51
|
O'Riordan KJ, Hu NW, Rowan MJ. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Sci Rep 2018. [PMID: 29535352 PMCID: PMC5849730 DOI: 10.1038/s41598-018-22768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic long-term depression (LTD) is believed to underlie critical mnemonic processes in the adult hippocampus. The roles of the metabotropic and ionotropic actions of glutamate in the induction of synaptic LTD by electrical low-frequency stimulation (LFS) in the living adult animal is poorly understood. Here we examined the requirement for metabotropic glutamate (mGlu) and NMDA receptors in LTD induction in anaesthetized adult rats. LTD induction was primarily dependent on NMDA receptors and required the involvement of both the ion channel function and GluN2B subunit of the receptor. Endogenous mGlu5 receptor activation necessitated the local application of relatively high doses of either competitive or non-competitive NMDA receptor antagonists to block LTD induction. Moreover, boosting endogenous glutamate activation of mGlu5 receptors with a positive allosteric modulator lowered the threshold for NMDA receptor-dependent LTD induction by weak LFS. The present data provide support in the living animal that NMDA receptor-dependent LTD is boosted by endogenously released glutamate activation of mGlu5 receptors. Given the predominant perisynaptic location of mGlu5 receptors, the present findings emphasize the need to further evaluate the contribution and mechanisms of these receptors in NMDA receptor-dependent synaptic plasticity in the adult hippocampus in vivo.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland. .,Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China. .,Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, 450001, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland.
| |
Collapse
|
52
|
Moro F, Orrù A, Marzo CM, Di Clemente A, Cervo L. mGluR2/3 mediates short-term control of nicotine-seeking by acute systemic N-acetylcysteine. Addict Biol 2018; 23:28-40. [PMID: 27558879 DOI: 10.1111/adb.12443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
Chronic self-administration of nicotine induces maladaptive changes in the cortico-accumbal glutamate (Glu) network. Consequently, re-exposure to nicotine-associated cues raises extracellular Glu in the nucleus accumbens reinstating drug-seeking. Restoring basal concentrations of extracellular Glu, thereby increasing tonic activation of the presynaptic group II metabotropic Glu receptors (mGluR2/3) with N-acetylcysteine (N-AC), might offer a valid therapeutic approach for maintaining smoking abstinence. Although N-AC modulates nicotine-seeking behavior by drug-associated stimuli in abstinent rats, it is still unclear whether it occurs through activation of mGluR2/3. Male Wistar rats were trained to associate discriminative stimuli (SD s) with the availability of intravenous nicotine (0.03 mg/kg/65 µl/2-second/infusion) or oral saccharin (100 µl of 50 mg/l) self-administration versus non-reward. Reinforced response was followed by a cue signaling 20-second time-out (CSs). Once the training criterion was met, rats underwent lever press extinction, without reinforcers, SD s and CSs. Re-exposure to nicotine or saccharin SD+ /CS+ , but not non-reward SD- /CS- , revived responding on the previously reinforced lever. Acute N-AC, 100 but not 60 or 30 mg/kg i.p., reduced cue-induced nicotine-seeking. N-AC 100 mg/kg did not modify cue-induced saccharin-seeking behavior or influenced locomotor activity. Blocking mGluR2/3 with the selective antagonist LY341495, 1 mg/kg i.p., completely prevented the antirelapse activity of N-AC. The finding that N-AC prevents cue-induced nicotine-seeking by stimulating mGluR2/3 might indicate a therapeutic opportunity for acute cue-controlled nicotine-seeking. Future studies could evaluate the persistent effects of chronic N-AC in promoting enduring suppression of nicotine-cue conditioned responding.
Collapse
Affiliation(s)
- Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Claudio Marcello Marzo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Italy
| |
Collapse
|
53
|
García-Bea A, Bermudez I, Harrison PJ, Lane TA. A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding. J Psychopharmacol 2017; 31:1519-1526. [PMID: 28655286 PMCID: PMC5714154 DOI: 10.1177/0269881117715597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As well as being expressed as a full-length transcript, the group II metabotropic glutamate receptor 3 (GRM3, mGlu3) gene is expressed as an mRNA isoform which lacks exon 4 (GRM3Δ4) and which is predicted to encode a protein with a novel C terminus (called mGlu3Δ4). This variant may contribute to the mechanism by which GRM3 acts as a schizophrenia risk gene. However, little is known about the properties or function of mGlu3Δ4. Here, using transiently transfected HEK293T/17 cells, we confirm that GRM3Δ4 cDNA is translated, with mGlu3Δ4 existing as a homodimer as well as a monomer, and localizing primarily to cell membranes including the plasma membrane. Co-immunoprecipitation shows that mGlu3Δ4 interacts with canonical mGlu3. mGlu3Δ4 does not bind the mGlu2/3 antagonist [3H]LY341495, but the presence of mGlu3Δ4 reduces binding of [3H]LY341495 to mGlu3, paralleled by a decrease in the abundance of membrane-associated mGlu3. These experiments indicate that mGlu3Δ4 may negatively modulate mGlu3, and thereby impact on the roles of GRM3/mGlu3 in schizophrenia and as a therapeutic target.
Collapse
Affiliation(s)
| | | | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, UK,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK,Paul J Harrison, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Warneford Hospital, UK
| |
Collapse
|
54
|
Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex. J Neurosci 2017; 37:9353-9360. [PMID: 28821676 DOI: 10.1523/jneurosci.0334-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity, which may involve changes in NMDAR subunit composition and function. However, the effects of reexposure to light after dark rearing from birth on LTP induction have not been explored. Here, we showed that the light exposure after dark rearing revealed a novel NMDAR independent form of LTP in the layer 2/3 pyramidal cells in visual cortex of mice of both sexes, which is dependent on mGluR5 activation and is associated with intracellular Ca2+ rise, CaMKII activity, PKC activity, and intact protein synthesis. Moreover, the capacity to induce mGluR-dependent LTP is transient: it only occurs when mice of both sexes reared in the dark from birth are exposed to light for 10-12 h, and it does not occur in vision-experienced, male mice, even after prolonged exposure to dark. Thus, the mGluR5-LTP unmasked by short visual experience can only be observed after dark rearing but not after dark exposure. These results suggested that, as in hippocampus, in layer 2/3 of visual cortex, there is coexistence of two distinct activity-dependent systems of synaptic plasticity, NMDAR-LTP, and mGluR5-LTP. The mGluR5-LTP unmasked by short visual experience may play a critical role in the faster establishment of normal receptive field properties.SIGNIFICANCE STATEMENT LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity. NMDAR-dependent form of LTP in visual cortex has been well characterized. Here, we report that an NMDAR-independent form of LTP can be promoted by novel visual experience on dark-reared mice, characterized as dependent on intracellular Ca2+ rise, PKC activity, and intact protein synthesis and also requires the activation of mGluR5. These findings suggest that, in layer 2/3 of visual cortex, as in hippocampus, there is coexistence of two distinct activity-dependent systems of synaptic plasticity.
Collapse
|
55
|
Koren D, Grove JCR, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron 2017; 95:914-927.e4. [PMID: 28781167 DOI: 10.1016/j.neuron.2017.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here, we find that metabotropic glutamate receptor 2 (mGluR2) signaling, which acts on voltage-gated calcium channels in SACs, selectively restricts cross-sector signal propagation in SACs, but does not affect local dendritic computation within individual sectors. mGluR2 signaling ensures sufficient electrotonic isolation of dendritic sectors to prevent their depolarization during non-preferred motion, yet enables controlled multicompartmental signal integration that enhances responses to preferred motion. Furthermore, mGluR2-mediated dendritic compartmentalization in SACs is important for the functional output of direction-selective ganglion cells (DSGCs). Therefore, our results directly link modulation of dendritic compartmentalization to circuit-level encoding of motion direction in the retina.
