51
|
He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, Wang X. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem 2019; 294:13973-13982. [PMID: 31362985 DOI: 10.1074/jbc.ra118.007051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.
Collapse
Affiliation(s)
- Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.,National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Xin Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
52
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
53
|
Michel V, Julio E, Candresse T, Cotucheau J, Decorps C, Volpatti R, Moury B, Glais L, Jacquot E, de Borne FD, Decroocq V, Gallois J, German-Retana S. A complex eIF4E locus impacts the durability of va resistance to Potato virus Y in tobacco. MOLECULAR PLANT PATHOLOGY 2019; 20:1051-1066. [PMID: 31115167 PMCID: PMC6640182 DOI: 10.1111/mpp.12810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many recessive resistances against potyviruses are mediated by eukaryotic translation initiation factor 4E (eIF4E). In tobacco, the va resistance gene commonly used to control Potato virus Y (PVY) corresponds to a large deletion affecting the eIF4E-1 gene on chromosome 21. Here, we compared the resistance durability conferred by various types of mutations affecting eIF4E-1 (deletions of various sizes, frameshift or nonsense mutations). The 'large deletion' genotypes displayed the broadest and most durable resistance, whereas frameshift and nonsense mutants displayed a less durable resistance, with rapid and frequent apparition of resistance-breaking variants. In addition, genetic and transcriptomic analyses revealed that resistance durability is strongly impacted by a complex genetic locus on chromosome 14, which contains three other eIF4E genes. One of these, eIF4E-3, is rearranged as a hybrid gene between eIF4E-2 and eIF4E-3 (eIF4E-2-3 ) in the genotypes showing the most durable resistance, while eIF4E-2 is differentially expressed between the tested varieties. RNA-seq and quantitative reverse transcriptase-polymerase chain reaction experiments demonstrated that eIF4E-2 expression level is positively correlated with resistance durability. These results suggest that besides the nature of the mutation affecting eIF4E-1, three factors linked with a complex locus may potentially impact va durability: loss of an integral eIF4E-3, presence of eIF4E-2-3 and overexpression of eIF4E-2. This latter gene might act as a decoy in a non-productive virus-plant interaction, limiting the ability of PVY to evolve towards resistance breaking. Taken together, these results show that va resistance durability can in large part be explained by complex redundancy effects in the eIF4E gene family.
Collapse
Affiliation(s)
- Vincent Michel
- UMR 1332 Biologie du Fruit et PathologieINRA, University Bordeaux71 Av. E. BourlauxVillenave d’Ornon Cedex CS 2003233882France
| | - Emilie Julio
- Seita Imperial TobaccoLa Tour24100BergeracFrance
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et PathologieINRA, University Bordeaux71 Av. E. BourlauxVillenave d’Ornon Cedex CS 2003233882France
| | | | | | | | - Benoît Moury
- Unité de Pathologie Végétale, INRA, Centre Recherche PACA, Domaine Saint MauriceMontfavet Cedex CS 60094F84143France
| | - Laurent Glais
- UMR IGEPPINRA, Domaine de la MotteBP 35327Le Rheu Cedex35653France
| | - Emmanuel Jacquot
- INRA‐Cirad‐Supagro Montpellier, UMR BGPIMontpellier Cedex34398France
| | | | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et PathologieINRA, University Bordeaux71 Av. E. BourlauxVillenave d’Ornon Cedex CS 2003233882France
| | - Jean‐Luc Gallois
- INRA‐UR 1052, GAFL Domaine St Maurice – CS 60094Montfavet CedexF‐84143
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et PathologieINRA, University Bordeaux71 Av. E. BourlauxVillenave d’Ornon Cedex CS 2003233882France
| |
Collapse
