significantly reduced microglial activation in the cortex of hypertensive rats, but not in normotensive rats. More detailed studies are required to find out whether the reduction by IGF-I of microglial activation contributes to an impairment IGF-I treatment efficacy. Indeed, we have shown before that microglia in hypertensive rats have different properties compared to those in control rats, as they exhibit a reduced responsiveness to ischemic stroke and lipopolysaccharide.
Collapse
Affiliation(s)
- D De Geyter
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, Belgium; Department of Pharmacology, VUB Brussel, Belgium
| | | | | | | | | |
Collapse
|
90
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
92
|
Si XA, Xi J, Kim J, Zhou Y, Zhong H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respir Physiol Neurobiol 2013; 186:22-32. [PMID: 23313127 DOI: 10.1016/j.resp.2012.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022]
Abstract
Direct nose-to-brain drug delivery has multiple advantages over conventional intravenous deliveries. However, demonstration of its clinical feasibility is still in adolescence due to the lack of devices that effectively deliver medications to olfactory epitheliums. The objective of this study is to numerically evaluate two olfactory delivery protocols in a MRI-based nasal airway model: (1) pointed drug release in the vestibule (i.e., vestibular intubation), and (2) deep intubation with mediation released close to the olfactory mucosa. Influences of breathing maneuvers on olfactory delivery were also studied. It was observed that the front vestibular release gave higher olfactory dosage than the posterior vestibular release, and deep intubations yielded better outcomes than vestibular intubations. Specifically, the optimal olfactory dosage was achieved with deep intubation during inhalation. Breath-holding or exhalation, which was initially considered advantageous, resulted in unfocused depositions throughout the nasal turbinate region. Results of this study have implications for developing new olfactory delivery devices and for optimizing delivery protocols specific to patients' ventilations.
Collapse
Affiliation(s)
- Xiuhua A Si
- Department of Engineering, Calvin College, Grand Rapids, MI, United States
| | | | | | | | | |
Collapse
|
93
|
Sun C, Meng Q, Zhang L, Wang H, Quirion R, Zheng W. Glutamate attenuates IGF-1 receptor tyrosine phosphorylation in mouse brain: Possible significance in ischemic brain damage. Neurosci Res 2012; 74:290-7. [DOI: 10.1016/j.neures.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
94
|
D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124:599-614. [PMID: 22825593 PMCID: PMC3700359 DOI: 10.1007/s00401-012-1018-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | | | - Niroshana Anandasabapathy
- The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Bulloch
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Neuroimmunology and Inflammation Program, The Rockefeller University, 1230 York Avenue, Box 165, New York, NY 10065, USA
| |
Collapse
|
95
|
Almeida* AJ, Florindo HF. Nanocarriers Overcoming the Nasal Barriers: Physiological Considerations and Mechanistic Issues. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
96
|
Guardia Clausi M, Paez PM, Campagnoni AT, Pasquini LA, Pasquini JM. Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event. Glia 2012; 60:1540-54. [PMID: 22736466 DOI: 10.1002/glia.22374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/31/2012] [Indexed: 12/22/2022]
Abstract
Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain.
Collapse
Affiliation(s)
- Mariano Guardia Clausi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, and Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | | | | | | | | |
Collapse
|
97
|
Privalova AM, Gulyaeva NV, Bukreeva TV. Intranasal administration: a prospective drug delivery route to the brain. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
98
|
Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X, Hu H, Li X, Xiao J. bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 2012; 212:137-46. [PMID: 22609091 DOI: 10.1016/j.toxlet.2012.05.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 12/22/2022]
Abstract
Extensive research has focused on finding effective strategies to prevent or improve recovery from brain ischemia and reperfusion (I/R) injury. The basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some central nervous system (CNS) disorders, including ischemic injury. In this study, we demonstrate that bFGF administration can improve locomotor activity and inhibit the ER stress induced in the CA1 region of the hippocampus in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response proteins CHOP, XBP-1, ATF-6 and caspase-12 that are induced by H(2)O(2) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signaling pathways, PI3K/Akt and ERK1/2. Inhibition of the PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and U0126, respectively, partially reduce the protective effect of bFGF. Taken together, our results indicate that the neuroprotective role of bFGF involves the suppression of ER stress in the ischemic oxidative damage models and oxidative stress-induced PC12 cell injury, and these effects is underlying the activation of the PI3K/Akt and ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhouguang Wang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 744] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|
100
|
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 2012; 67:599-610. [PMID: 22451468 DOI: 10.1093/gerona/gls072] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|