Collapse
Affiliation(s)
- David Koren
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - James C R Grove
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
56
|
Chaki S. mGlu2/3 Receptor Antagonists as Novel Antidepressants. Trends Pharmacol Sci 2017; 38:569-580. [DOI: 10.1016/j.tips.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
|
57
|
Fasano C, Rocchetti J, Pietrajtis K, Zander JF, Manseau F, Sakae DY, Marcus-Sells M, Ramet L, Morel LJ, Carrel D, Dumas S, Bolte S, Bernard V, Vigneault E, Goutagny R, Ahnert-Hilger G, Giros B, Daumas S, Williams S, El Mestikawy S. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells. Front Cell Neurosci 2017; 11:140. [PMID: 28559797 PMCID: PMC5432579 DOI: 10.3389/fncel.2017.00140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.
Collapse
Affiliation(s)
- Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Jill Rocchetti
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Katarzyna Pietrajtis
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | | | - Frédéric Manseau
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Diana Y Sakae
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Maya Marcus-Sells
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Lauriane Ramet
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Lydie J Morel
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Damien Carrel
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250Paris, France
| | | | - Susanne Bolte
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris SeineParis, France
| | - Véronique Bernard
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Erika Vigneault
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Romain Goutagny
- CNRS UMR 7364, Team NCD, Université de StrasbourgStrasbourg, France
| | | | - Bruno Giros
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Stéphanie Daumas
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| | - Sylvain Williams
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, MontrealQC, Canada.,Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Medicale, Institut de Biologie Paris Seine, Neuroscience Paris Seine (NPS)Paris, France
| |
Collapse
|
58
|
Gjørlund MD, Carlsen EMM, Kønig AB, Dmytrieva O, Petersen AV, Jacobsen J, Berezin V, Perrier JF, Owczarek S. Soluble Ectodomain of Neuroligin 1 Decreases Synaptic Activity by Activating Metabotropic Glutamate Receptor 2. Front Mol Neurosci 2017; 10:116. [PMID: 28515678 PMCID: PMC5413576 DOI: 10.3389/fnmol.2017.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Synaptic cell adhesion molecules represent important targets for neuronal activity-dependent proteolysis. Postsynaptic neuroligins (NLs) form trans-synaptic complexes with presynaptic neurexins (NXs). Both NXs and NLs are cleaved from the cell surface by metalloproteases in an activity-dependent manner, releasing a soluble extracellular fragment and membrane-tethered C-terminal fragment. The cleavage of NL1 depresses synaptic transmission, but the mechanism by which this occurs is unknown. Metabotropic glutamate receptor 2 (mGluR2) are located primarily at the periphery of presynaptic terminals, where they inhibit the formation of cyclic adenosine monophosphate (cAMP) and consequently suppress the release of glutamate and decrease synaptic transmission. In the present study, we found that the soluble ectodomain of NL1 binds to and activates mGluR2 in both neurons and heterologous cells, resulting in a decrease in cAMP formation. In a slice preparation from the hippocampus of mice, NL1 inhibited the release of glutamate from mossy fibers that project to CA3 pyramidal neurons. The presynaptic effect of NL1 was abolished in the presence of a selective antagonist for mGluR2. Thus, our data suggest that the soluble extracellular domain of NL1 functionally interacts with mGluR2 and thereby decreases synaptic strength.
Collapse
Affiliation(s)
- Michelle D Gjørlund
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark.,Neuronal Signaling Laboratory, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Eva M M Carlsen
- Neuronal Signaling Laboratory, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Andreas B Kønig
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Oksana Dmytrieva
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Anders V Petersen
- Neuronal Signaling Laboratory, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Jacob Jacobsen
- Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Vladimir Berezin
- Neuronal Signaling Laboratory, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Jean-François Perrier
- Neuronal Signaling Laboratory, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Sylwia Owczarek
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
59
|
Copeland CS, Wall TM, Sims RE, Neale SA, Nisenbaum E, Parri HR, Salt TE. Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation. Neuropharmacology 2017; 121:100-110. [PMID: 28416443 PMCID: PMC5480778 DOI: 10.1016/j.neuropharm.2017.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 11/27/2022]
Abstract
Astrocytes possess many of the same signalling molecules as neurons. However, the role of astrocytes in information processing, if any, is unknown. Using electrophysiological and imaging methods, we report the first evidence that astrocytes modulate neuronal sensory inhibition in the rodent thalamus. We found that mGlu2 receptor activity reduces inhibitory transmission from the thalamic reticular nucleus to the somatosensory ventrobasal thalamus (VB): mIPSC frequencies in VB slices were reduced by the Group II mGlu receptor agonist LY354740, an effect potentiated by mGlu2 positive allosteric modulator (PAM) LY487379 co-application (30 nM LY354740: 10.0 ± 1.6% reduction; 30 nM LY354740 & 30 μM LY487379: 34.6 ± 5.2% reduction). We then showed activation of mGlu2 receptors on astrocytes: astrocytic intracellular calcium levels were elevated by the Group II agonist, which were further potentiated upon mGlu2 PAM co-application (300 nM LY354740: ratio amplitude 0.016 ± 0.002; 300 nM LY354740 & 30 μM LY487379: ratio amplitude 0.035 ± 0.003). We then demonstrated mGlu2-dependent astrocytic disinhibition of VB neurons in vivo: VB neuronal responses to vibrissae stimulation trains were disinhibited by the Group II agonist and the mGlu2 PAM (LY354740: 156 ± 12% of control; LY487379: 144 ± 10% of control). Presence of the glial inhibitor fluorocitrate abolished the mGlu2 PAM effect (91 ± 5% of control), suggesting the mGlu2 component to the Group II effect can be attributed to activation of mGlu2 receptors localised on astrocytic processes within the VB. Gating of thalamocortical function via astrocyte activation represents a novel sensory processing mechanism. As this thalamocortical circuitry is important in discriminative processes, this demonstrates the importance of astrocytes in synaptic processes underlying attention and cognition. Thalamic inhibition is mediated by both neuronal and astrocytic mechanisms. Group II mGlu receptor (mGlu2/3) activation can modulate this thalamic inhibition. Thalamic astrocytes can be activated upon mGlu2 receptor stimulation. This process may enable relevant activity to be discerned from background noise. Targeting astrocytic mGlu2 receptors may therefore affect attention and cognition.
Collapse
Affiliation(s)
- C S Copeland
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK; St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - T M Wall
- Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285, USA.
| | - R E Sims
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - S A Neale
- Neurexpert Limited, Kemp House, 152-160 City Road, London, EC1V 2NX, UK.
| | - E Nisenbaum
- Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285, USA.
| | - H R Parri
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - T E Salt
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
60
|
Preclinical predictors that the orthosteric mGlu2/3 receptor antagonist LY3020371 will not engender ketamine-associated neurotoxic, motor, cognitive, subjective, or abuse-liability-related effects. Pharmacol Biochem Behav 2017; 155:43-55. [DOI: 10.1016/j.pbb.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022]
|
61
|
Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca 2. Int J Mol Sci 2017; 18:ijms18030672. [PMID: 28335551 PMCID: PMC5372683 DOI: 10.3390/ijms18030672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs.
Collapse
|
62
|
Olszewski RT, Janczura KJ, Bzdega T, Der EK, Venzor F, O'Rourke B, Hark TJ, Craddock KE, Balasubramanian S, Moussa C, Neale JH. NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer's, and Ethanol Intoxication. Neurochem Res 2017; 42:2646-2657. [PMID: 28285415 PMCID: PMC5603630 DOI: 10.1007/s11064-017-2181-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications.