|
54
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
55
|
Volpon L, Osborne MJ, Borden KL. Biochemical and Structural Insights into the Eukaryotic Translation Initiation Factor eIF4E. Curr Protein Pept Sci 2019; 20:525-535. [DOI: 10.2174/1389203720666190110142438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
A major question in cell and cancer biology is concerned with understanding the flow of
information from gene to protein. Indeed, many studies indicate that the proteome can be decoupled
from the transcriptome. A major source of this decoupling is post-transcriptional regulation. The eukaryotic
translation initiation factor eIF4E serves as an excellent example of a protein that can modulate
the proteome at the post-transcriptional level. eIF4E is elevated in many cancers thus highlighting
the relevance of this mode of control to biology. In this review, we provide a brief overview of various
functions of eIF4E in RNA metabolism e.g. in nuclear-cytoplasmic RNA export, translation,
RNA stability and/or sequestration. We focus on the modalities of eIF4E regulation at the biochemical
and particularly structural level. In this instance, we describe not only the importance for the m7Gcap
eIF4E interaction but also of recently discovered non-traditional RNA-eIF4E interactions as well
as cap-independent activities of eIF4E. Further, we describe several distinct structural modalities used
by the cell and some viruses to regulate or co-opt eIF4E, substantially extending the types of proteins
that can regulate eIF4E from the traditional eIF4E-binding proteins (e.g. 4E-BP1 and eIF4G). Finally,
we provide an overview of the results of targeting eIF4E activity in the clinic.
Collapse
Affiliation(s)
- Laurent Volpon
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| | - Michael J. Osborne
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| | - Katherine L.B. Borden
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| |
Collapse
|
56
|
Miras M, Juárez M, Aranda MA. Resistance to the Emerging Moroccan Watermelon Mosaic Virus in Squash. PHYTOPATHOLOGY 2019; 109:895-903. [PMID: 30620690 DOI: 10.1094/phyto-10-18-0395-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Moroccan watermelon mosaic virus (MWMV) represents an emerging threat to cucurbit production in the Mediterranean Basin. We sequenced the near complete genome of MWMV-SQ10_1.1, a cloned Spanish isolate. MWMV-SQ10_1.1 has the typical potyvirus genomic structure, and phylogenetic analysis showed that it shared a common ancestor with other Mediterranean MWMV isolates. We used MWMV SQ10_1.1 to inoculate plants in a collection of commercial squash cultivars, including some described as potyvirus resistant. All inoculated plants from all cultivars showed severe infection symptoms. Twenty-four Cucurbita spp. accessions were then tested for their susceptibility to MWMV-SQ10_1.1. Plants of the C. ecuadorensis PI 432441 accession showed no symptoms and their enzyme-linked immunosorbent assay readings were similar to uninfected controls. Progeny analysis of F1 and F2 populations suggested that two recessive genes control PI 432441 resistance to MWMV. We hypothesized that this resistance could be associated with alleles of genes encoding the eukaryotic translation initiation factor 4E (eIF4E), particularly after determination of its recessive nature. A multiple sequence alignment including the two eIF4E ortholog sequences from PI 432441 (CeeIF4E1 and CeeIF4E2) identified three amino acid substitutions in CeeIF4E1 and two amino acid substitutions in CeeIF4E2 potentially involved in potyvirus resistance. Polymerase chain reaction markers for CeeIF4E1 and CeeIF4E2 were developed and used to genotype 156 F2 individuals already phenotyped; this analysis did not support an association of either CeeIF4E2 or CeeIF4E1 with MWMV resistance.