Collapse
Affiliation(s)
- Rafal T Olszewski
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Karolina J Janczura
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Tomasz Bzdega
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Elise K Der
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Faustino Venzor
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Brennen O'Rourke
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Timothy J Hark
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Kirsten E Craddock
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Shankar Balasubramanian
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Charbel Moussa
- Department of Neuroscience, Georgetown University, Washington, D.C., 20057, USA
| | - Joseph H Neale
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA.
| |
Collapse
|
63
|
Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem 2017; 141:507-519. [DOI: 10.1111/jnc.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Ida Marabese
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Livio Luongo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Francesca Guida
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Vito de Novellis
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| |
Collapse
|
64
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering TJ, Wichmann J, Gatti S. Reprint of Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2017; 115:115-127. [PMID: 28216000 DOI: 10.1016/j.neuropharm.2016.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
Abstract
The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist 3[H]-LY354740 and mGlu2 PAM 3[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of 3[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of 3[H]-LY354740 binding sites. 3[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr3.40 and Asn5.46. Also of remark, in the described experimental conditions S731A (Ser5.42) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- L Lundström
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - C Bissantz
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Beck
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - M Dellenbach
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - T J Woltering
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Wichmann
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - S Gatti
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland.
| |
Collapse
|
65
|
Nguyen MD, Wang Y, Ganesana M, Venton BJ. Transient Adenosine Release Is Modulated by NMDA and GABA B Receptors. ACS Chem Neurosci 2017; 8:376-385. [PMID: 28071892 DOI: 10.1021/acschemneuro.6b00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenosine is a neuroprotective agent that modulates neurotransmission and is modulated by other neurotransmitters. Spontaneous, transient adenosine is a recently discovered mode of signaling where adenosine is released and cleared from the extracellular space quickly, in less than three seconds. Spontaneous adenosine release is regulated by adenosine A1 and A2a receptors, but regulation by other neurotransmitter receptors has not been studied. Here, we examined the effect of glutamate and GABA receptors on the concentration and frequency of spontaneous, transient adenosine release by measuring adenosine with fast-scan cyclic voltammetry in the rat caudate-putamen. The glutamate NMDA antagonist, 3-(R-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 6.25 mg/kg i.p.), increased the frequency of adenosine transients and the concentration of individual transients, but NMDA (agonist, 50 mg/kg, i.p.) did not change the frequency. In contrast, antagonists of other glutamate receptors had no effect on the frequency or concentration of transient adenosine release, including the AMPA antagonist NBQX (15 mg/kg i.p.) and the mGlu2/3 glutamate receptor antagonist LY 341495 (5 mg/kg i.p.). The GABAB antagonist CGP 52432 (30 mg/kg i.p.) significantly decreased the number of adenosine release events while the GABAB agonist baclofen (4 mg/kg i.p.) increased the frequency of adenosine release. The GABAA antagonist bicuculline (5 mg/kg i.p.) had no significant effects on adenosine. NMDA and GABAB likely act presynaptically, affecting the overall cell excitability for vesicular release. The ability to regulate adenosine with NMDA and GABAB receptors will help control the modulatory effects of transient adenosine release.
Collapse
Affiliation(s)
- Michael D. Nguyen
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Wang
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mallikarjunarao Ganesana
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
66
|
Vengeliene V, Bespalov A, Roßmanith M, Horschitz S, Berger S, Relo AL, Noori HR, Schneider P, Enkel T, Bartsch D, Schneider M, Behl B, Hansson AC, Schloss P, Spanagel R. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene. Dis Model Mech 2017; 10:451-461. [PMID: 28167616 PMCID: PMC5399565 DOI: 10.1242/dmm.027623] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. Summary: The first systematic RDoc study of a disease mechanism proposes dopamine transporter DAT mutant rats as a model for drug development, targeting a hyperdopaminergic state.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Anton Bespalov
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Martin Roßmanith
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sandra Horschitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Stefan Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Ana L Relo
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Peggy Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Thomas Enkel
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Berthold Behl
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| |
Collapse
|
67
|
Yi H, Geng L, Black A, Talmon G, Berim L, Wang J. The miR-487b-3p/GRM3/TGFβ signaling axis is an important regulator of colon cancer tumorigenesis. Oncogene 2017; 36:3477-3489. [PMID: 28114282 PMCID: PMC5472494 DOI: 10.1038/onc.2016.499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Molecular targeting is an import strategy to treat advanced colon cancer. The current study demonstrates that expression of GRM3, a metabotropic glutamate receptor mainly expressed in mammalian central nervous system, is significantly upregulated in majority of human colonic adenocarcinomas tested and colon cancer cell lines. Knockdown of GRM3 expression or inhibition of GRM3 activation in colon cancer cells reduces cell survival and anchorage-independent growth in vitro and inhibits tumor growth in vivo. Mechanistically, GRM3 antagonizes TGFβ-mediated activation of protein kinase A and inhibition of AKT. In addition, TGFβ signaling increases GRM3 protein stability and knockdown of GRM3 enhances TGFβ-mediated tumor suppressor function. Further studies indicate that miR-487b-3p directly targets GRM3. Overexpression of miR-487b-3p mimics the effects of GRM3 knockdown and suppresses the tumorigenicity of colon cancer cells in vivo. Expression of miR-487b-3p is decreased in colon adenocarcinomas and inversely correlates with GRM3 expression. Taken together, these studies indicate that upregulation of GRM3 expression is a functionally important molecular event in colon cancer, and that GRM3 is a promising molecular target for colon cancer treatment. This is particularly interesting and important from a therapeutic standpoint because numerous metabotropic glutamate receptor antagonists are available, many of which have been found unsuitable for treatment of neuropsychiatric disorders for reasons such as inability to readily penetrate blood brain barriers. Since GRM3 is upregulated in colon cancer, but rarely expressed in normal peripheral tissues, targeting GRM3 with such agents would not likely cause adverse neurological or peripheral side effects, making GRM3 an attractive and specific molecular target for colon cancer treatment.
Collapse
Affiliation(s)
- H Yi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Geng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - G Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Berim
- Department of Internal Medicine Oncology/Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
68
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr Neuropharmacol 2017; 14:504-13. [PMID: 27306064 PMCID: PMC4983754 DOI: 10.2174/1570159x13666150716165323] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7's presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N`-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug's apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7's effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
69
|
Chappell MD, Li R, Smith SC, Dressman BA, Tromiczak EG, Tripp AE, Blanco MJ, Vetman T, Quimby SJ, Matt J, Britton TC, Fivush AM, Schkeryantz JM, Mayhugh D, Erickson JA, Bures MG, Jaramillo C, Carpintero M, Diego JED, Barberis M, Garcia-Cerrada S, Soriano JF, Antonysamy S, Atwell S, MacEwan I, Condon B, Sougias C, Wang J, Zhang A, Conners K, Groshong C, Wasserman SR, Koss JW, Witkin JM, Li X, Overshiner C, Wafford KA, Seidel W, Wang XS, Heinz BA, Swanson S, Catlow JT, Bedwell DW, Monn JA, Mitch CH, Ornstein PL. Discovery of (1S,2R,3S,4S,5R,6R)-2-Amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid Hydrochloride (LY3020371·HCl): A Potent, Metabotropic Glutamate 2/3 Receptor Antagonist with Antidepressant-Like Activity. J Med Chem 2016; 59:10974-10993. [DOI: 10.1021/acs.jmedchem.6b01119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlos Jaramillo
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mercedes Carpintero
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José Eugenio de Diego
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mario Barberis
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Susana Garcia-Cerrada
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José F. Soriano
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Stephen Antonysamy
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Shane Atwell
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Iain MacEwan
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Bradley Condon
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Christine Sougias
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Jing Wang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Aiping Zhang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Kris Conners
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Chris Groshong
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Stephen R. Wasserman
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - John W. Koss
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | | | | | - Keith A. Wafford
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | - Wesley Seidel
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering T, Wichmann J, Gatti S. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2016; 111:253-265. [DOI: 10.1016/j.neuropharm.2016.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023]
|
71
|
Tzour A, Leibovich H, Barkai O, Biala Y, Lev S, Yaari Y, Binshtok AM. K V 7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal hyperexcitability. J Physiol 2016; 595:713-738. [PMID: 27506492 DOI: 10.1113/jp272547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Neuroinflammation associated with CNS insults leads to neuronal hyperexcitability, which may culminate in epileptiform discharges. Application of the endotoxin lipopolysaccharide (LPS) to brain tissue initiates a neuroinflammatory cascade, providing an experimental model to study the mechanisms of neuroinflammatory neuronal hyperexcitability. Here we show that LPS application to hippocampal slices markedly enhances the excitability of CA1 pyramidal cells by inhibiting a specific potassium current, the M-current, generated by KV 7/M channels, which controls the excitability of almost every neuron in the CNS. The LPS-induced M-current inhibition is triggered by sequential activation of microglia, astrocytes and pyramidal cells, mediated by metabotropic purinergic and glutamatergic transmission, leading to blockade of KV 7/M channels by calcium released from intracellular stores. The identification of the downstream molecular target of neuroinflammation, namely the KV 7/M channel, potentially has far reaching implications for the understanding and treatment of many acute and chronic brain disorders. ABSTRACT Acute brain insults and many chronic brain diseases manifest an innate inflammatory response. The hallmark of this response is glia activation, which promotes repair of damaged tissue, but also induces structural and functional changes that may lead to an increase in neuronal excitability. We have investigated the mechanisms involved in the modulation of neuronal activity by acute inflammation. Initiating inflammatory responses in hippocampal tissue rapidly led to neuronal depolarization and repetitive firing even in the absence of active synaptic transmission. This action was mediated by a complex metabotropic purinergic and glutamatergic glia-to-neuron signalling cascade, leading to the blockade of neuronal KV 7/M channels by Ca2+ released from internal stores. These channels generate the low voltage-activating, non-inactivating M-type K+ current (M-current) that controls intrinsic neuronal excitability, and its inhibition was the predominant cause of the inflammation-induced hyperexcitability. Our discovery that the ubiquitous KV 7/M channels are the downstream target of the inflammation-induced cascade, has far reaching implications for the understanding and treatment of many acute and chronic brain disorders.
Collapse
Affiliation(s)
- Arik Tzour
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Hodaya Leibovich
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| |
Collapse
|
72
|
Odagaki Y, Kinoshita M, Ota T. Comparative analysis of pharmacological properties of xanomeline and N-desmethylclozapine in rat brain membranes. J Psychopharmacol 2016; 30:896-912. [PMID: 27464743 DOI: 10.1177/0269881116658989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND 3(3-Hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine (xanomeline) and N-desmethylclozapine are of special interest as promising antipsychotics with better efficacy, especially for negative symptoms and/or cognitive/affective impairment. METHODS The guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding experiments were performed using (1) conventional filtration technique, (2) antibody-capture scintillation proximity assay, and (3) immunoprecipitation method, in brain membranes prepared from rat cerebral cortex, hippocampus, and striatum. RESULTS Xanomeline had agonistic activity at the M1 muscarinic acetylcholine receptor (mAChR) in all brain regions, as well as at the 5-HT1A receptor in the cerebral cortex and hippocampus. On the other hand, N-desmethylclozapine exhibited slight agonistic effects on the M1 mAChR, and agonistic properties at the 5-HT1A receptor in the cerebral cortex and hippocampus. This compound also behaved as an agonist at the δ-opioid receptor in the cerebral cortex and striatum. In addition, the stimulatory effects of N-desmethylclozapine on [(35)S]GTPγS binding to Gαi/o were partially mediated through mAChRs (most likely M4 mAChR subtype), at least in striatum. CONCLUSIONS The agonistic effects on the mAChRs (particularly M1 subtype, and also probably M4 subtype), the 5-HT1A receptor and the δ-opioid receptor expressed in native brain tissues, some of which are common to both compounds and others specific to either, likely shape the unique beneficial effectiveness of both compounds in the treatment for schizophrenic patients. These characteristics provide us with a clue to develop newer antipsychotics, beyond the framework of dopamine D2 receptor antagonism, that are effective not only on positive symptoms but also on negative symptoms and/or cognitive/affective impairment.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masakazu Kinoshita
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshio Ota
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
73
|
Witkin JM, Monn JA, Schoepp DD, Li X, Overshiner C, Mitchell SN, Carter G, Johnson B, Rasmussen K, Rorick-Kehn LM. The Rapidly Acting Antidepressant Ketamine and the mGlu2/3 Receptor Antagonist LY341495 Rapidly Engage Dopaminergic Mood Circuits. J Pharmacol Exp Ther 2016; 358:71-82. [PMID: 27189960 DOI: 10.1124/jpet.116.233627] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022] Open
Abstract
Ketamine is a rapidly acting antidepressant in patients with treatment-resistant depression (TRD). Although the mechanisms underlying these effects are not fully established, inquiry to date has focused on the triggering of synaptogenesis transduction pathways via glutamatergic mechanisms. Preclinical data suggest that blockade of metabotropic glutamate (mGlu2/3) receptors shares many overlapping features and mechanisms with ketamine and may also provide rapid efficacy for TRD patients. Central dopamine circuitry is recognized as an end target for mood regulation and hedonic valuation and yet has been largely neglected in mechanistic studies of antidepressant-relevant effects of ketamine. Herein, we evaluated the changes in dopaminergic neurotransmission after acute administration of ketamine and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid ] in preclinical models using electrophysiologic, neurochemical, and behavioral endpoints. When given acutely, both ketamine and LY341495, but not the selective serotonin reuptake inhibitor (SSRI) citalopram, increased the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), increased extracellular levels of dopamine in the nucleus accumbens and prefrontal cortex, and enhanced the locomotor stimulatory effects of the dopamine D2/3 receptor agonist quinpirole. Further, both ketamine and LY341495 reduced immobility time in the tail-suspension assay in CD1 mice, which are relatively resistant to SSRI antidepressants. Both the VTA neuronal activation and the antidepressant phenotype induced by ketamine and LY341495 were attenuated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo- (9CI)-benzo[f]quinoxaline-7-sulfonamide, indicating AMPA-dependent effects. These findings provide another overlapping mechanism of action of ketamine and mGlu2/3 receptor antagonism that differentiates them from conventional antidepressants and thus support the potential rapidly acting antidepressant actions of mGlu2/3 receptor antagonism in patients.