Collapse
Affiliation(s)
- Manuel Miras
- 1 Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain; and
| | - Miguel Juárez
- 2 Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, 03312 Orihuela, Alicante, Spain
| | - Miguel A Aranda
- 1 Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain; and
| |
Collapse
|
57
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
58
|
Schmitt-Keichinger C. Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4. Front Microbiol 2019; 10:17. [PMID: 30804892 PMCID: PMC6370628 DOI: 10.3389/fmicb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Genes conferring resistance to plant viruses fall in two categories; the dominant genes that mostly code for proteins with a nucleotide binding site and leucine rich repeats (NBS-LRR), and that directly or indirectly, recognize viral avirulence factors (Avr), and the recessive genes. The latter provide a so-called recessive resistance. They represent roughly half of the known resistance genes and are alleles of genes that play an important role in the virus life cycle. Conversely, all cellular genes critical for the viral infection virtually represent recessive resistance genes. Based on the well-documented case of recessive resistance mediated by eukaryotic translation initiation factors of the 4E/4G family, this review is intended to summarize the possible approaches to control viruses via their host interactors. Classically, resistant crops have been developed through introgression of natural variants of the susceptibility factor from compatible relatives or by random mutagenesis and screening. Transgenic methods have also been applied to engineer improved crops by overexpressing the translation factor either in its natural form or after directed mutagenesis. More recently, innovative approaches like silencing or genome editing have proven their great potential in model and crop plants. The advantages and limits of these different strategies are discussed. This example illustrates the need to identify and characterize more host factors involved in virus multiplication and to assess their application potential in the control of viral diseases.
Collapse
|
59
|
Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 06/09/2023]
Abstract
Plant viruses face an array of host defenses. Well-studied responses that protect against viruses include effector-triggered immunity, induced resistance (such as systemic acquired resistance mediated by salicylic acid), and RNA silencing. Recent work shows that viruses are also affected by non-host resistance mechanisms; previously thought to affect only bacteria, oomycetes and fungi. However, an enduring puzzle is how viruses are inhibited by several inducible host resistance mechanisms. Many viruses have been shown to encode factors that inhibit antiviral silencing. A number of these, including the cucumoviral 2b protein, the poytviral P1/HC-Pro and, respectively, geminivirus or satellite DNA-encoded proteins such as the C2 or βC1, also inhibit defensive signaling mediated by salicylic acid and jasmonic acid. This helps to explain how viruses can, in some cases, overcome host resistance. Additionally, interference with defensive signaling provides a means for viruses to manipulate plant-insect interactions. This is important because insects, particularly aphids and whiteflies, transmit many viruses. Indeed, there is now substantial evidence that viruses can enhance their own transmission through their effects on hosts. Even more surprisingly, it appears that viruses may be able to manipulate plant interactions with beneficial insects by, for example, 'paying back' their hosts by attracting pollinators.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, 55365, Republic of Korea
| |
Collapse
|
60
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
61
|
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:581-610. [PMID: 29979927 DOI: 10.1146/annurev-phyto-080417-050044] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| |
Collapse
|
62
|
Choi S, Lee JH, Kang WH, Kim J, Huy HN, Park SW, Son EH, Kwon JK, Kang BC. Identification of Cucumber mosaic resistance 2 ( cmr2) That Confers Resistance to a New Cucumber mosaic virus Isolate P1 (CMV-P1) in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2018; 9:1106. [PMID: 30186289 PMCID: PMC6110927 DOI: 10.3389/fpls.2018.01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 05/09/2023]
Abstract
Cucumber mosaic virus (CMV) is one of the most devastating phytopathogens of Capsicum. The single dominant resistance gene, Cucumber mosaic resistant 1 (Cmr1), that confers resistance to the CMV isolate P0 has been overcome by a new isolate (CMV-P1) after being deployed in pepper (Capsicum annuum) breeding for over 20 years. A recently identified Indian C. annuum cultivar, "Lam32," displays resistance to CMV-P1. In this study, we show that the resistance in "Lam32" is controlled by a single recessive gene, CMV resistance gene 2 (cmr2). We found that cmr2 conferred resistance to CMV strains including CMV-Korean, CMV-Fny, and CMV-P1, indicating that cmr2 provides a broad-spectrum type of resistance. We utilized two molecular mapping approaches to determine the chromosomal location of cmr2. Bulked segregant analysis (BSA) using amplified fragment-length polymorphism (AFLP) (BSA-AFLP) revealed one marker, cmvAFLP, located 16 cM from cmr2. BSA using the Affymetrix pepper array (BSA-Affy) identified a single-nucleotide polymorphism (SNP) marker (Affy4) located 2.3 cM from cmr2 on chromosome 8. We further screened a pepper germplasm collection of 4,197 accessions for additional CMV-P1 resistance sources and found that some accessions contained equivalent levels of resistance to that of "Lam32." Inheritance and allelism tests demonstrated that all the resistance sources examined contained cmr2. Our result thus provide genetic and molecular evidence that cmr2 is a single recessive gene that confers to pepper an unprecedented resistance to the dangerous new isolate CMV-P1 that had overcome Cmr1.