Collapse
Affiliation(s)
- J M Witkin
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - J A Monn
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - D D Schoepp
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - X Li
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - C Overshiner
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - S N Mitchell
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - G Carter
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - B Johnson
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - K Rasmussen
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| | - L M Rorick-Kehn
- Departments of Neuroscience and Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.M.W., J.A.M., D.D.S., X.L., C.O., B.J., K.R., L.M.R.-K.), and Windlesham, Surrey, UK (S.N.M., G.C.)
| |
Collapse
|
74
|
McOmish CE, Pavey G, Gibbons A, Hopper S, Udawela M, Scarr E, Dean B. Lower [3H]LY341495 binding to mGlu2/3 receptors in the anterior cingulate of subjects with major depressive disorder but not bipolar disorder or schizophrenia. J Affect Disord 2016; 190:241-248. [PMID: 26521087 DOI: 10.1016/j.jad.2015.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The glutamatergic system has recently been implicated in the pathogenesis and treatment of major depressive disorders(MDD) and mGlu2/3 receptors play an important role in regulating glutamatergic tone. We therefore measured cortical levels of mGlu2/3 to determine if they were changed in MDD. METHODS Binding parameters for [(3)H]LY341495 (mGlu2/3 antagonist) were determined to allow optimized in situ binding with autoradiography to be completed using a number of CNS regions. Subsequently, density of [(3)H]LY341495 binding was measured in BA24(anterior cingulate cortex), BA17(visual cortex) and BA46(dorsolateral prefrontal cortex) from subjects with MDD, Bipolar Disorder(BPD), Schizophrenia(SCZ), and controls, as well as rats treated with imipramine (20mg/kg), fluoxetine (10mg/kg), or vehicle. RESULTS mGlu2/3 are widely expressed throughout the brain with high levels observed in cortex. [(3)H]LY341495 binding was significantly lower in BA24 from subjects with MDD (mean ± SEM=141.3 ± 14.65 fmol/ETE) relative to controls (184.9 ± 7.76 fmol/ETE; Cohen's d=1.005, p<0.05). There were no other differences with diagnoses, and chronic antidepressant treatment in rats had minimal effect on binding. LIMITATIONS Using this approach we are unable to determine whether the change represents fluctuations in mGlu2, mGlu3, or both. Moreover, using postmortem tissue we are unable to dissociate the irrevocable confound of suicidality upon binding levels. CONCLUSION We have demonstrated lower [(3)H]LY341495 binding levels in MDD in BA24-a brain region implicated in depression. Moreover we show that the lower levels are unlikely to be the result of antidepressant treatment. These data suggest that levels of either mGlu2 and/or mGlu3 are affected in the aetiology of MDD.
Collapse
Affiliation(s)
- Caitlin E McOmish
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia; Department of Psychiatry, Columbia University, New York, NY, USA.
| | - Geoff Pavey
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Shaun Hopper
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health and the University of Melbourne, Victoria, Australia; Department of Psychiatry, University of Melbourne, Victoria, Australia
| |
Collapse
|
75
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
76
|
Witkin JM, Ornstein PL, Mitch CH, Li R, Smith SC, Heinz BA, Wang XS, Xiang C, Carter JH, Anderson WH, Li X, Broad LM, Pasqui F, Fitzjohn SM, Sanger HE, Smith JL, Catlow J, Swanson S, Monn JA. In vitro pharmacological and rat pharmacokinetic characterization of LY3020371, a potent and selective mGlu 2/3 receptor antagonist. Neuropharmacology 2015; 115:100-114. [PMID: 26748052 DOI: 10.1016/j.neuropharm.2015.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
Metabotropic glutamate 2/3 (mGlu2/3) receptors are of considerable interest owing to their role in modulating glutamate transmission via presynaptic, postsynaptic and glial mechanisms. As part of our ongoing efforts to identify novel ligands for these receptors, we have discovered (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid; (LY3020371), a potent and selective orthosteric mGlu2/3 receptor antagonist. In this account, we characterize the effects of LY3020371 in membranes and cells expressing human recombinant mGlu receptor subtypes as well as in native rodent and human brain tissue preparations, providing important translational information for this molecule. In membranes from cells expressing recombinant human mGlu2 and mGlu3 receptor subtypes, LY3020371.HCl competitively displaced binding of the mGlu2/3 agonist ligand [3H]-459477 with high affinity (hmGlu2 Ki = 5.26 nM; hmGlu3 Ki = 2.50 nM). In cells expressing hmGlu2 receptors, LY3020371.HCl potently blocked mGlu2/3 agonist (DCG-IV)-inhibited, forskolin-stimulated cAMP formation (IC50 = 16.2 nM), an effect that was similarly observed in hmGlu3-expressing cells (IC50 = 6.21 nM). Evaluation of LY3020371 in cells expressing the other human mGlu receptor subtypes revealed high mGlu2/3 receptor selectivity. In rat native tissue assays, LY3020371 demonstrated effective displacement of [3H]-459477 from frontal cortical membranes (Ki = 33 nM), and functional antagonist activity in cortical synaptosomes measuring both the reversal of agonist-suppressed second messenger production (IC50 = 29 nM) and agonist-inhibited, K+-evoked glutamate release (IC50 = 86 nM). Antagonism was fully recapitulated in both primary cultured cortical neurons where LY3020371 blocked agonist-suppressed spontaneous Ca2+ oscillations (IC50 = 34 nM) and in an intact hippocampal slice preparation (IC50 = 46 nM). Functional antagonist activity was similarly demonstrated in synaptosomes prepared from epileptic human cortical or hippocampal tissues, suggesting a translation of the mGlu2/3 antagonist pharmacology from rat to human. Intravenous dosing of LY3020371 in rats led to cerebrospinal fluid drug levels that are expected to effectively block mGlu2/3 receptors in vivo. Taken together, these results establish LY3020371 as an important new pharmacological tool for studying mGlu2/3 receptors in vitro and in vivo. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paul L Ornstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Charles H Mitch
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Renhua Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Stephon C Smith
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Beverly A Heinz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xu-Shan Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chuanxi Xiang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Joan H Carter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Wesley H Anderson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xia Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | - John Catlow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - James A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
77
|
Monn JA, Prieto L, Taboada L, Hao J, Reinhard MR, Henry SS, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Getman BG, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist. J Med Chem 2015; 58:7526-48. [PMID: 26313429 DOI: 10.1021/acs.jmedchem.5b01124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.
Collapse
Affiliation(s)
- James A Monn
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Matthew R Reinhard
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven S Henry
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Christopher D Beadle
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - S Richard Baker
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David K Clawson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Beverly A Heinz
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Joan H Carter
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Brian G Getman
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - John T Catlow
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Bryan G Johnson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David B Shaw
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David L McKinzie
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| |
Collapse
|
78
|
mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats. PLoS One 2015; 10:e0144017. [PMID: 26658273 PMCID: PMC4684355 DOI: 10.1371/journal.pone.0144017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted homeostatic recovery sleep. From the translational perspective, the present rodent findings suggest that mGluR2 positive allosteric modulation has therapeutic potential based on its superior long term efficacy over agonists in psychiatric disorders, particularly of those commonly occurring with REM sleep overdrive.
Collapse
|
79
|
Bragina L, Bonifacino T, Bassi S, Milanese M, Bonanno G, Conti F. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front Cell Neurosci 2015; 9:345. [PMID: 26388733 PMCID: PMC4559644 DOI: 10.3389/fncel.2015.00345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/18/2015] [Indexed: 12/04/2022] Open
Abstract
Metabotropic glutamate (Glu) receptors (mGluRs) and GABAB receptors are highly expressed at presynaptic sites. To verify the possibility that the two classes of metabotropic receptors contribute to axon terminals heterogeneity, we studied the localization of mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 in VGLUT1-, VGLUT2-, and VGAT- positive terminals in the cerebral cortex of adult rats. VGLUT1-positive puncta expressed mGluR1α (∼5%), mGluR5 (∼6%), mGluR2/3 (∼22%), mGluR7 (∼17%), and GABAB1 (∼40%); VGLUT2-positive terminals expressed mGluR1α (∼10%), mGluR5 (∼11%), mGluR2/3 (∼20%), mGluR7 (∼28%), and GABAB1 (∼25%); whereas VGAT-positive puncta expressed mGluR1α (∼27%), mGluR5 (∼24%), mGluR2/3 (∼38%), mGluR7 (∼31%), and GABAB1 (∼19%). Control experiments ruled out the possibility that postsynaptic mGluRs and GABAB1 might have significantly biased our results. We also performed functional assays in synaptosomal preparations, and showed that all agonists modify Glu and GABA levels, which return to baseline upon exposure to antagonists. Overall, these findings indicate that mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 expression differ significantly between glutamatergic and GABAergic axon terminals, and that the robust expression of heteroreceptors may contribute to the homeostatic regulation of the balance between excitation and inhibition.
Collapse
Affiliation(s)
- Luca Bragina
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani – Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
| | - Silvia Bassi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
- Center of Excellence for Biomedical Research, University of GenoaGenoa, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani – Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy
- Fondazione di Medicina Molecolare, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
80
|
Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci 2015; 35:7600-15. [PMID: 25972184 DOI: 10.1523/jneurosci.4543-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders.
Collapse
|
81
|
Asseri K, Puil E, Schwarz S, MacLeod B. Group II metabotropic glutamate receptor antagonism prevents the antiallodynic effects of R-isovaline. Neuroscience 2015; 293:151-6. [DOI: 10.1016/j.neuroscience.2015.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/21/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
82
|
Kiritoshi T, Neugebauer V. Group II mGluRs modulate baseline and arthritis pain-related synaptic transmission in the rat medial prefrontal cortex. Neuropharmacology 2015; 95:388-94. [PMID: 25912637 DOI: 10.1016/j.neuropharm.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
The medial prefrontal cortex (mPFC) serves executive control functions that are impaired in neuropsychiatric disorders and pain. Therefore, restoring normal synaptic transmission and output is a desirable goal. Group II metabotropic glutamate receptors mGluR2 and mGluR3 are highly expressed in the mPFC, modulate synaptic transmission, and have been targeted for neuropsychiatric disorders. Their pain-related modulatory effects in the mPFC remain to be determined. Here we evaluated their ability to restore pyramidal output in an arthritis pain model. Whole-cell patch-clamp recordings of layer V mPFC pyramidal cells show that a selective group II mGluR agonist (LY379268) decreased synaptically evoked spiking in brain slices from normal and arthritic rats. Effects were concentration-dependent and reversed by a selective antagonist (LY341495). LY379268 decreased monosynaptic excitatory postsynaptic currents (EPSCs) and glutamate-driven inhibitory postsynaptic currents (IPSCs) in the pain model. Effects on EPSCs preceded those on IPSCs and could explain the overall inhibitory effect on pyramidal output. LY379268 decreased frequency, but not amplitude, of miniature EPSCs without affecting miniature IPSCs. LY341495 alone increased synaptically evoked spiking under normal conditions and in the pain model. In conclusion, group II mGluRs act on glutamatergic synapses to inhibit direct excitatory transmission and feedforward inhibition onto pyramidal cells. Their net effect is decreased pyramidal cell output. Facilitatory effects of a group II antagonist suggest the system may be tonically active to control pyramidal output. Failure to release the inhibitory tone and enhance mPFC output could be a mechanism for the development or persistence of a disease state such as pain.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, 3601 4th Street, Mail Stop 6592, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
83
|
Hikichi H, Hiyoshi T, Marumo T, Tomishima Y, Kaku A, Iida I, Urabe H, Tamita T, Yasuhara A, Karasawa JI, Chaki S. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J Pharmacol Sci 2015; 127:352-61. [PMID: 25837934 DOI: 10.1016/j.jphs.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/01/2023] Open
Abstract
Glutamatergic dysfunction has been implicated in psychiatric disorders such as schizophrenia. The stimulation of metabotropic glutamate (mGlu) 2 receptor has been shown to be effective in a number of animal models of schizophrenia. In this study, we investigated the antipsychotic profiles of (2S)-5-methyl-2-{[4-(1,1,1-trifluoro-2-methylpropan-2-yl)phenoxy]methyl}-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide (TASP0443294), a newly synthesized positive allosteric modulator of the mGlu2 receptor. TASP0443294 potentiated the response of human mGlu2 and rat mGlu2 receptors to glutamate with EC50 values of 277 and 149 nM, respectively, without affecting the glutamate response of human mGlu3 receptor. TASP0443294 was distributed in the brain and cerebrospinal fluid after peroral administration in rats. The peroral administration of TASP0443294 inhibited methamphetamine-induced hyperlocomotion in rats, which was attenuated by an mGlu2/3 receptor antagonist, and improved social memory impairment induced by 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) in rats. Furthermore, TASP0443294 reduced the ketamine-induced basal gamma hyperactivity in the prefrontal cortex and suppressed rapid eye movement (REM) sleep in rats. These findings indicate that TASP0443294 is an mGlu2 receptor positive allosteric modulator with antipsychotic activity, and that the suppression of aberrant gamma oscillations and REM sleep could be considered as neurophysiological biomarkers for TASP0443294.
Collapse
Affiliation(s)
- Hirohiko Hikichi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Tetsuaki Hiyoshi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Toshiyuki Marumo
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Yasumitsu Tomishima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Ayaka Kaku
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Izumi Iida
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Hiroki Urabe
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Tomoko Tamita
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Akito Yasuhara
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Jun-ichi Karasawa
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Shigeyuki Chaki
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
84
|
Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr Opin Pharmacol 2015; 20:64-72. [DOI: 10.1016/j.coph.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
85
|
Copeland CS, Neale SA, Salt TE. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors. Neuropharmacology 2015; 92:16-24. [PMID: 25576798 PMCID: PMC4362770 DOI: 10.1016/j.neuropharm.2014.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/02/2014] [Accepted: 12/26/2014] [Indexed: 01/03/2023]
Abstract
The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. There is heterogeneity in Group II receptor physiology across thalamic nuclei. This differential distribution may facilitate multimodal thalamic nuclei functions. Group II receptor activation reduced burst firing via reducing thalamic inhibition. Increased thalamic inhibition precipitates impairments in cognitive function. Activating the Group II receptors may therefore enhance cognitive function.
Collapse
Affiliation(s)
- C S Copeland
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - S A Neale
- Neurexpert Ltd, Kemp House, City Road, London, EC1V 2NX, UK.
| | - T E Salt
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
86
|
Zak JD, Whitesell JD, Schoppa NE. Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength. J Neurophysiol 2014; 113:1907-20. [PMID: 25552635 DOI: 10.1152/jn.00222.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the neural circuitry within glomeruli of the olfactory bulb plays a major role in affecting information flow between olfactory sensory neurons (OSNs) and output mitral cells (MCs). Glutamatergic external tufted (ET) cells, located at glomeruli, can act as intermediary cells in excitation between OSNs and MCs, whereas activation of MCs by OSNs is, in turn, suppressed by inhibitory synapses onto ET cells. In this study, we used patch-clamp recordings in rat olfactory bulb slices to examine the function of metabotropic glutamate receptors (mGluRs) in altering these glomerular signaling mechanisms. We found that activation of group II mGluRs profoundly reduced inhibition onto ET cells evoked by OSN stimulation. The mGluRs that mediated disinhibition were located on presynaptic GABAergic periglomerular cells and appeared to be activated by glutamate transients derived from dendrites in glomeruli. In terms of glomerular output, the mGluR-mediated reduction in GABA release led to a robust increase in the number of action potentials evoked by OSN stimulation in both ET cells and MCs. Importantly, however, the enhanced excitation was specific to when a glomerulus was strongly activated by OSN inputs. By being selective for strong vs. weak glomerular activation, mGluR-mediated disinhibition provides a mechanism to enhance the contrast in odor signals that activate OSN inputs into a single glomerulus at varying intensities.