Collapse
Affiliation(s)
- Seula Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joonyup Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hoang N. Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Woo Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Ho Son
- RDA-Genebank Information Center, Jeonju, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
63
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
64
|
Dluge KL, Song Z, Wang B, Tyler Steede W, Xiao B, Liu Y, Dewey RE. Characterization of Nicotiana tabacum genotypes possessing deletion mutations that affect potyvirus resistance and the production of trichome exudates. BMC Genomics 2018; 19:484. [PMID: 29925313 PMCID: PMC6011258 DOI: 10.1186/s12864-018-4839-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Advances in genomics technologies are making it increasingly feasible to characterize breeding lines that carry traits of agronomic interest. Tobacco germplasm lines that carry loci designated VAM and va have been extensively investigated due to their association with potyvirus resistance (both VAM and va) and defects in leaf surface compounds originating from glandular trichomes (VAM only). Molecular studies and classical genetic analyses are consistent with the model that VAM and va represent deletion mutations in the same chromosomal region. In this study, we used RNA-seq analysis, together with emerging tobacco reference genome sequence information to characterize the genomic regions deleted in tobacco lines containing VAM and va. RESULTS Tobacco genotypes TI 1406 (VAM), K326-va and K326 (wild type) were analyzed using RNA-seq to generate a list of genes differentially expressed in TI 1406 and K326-va, versus the K326 control. Candidate genes were localized onto tobacco genome scaffolds and validated as being absent in only VAM, or missing in both VAM and va, through PCR analysis. These results enabled the construction of a map that predicted the relative extent of the VAM and va mutations on the distal end of chromosome 21. The RNA-seq analyses lead to the discovery that members of the cembratrienol synthase gene family are deleted in TI 1406. Transformation of TI 1406 with a cembratrienol synthase cDNA, however, did not recover the leaf chemistry phenotype. Common to both TI 1406 and K326-va was the absence of a gene encoding a specific isoform of a eukaryotic translation initiation factor (eiF4E1.S). Transformation experiments showed that ectopic expression of eiF4E1.S is sufficient to restore potyvirus susceptibility in plants possessing either the va or VAM mutant loci. CONCLUSIONS We have demonstrated the feasibility of using RNA-seq and emerging whole genome sequence resources in tobacco to characterize the VAM and va deletion mutants. These results lead to the discovery of genes underlying some of the phenotypic traits associated with these historically important loci. Additionally, initial size estimations were made for the deleted regions, and dominant markers were developed that are very close to one of the deletion junctions that defines va.
Collapse
Affiliation(s)
- Kurtis L. Dluge
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - W. Tyler Steede
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Ralph E. Dewey
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
65
|
Shukla A, Pagán I, García‐Arenal F. Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:1454-1465. [PMID: 29027740 PMCID: PMC6638070 DOI: 10.1111/mpp.12629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/27/2023]
Abstract
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low-virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high-virulent parasites would be attained through shortening of the pre-reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low-virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host-virus combinations and, at odds with theoretical predictions, is linked to longer pre-reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| |
Collapse
|
66
|
Silva MS, Arraes FBM, Campos MDA, Grossi-de-Sa M, Fernandez D, Cândido EDS, Cardoso MH, Franco OL, Grossi-de-Sa MF. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:72-84. [PMID: 29576088 DOI: 10.1016/j.plantsci.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Marilia Santos Silva
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil.