Collapse
Affiliation(s)
- Joseph D Zak
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Jennifer D Whitesell
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Nathan E Schoppa
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
87
|
Laukkanen V, Kärkkäinen O, Kupila J, Kautiainen H, Tiihonen J, Storvik M. Increased metabotropic glutamate 2/3 receptor binding in the perigenual anterior cingulate cortex of Cloninger type 2 alcoholics: a whole-hemisphere autoradiography study. Alcohol Alcohol 2014; 50:62-7. [PMID: 25425009 DOI: 10.1093/alcalc/agu081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Metabotropic glutamate receptors 2 and 3 (mGluR2/3) contribute to control the level of glutamate in the synapse. In rodents, mGluR2/3 agonists attenuate the reinstatement of alcohol-seeking behavior. Linking possible alterations of the mGluR2/3 system to the etiology and type of alcoholism could provide valuable information for the development of novel mGluR2/3 function modulating therapies in addiction treatment. To date, mGluR2/3 binding density has not been studied in human alcoholics. We aimed to investigate the possible differences in mGluR2/3 binding between Cloninger type 1 anxiety-prone and type 2 impulsive alcoholics and controls. METHODS We performed a post-mortem whole-hemisphere autoradiography to study the mGluR2/3 binding density of 9 type 1 alcoholics, 8 type 2 alcoholics and 10 controls. [(3)H]LY341495, a potent group II metabotropic glutamate receptor antagonist, was used as the radio-ligand with l-glutamate as a displacer. RESULTS [(3)H]LY341495 binding density was statistically significantly increased (P = 0.046) in the perigenual anterior cingulate cortex (pACC) of type 2 alcoholics when compared with controls. In other brain areas, no significant difference between the groups was found. CONCLUSION This preliminary study suggests that impulsive type 2 alcoholics might have alterations in the mGluR2/3 function in the pACC, a brain area presumed to be involved in the control of drug-seeking behaviors and self-control.
Collapse
Affiliation(s)
- Virpi Laukkanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland Department of Psychiatry, Kuopio University Hospital, PO Box 1777, FI-70211 Kuopio, Finland
| | - Olli Kärkkäinen
- Department of Pharmacology and Toxicology, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Kupila
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, FI-00014 Helsinki, Finland Department of General Practice, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Sjukhuset, 17176 Stockholm, Sweden
| | - Markus Storvik
- Department of Pharmacology and Toxicology, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
88
|
Garthwaite G, Hampden-Smith K, Wilson GW, Goodwin DA, Garthwaite J. Nitric oxide targets oligodendrocytes and promotes their morphological differentiation. Glia 2014; 63:383-99. [PMID: 25327839 PMCID: PMC4309495 DOI: 10.1002/glia.22759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
Abstract
In the central nervous system, nitric oxide (NO) transmits signals from one neurone to another, or from neurones to astrocytes or blood vessels, but the possibility of oligodendrocytes being physiological NO targets has been largely ignored. By exploiting immunocytochemistry for cGMP, the second messenger generated on activation of NO receptors, oligodendrocytes were found to respond to both exogenous and endogenous NO in cerebellar slices from rats aged 8 days to adulthood. Atrial natriuretic peptide, which acts on membrane-associated guanylyl cyclase-coupled receptors, also raised oligodendrocyte cGMP in cerebellar slices. The main endogenous source of NO accessing oligodendrocytes appeared to be the neuronal NO synthase isoform, which was active even under basal conditions and in a manner that was independent of glutamate receptors. Oligodendrocytes in brainstem slices were also shown to be potential NO targets. In contrast, in the optic nerve, oligodendrocyte cGMP was raised by natriuretic peptides but not NO. When cultures of cerebral cortex were continuously exposed to low NO concentrations (estimated as 40–90 pM), oligodendrocytes responded with a striking increase in arborization. This stimulation of oligodendrocyte growth could be replicated by low concentrations of 8-bromo-cGMP (maximum effect at 1 µM). It is concluded that oligodendrocytes are probably widespread targets for physiological NO (or natriuretic peptide) signals, with the resulting rise in cGMP serving to enhance their growth and maturation. NO might help coordinate the myelination of axons to the ongoing level of neuronal activity during development and could potentially contribute to adaptive changes in myelination in the adult.
Collapse
Affiliation(s)
- Giti Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
89
|
Zup SL, Edwards NS, McCarthy MM. Sex- and age-dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus. Neuroscience 2014; 281:77-87. [PMID: 25264034 DOI: 10.1016/j.neuroscience.2014.09.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/31/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal neurons must maintain control over cytosolic calcium levels, especially during development, as excitation and calcium flux are necessary for proper growth and function. But excessive calcium can lead to excitotoxic cell death. Previous work suggests that neonatal male and female hippocampal neurons regulate cytosolic calcium differently, thereby leading to differential susceptibility to excitotoxic damage. Hippocampal neurons are also exposed to gonadal hormones during development and express high levels of androgen receptors. Androgens have both neuroprotective and neurotoxic effects in adults and developing animals. The present study sought to examine the effect of androgen on cell survival after an excitatory stimulus in the developing hippocampus, and whether androgen-mediated calcium regulation was the governing mechanism. We observed that glutamate did not induce robust or sexually dimorphic apoptosis in cultured hippocampal neurons at an early neonatal time point, but did 5days later - only in males. Further, pretreatment with the androgen dihydrotestosterone (DHT) protected males from apoptosis during this time, but had no effect on females. Calcium imaging of sex-specific cultures revealed that DHT decreased the peak of intracellular calcium induced by glutamate, but only in males. To determine a possible mechanism for this androgen neuroprotection and calcium regulation, we quantified three calcium regulatory proteins, plasma membrane calcium ATPase1 (PMCA1), sodium/calcium exchanger1 (NCX1), and the sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2). Surprisingly, there was no sex difference in the level of any of the three proteins. Treatment with DHT significantly decreased PMCA1 and NCX1, but increased SERCA2 protein levels in very young animals but not at a later timepoint. Taken together, these data suggest a complex interaction of sex, hormones, calcium regulation and developmental age; however androgens acting during the first week of life are implicated in regulation of hippocampal cell death and may be an underlying mechanism for sexually dimorphic apoptosis.
Collapse
Affiliation(s)
- S L Zup
- Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, United States; Department of Psychology, University of Massachusetts Boston, Boston, MA 02125, United States.