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil.
| | | | | | | | - Elizabete de Souza Cândido
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil; Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil.
| |
Collapse
|
67
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
68
|
Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3-GENES GENOMES GENETICS 2018; 8:427-445. [PMID: 29187420 PMCID: PMC5919740 DOI: 10.1534/g3.117.300438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.
Collapse
|
69
|
Meziadi C, Blanchet S, Geffroy V, Pflieger S. Genetic resistance against viruses in Phaseolus vulgaris L.: State of the art and future prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:39-50. [PMID: 29223341 DOI: 10.1016/j.plantsci.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses are obligate parasites that replicate intracellularly in many living organisms, including plants. Consequently, no chemicals are available that target only the virus without impacting host cells or vector organisms. The use of natural resistant varieties appears as the most reliable control strategy and remains the best and cheapest option in managing virus diseases, especially in the current ecological context of preserving biodiversity and environment in which the use of phytosanitary products becomes limited. Common bean is a grain legume cultivated mainly in Africa and Central-South America. Virus diseases of common bean have been extensively studied both by breeders to identify natural resistance genes in existing germplasms and by pathologists to understand the molecular bases of plant-virus interactions. Here we present a critical review in which we synthesize previous and recent information concerning 1) main viruses causing diseases in common bean, 2) genetic resistance to viruses in common bean, 3) the different resistance phenotypes observed and more particularly the effect of temperature, 4) the molecular bases of resistance genes to viruses in common bean, and 5) future prospects using transgenic-engineered resistant lines.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France.
| |
Collapse
|
70
|
Gal-On A, Fuchs M, Gray S. Generation of novel resistance genes using mutation and targeted gene editing. Curr Opin Virol 2017; 26:98-103. [DOI: 10.1016/j.coviro.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
71
|
Masumba EA, Kapinga F, Mkamilo G, Salum K, Kulembeka H, Rounsley S, Bredeson JV, Lyons JB, Rokhsar DS, Kanju E, Katari MS, Myburg AA, van der Merwe NA, Ferguson ME. QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2069-2090. [PMID: 28707249 PMCID: PMC5606945 DOI: 10.1007/s00122-017-2943-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/25/2017] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE QTL consistent across seasons were detected for resistance to cassava brown streak disease induced root necrosis and foliar symptoms. The CMD2 locus was detected in an East African landrace, and comprised two QTL. Cassava production in Africa is compromised by cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). To reduce costs and increase the precision of resistance breeding, a QTL study was conducted to identify molecular markers linked to resistance against these diseases. A bi-parental F1 mapping population was developed from a cross between the Tanzanian farmer varieties, Namikonga and Albert. A one-step genetic linkage map comprising 943 SNP markers and 18 linkage groups spanning 1776.2 cM was generated. Phenotypic data from 240 F1 progeny were obtained from two disease hotspots in Tanzania, over two successive seasons, 2013 and 2014. Two consistent QTLs linked to resistance to CBSD-induced root necrosis were identified in Namikonga on chromosomes II (qCBSDRNFc2Nm) and XI (qCBSDRNc11Nm) and a putative QTL on chromosome XVIII (qCBSDRNc18Nm). qCBSDRNFc2Nm was identified at Naliendele in both seasons. The same QTL was also associated with CBSD foliar resistance. qCBSDRNc11Nm was identified at Chambezi in both seasons, and was characterized by three peaks, spanning a distance of 253 kb. Twenty-seven genes were identified within this region including two LRR proteins and a signal recognition particle. In addition, two highly significant CMD resistance QTL (qCMDc12.1A and qCMDc12.2A) were detected in Albert, on chromosome 12. Both qCMDc12.1A and qCMDc12.2A lay within the range of markers reported earlier, defining the CMD2 locus. This is the first time that two loci have been identified within the CMD2 QTL, and in germplasm of apparent East African origin. Additional QTLs with minor effects on CBSD and CMD resistance were also identified.
Collapse
Affiliation(s)
- E A Masumba
- Sugarcane Research Institute, P. O. Box 30031, Kibaha, Tanzania
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- IITA, P.O. Box 30709-00100, Nairobi, Kenya
| | - F Kapinga
- Naliendele Agricultural Research Institute, P. O. Box 509, Mtwara, Tanzania
| | - G Mkamilo
- Naliendele Agricultural Research Institute, P. O. Box 509, Mtwara, Tanzania
| | - K Salum
- Ukiriguru Agricultural Research Institute, P. O. Box 1433, Mwanza, Tanzania
| | - H Kulembeka
- Ukiriguru Agricultural Research Institute, P. O. Box 1433, Mwanza, Tanzania
| | | | - J V Bredeson
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - J B Lyons
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - D S Rokhsar
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - E Kanju
- International Institute of Tropical Agriculture (IITA), P.O. Box 2066, Dar es Salaam, Tanzania
| | | | - A A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - N A van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | | |
Collapse
|
72
|
Giner A, Pascual L, Bourgeois M, Gyetvai G, Rios P, Picó B, Troadec C, Bendahmane A, Garcia-Mas J, Martín-Hernández AM. A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Sci Rep 2017; 7:10471. [PMID: 28874719 PMCID: PMC5585375 DOI: 10.1038/s41598-017-10783-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023] Open
Abstract
In the melon exotic accession PI 161375, the gene cmv1, confers recessive resistance to Cucumber mosaic virus (CMV) strains of subgroup II. cmv1 prevents the systemic infection by restricting the virus to the bundle sheath cells and impeding viral loading to the phloem. Here we report the fine mapping and cloning of cmv1. Screening of an F2 population reduced the cmv1 region to a 132 Kb interval that includes a Vacuolar Protein Sorting 41 gene. CmVPS41 is conserved among plants, animals and yeast and is required for post-Golgi vesicle trafficking towards the vacuole. We have validated CmVPS41 as the gene responsible for the resistance, both by generating CMV susceptible transgenic melon plants, expressing the susceptible allele in the resistant cultivar and by characterizing CmVPS41 TILLING mutants with reduced susceptibility to CMV. Finally, a core collection of 52 melon accessions allowed us to identify a single amino acid substitution (L348R) as the only polymorphism associated with the resistant phenotype. CmVPS41 is the first natural recessive resistance gene found to be involved in viral transport and its cellular function suggests that CMV might use CmVPS41 for its own transport towards the phloem.
Collapse
Affiliation(s)
- Ana Giner
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Laura Pascual
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- Unidad de Genética, Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Michael Bourgeois
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Gabor Gyetvai
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- KWS SAAT SE Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Pablo Rios
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- Syngenta España S.A., C/Cartabona 10, 04710, El Ejido, Spain
| | - Belén Picó
- COMAV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Christelle Troadec
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Abdel Bendahmane
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain.
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain.
| |
Collapse
|
73
|
Amuge T, Berger DK, Katari MS, Myburg AA, Goldman SL, Ferguson ME. A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus. Sci Rep 2017; 7:9747. [PMID: 28852026 PMCID: PMC5575035 DOI: 10.1038/s41598-017-09617-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
A time-course transcriptome analysis of two cassava varieties that are either resistant or susceptible to cassava brown streak disease (CBSD) was conducted using RNASeq, after graft inoculation with Ugandan cassava brown streak virus (UCBSV). From approximately 1.92 billion short reads, the largest number of differentially expressed genes (DEGs) was obtained in the resistant (Namikonga) variety at 2 days after grafting (dag) (3887 DEGs) and 5 dag (4911 DEGs). At the same time points, several defense response genes (encoding LRR-containing, NBARC-containing, pathogenesis-related, late embryogenesis abundant, selected transcription factors, chaperones, and heat shock proteins) were highly expressed in Namikonga. Also, defense-related GO terms of 'translational elongation', 'translation factor activity', 'ribosomal subunit' and 'phosphorelay signal transduction', were overrepresented in Namikonga at these time points. More reads corresponding to UCBSV sequences were recovered from the susceptible variety (Albert) (733 and 1660 read counts per million (cpm)) at 45 dag and 54 dag compared to Namikonga (10 and 117 cpm respectively). These findings suggest that Namikonga's resistance involves restriction of multiplication of UCBSV within the host. These findings can be used with other sources of evidence to identify candidate genes and biomarkers that would contribute substantially to knowledge-based resistance breeding.