| | - N S Edwards
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - M M McCarthy
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
90
|
Ohi Y, Kimura S, Haji A. Modulation of glutamatergic transmission by metabotropic glutamate receptor activation in second-order neurons of the guinea pig nucleus tractus solitarius. Brain Res 2014; 1581:12-22. [DOI: 10.1016/j.brainres.2014.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
|
91
|
Mercier MS, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014; 39:1876-94. [PMID: 25146900 DOI: 10.1007/s11064-014-1415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023]
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
Collapse
Affiliation(s)
- Marion S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK,
| | | |
Collapse
|
92
|
Jang IS. Metabotropic glutamate receptors inhibit GABA release in rat histamine neurons. Neurosci Lett 2014; 579:106-9. [PMID: 25062585 DOI: 10.1016/j.neulet.2014.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
Abstract
The modulation of GABAergic transmission by metabotropic glutamate (mGlu) receptors was examined in histaminergic neurons using a conventional whole-cell patch clamp technique. DHPG, a selective group I mGlu receptor agonist, had no effect on GABAergic inhibitory postsynaptic currents (IPSCs). However, DCG-IV (1μМ) and L-AP4 (1μМ), selective group II or III mGlu receptor agonists, respectively, decreased the amplitude of GABAergic IPSCs and simultaneously increased the paired-pulse ratio. The inhibitory effect of DCG-IV was completely blocked by 200nM LY341495, a group II and III mGlu receptor antagonist, and the inhibitory effect of L-AP4 was completely blocked by 10μМ LY341495. These results suggest that multiple mGlu receptors are involved in regulating the excitability of histaminergic neurons.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
93
|
Ahnaou A, Ver Donck L, Drinkenburg WHIM. Blockade of the metabotropic glutamate (mGluR2) modulates arousal through vigilance states transitions: evidence from sleep-wake EEG in rodents. Behav Brain Res 2014; 270:56-67. [PMID: 24821401 DOI: 10.1016/j.bbr.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/15/2014] [Accepted: 05/02/2014] [Indexed: 02/03/2023]
Abstract
Accumulating data continue to support the therapeutic potential of glutamate metabotropic (mGluR2) receptors for treatment of psychiatric disorders such as depression, anxiety and schizophrenia. Glutamate neurotransmission is an integral component of sleep-wake mechanisms, which have translational relevance to assess on-target activity of drugs. Here, we investigated the influence of mGluR2 inactivation upon sleep-wake electroencephalogram (EEG) in rodents. Rats were administered with vehicle, the specific mGluR2 antagonist LY341495 (2.5, 5, 10mg/kg) or negative allosteric modulator (NAM) Ro-4491533 (2.5, 10 and 40 mg/kg) at lights onset. mGluR2 (-/-) mice were used to confirm the selectivity of functional response. Both LY341495 and Ro-4491533 induced an immediate and endured desynchronized cortical activity during 3-6h associated with enhanced theta and gamma oscillations and depressed slow oscillations during sleep. The arousal-promoting effect is consistent with the marked lengthening of sleep onset latency, an increased number of state transitions from light sleep to waking and the gradual increase in homeostatic compensatory sleep. The arousal response to mGluR2 blockade was not accompanied by sharp rebound hypersomnolence as found with the classical psycho-stimulant amphetamine. mGluR2 (-/-) mice and their WT littermates exhibited similar sleep-wake phenotype, while Ro-4491533 (40 mg/kg) enhanced waking associated with increased locomotor activity and body temperature in WT but not in mGluR2 (-/-) mice, which confirm the role of mGluR2 inactivation in the arousal response. Our results lend support for a role of mGluR2 blockade in promoting cortical arousal associated with theta/gamma oscillations as well as high thresholds transitions from sleep to waking.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neurosciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - L Ver Donck
- Department of Neurosciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neurosciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
94
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
95
|
Wenthur CJ, Morrison RD, Daniels JS, Conn PJ, Lindsley CW. Synthesis and SAR of substituted pyrazolo[1,5-a]quinazolines as dual mGlu(2)/mGlu(3) NAMs. Bioorg Med Chem Lett 2014; 24:2693-8. [PMID: 24794112 DOI: 10.1016/j.bmcl.2014.04.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Herein we report the design and synthesis of a series of substituted pyrazolo[1,5-a]quinazolin-5(4H)-ones as negative allosteric modulators of metabotropic glutamate receptors 2 and 3 (mGlu2 and mGlu3, respectively). Development of this series was initiated by reports that pyrazolo[1,5-a]quinazoline-derived scaffolds can yield compounds with activity at group II mGlu receptors which are prone to molecular switching following small structural changes. Several potent analogues, including 4-methyl-2-phenyl-8-(pyrimidin-5-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one (10b), were discovered with potent in vitro activity as dual mGlu2/mGlu3 NAMs, with excellent selectivity versus the other mGluRs.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
96
|
Botta P, Zucca A, Valenzuela CF. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input. Front Integr Neurosci 2014; 8:10. [PMID: 24567705 PMCID: PMC3915290 DOI: 10.3389/fnint.2014.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/16/2014] [Indexed: 11/13/2022] Open
Abstract
Golgi cells (GoCs) are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2)-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM) reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.
Collapse
Affiliation(s)
- Paolo Botta
- Department of Neurosciences, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - Aya Zucca
- Department of Neurosciences, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| |
Collapse
|
97
|
Megens AAHP, Hendrickx HMR, Hens KA, Talloen WJPE, Lavreysen H. mGlu(2) receptor-mediated modulation of conditioned avoidance behavior in rats. Eur J Pharmacol 2014; 727:130-9. [PMID: 24486391 DOI: 10.1016/j.ejphar.2014.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Inhibition of conditioned avoidance behavior in rats is generally considered predictive for antipsychotic activity in man. The present study investigated the mGlu2-mediated modulation of conditioned avoidance and compared mGlu2 agonists with available antipsychotics for their relative effects on conditioned avoidance behavior and locomotion. The mGlu2/3 orthosteric agonist 4-amino-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide (LY-404039) and mGlu2 positive allosteric modulator (PAM) 3-(cyclopropylmethyl)-7-(4-phenylpiperidin-1-yl)-8-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine (JNJ-42153605) inhibited avoidance and blocked escape behavior. The mGlu2/3 negative allosteric modulators (NAMs) 7-(dimethylamino)-4-(3-pyridin-3-ylphenyl)-8-(trifluoromethyl)-1,3-dihydro-2 H-1,5-benzodiazepin-2-one (JNJ-42112265) and 4-[3-(2,6-dimethylpyridin-4-yl)phenyl]-7-methyl-8-(trifluoromethyl)-1,3-dihydro-2H-1,5-benzodiazepin-2-one (RO-4491533) reversed the LY-404039-induced impairment of avoidance and escape. JNJ-42112265 also reversed the impairment of avoidance and escape induced by the mGlu2-specific PAM JNJ-42153605, suggesting that the effects on conditioned avoidance are specifically mGlu2-mediated. The mGlu2/3 antagonist (2-(2-carboxycyclopropyl)-3-(9H-xanthen-9-yl)-d-alanine (LY-341495; s.c.) reversed the LY-404039-induced escape impairment but failed to restore avoidance, suggesting interfering side effects. Like the tested antipsychotics, mGlu2/3 orthosteric and allosteric agonists inhibited avoidance behavior and locomotion at similar doses. Hence no clear-cut differences between mGlu2 modulators and currently available antipsychotics in the way they interfere with avoidance behavior in relation to inhibition of locomotion could be established.
Collapse
Affiliation(s)
- Anton A H P Megens
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | - Koen A Hens
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | - Hilde Lavreysen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| |
Collapse
|
98
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
99
|
Jørgensen CV, Jacobsen JP, Caron MG, Klein AB, Knudsen GM, Mikkelsen JD. Cerebral 5-HT2A receptor binding, but not mGluR2, is increased in tryptophan hydroxylase 2 decrease-of-function mice. Neurosci Lett 2013; 555:118-22. [PMID: 24055299 DOI: 10.1016/j.neulet.2013.08.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/05/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Transgenic mice with a knock-in (KI) of a tryptophan hydroxylase 2 (Tph2) R439H mutation, analogous to the Tph2 R441H single-nucleotide polymorphism originally identified in a late life depression cohort, have markedly reduced levels of 5-hydroxytryptamine (5-HT). These Tph2KI mice are therefore interesting as a putative translational model of low endogenous 5-HT function that allows for assessment of adaptive changes in different anatomical regions. Here, we determined 5-HT2A receptor binding in several brain regions using in vitro receptor autoradiography and two different radioligands. When using the 5-HT2A receptor selective antagonist radioligand (3)H-MDL100907, we found higher binding in the prefrontal cortex (10%, P=0.009), the striatum (26%, P=0.005), and the substantia nigra (21%, P=0.027). The increase was confirmed in the same regions with the 5-HT2A/C receptor agonist, (3)H-CIMBI-36 (2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine). 5-HT2A receptors establish heteromeric receptor complexes with metabotropic glutamate 2 receptors (mGluR2), but binding levels of the mGluR2/3 ligand (3)H-LY341495 were unaltered in brain areas with increased 5-HT2A receptor levels. These data show that in distinct anatomical regions, 5-HT2A receptor binding sites are up-regulated in 5-HT deficient mice, and this increase is not associated with changes in mGluR2 binding.
Collapse
|
100
|
Co-application of the GABAB receptor agonist, baclofen, and the mGlu receptor agonist, L-CCG-I, facilitates [3H]GABA release from rat cortical nerve endings. J Neural Transm (Vienna) 2013; 120:1641-9. [DOI: 10.1007/s00702-013-1057-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
|