Collapse
Affiliation(s)
- T Amuge
- National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - D K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M S Katari
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - A A Myburg
- Genetics Department, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S L Goldman
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - M E Ferguson
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya.
| |
Collapse
|
74
|
Nagy PD. Exploitation of a surrogate host, Saccharomyces cerevisiae, to identify cellular targets and develop novel antiviral approaches. Curr Opin Virol 2017; 26:132-140. [PMID: 28843111 DOI: 10.1016/j.coviro.2017.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Abstract
Plant RNA viruses are widespread pathogens that need to interact intricately with their hosts to co-opt numerous cellular factors to facilitate their replication. Currently, there are only a limited number of plant resistance genes against a limited number of viruses. To develop novel antiviral approaches, the interaction network between the given virus and the host cell could be targeted. Yeast (Saccharomyces cerevisiae) has been developed as a surrogate host for tomato bushy stunt virus (TBSV), allowing systematic genome-wide screens to identify both susceptibility and restriction factors for TBSV. Importantly, pro-viral or antiviral functions of several of the characterized yeast proteins have been validated in plant hosts. This paper describes how yeast susceptibility and restriction factors of TBSV could be used as antiviral approaches. The gained knowledge on host factors could lead to novel, inducible, broad-range, and durable antiviral tools against plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
75
|
Shi S, Zhang X, Mandel MA, Zhang P, Zhang Y, Ferguson M, Amuge T, Rounsley S, Liu Z, Xiong Z. Variations of five eIF4E genes across cassava accessions exhibiting tolerant and susceptible responses to cassava brown streak disease. PLoS One 2017; 12:e0181998. [PMID: 28771520 PMCID: PMC5542559 DOI: 10.1371/journal.pone.0181998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Cassava (Manihot esculenta) is an important tropical subsistence crop that is severely affected by cassava brown streak disease (CBSD) in East Africa. The disease is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Both have a (+)-sense single-stranded RNA genome with a 5' covalently-linked viral protein, which functionally resembles the cap structure of mRNA, binds to eukaryotic translation initiation factor 4E (eIF4E) or its analogues, and then enable the translation of viral genomic RNA in host cells. To characterize cassava eIF4Es and their potential role in CBSD tolerance and susceptibility, we cloned five eIF4E transcripts from cassava (accession TMS60444). Sequence analysis indicated that the cassava eIF4E family of proteins consisted of one eIF4E, two eIF(iso)4E, and two divergent copies of novel cap-binding proteins (nCBPs). Our data demonstrated experimentally the coding of these five genes as annotated in the published cassava genome and provided additional evidence for refined annotations. Illumina resequencing data of the five eIF4E genes were analyzed from 14 cassava lines tolerant or susceptible to CBSD. Abundant single nucleotide polymorphisms (SNP) and biallelic variations were observed in the eIF4E genes; however, most of the SNPs were located in the introns and non-coding regions of the exons. Association studies of non-synonymous SNPs revealed no significant association between any SNP of the five eIF4E genes and the tolerance or susceptibility to CBSD. However, two SNPs in two genes were weakly associated with the CBSD responses but had no direct causal-effect relationship. SNPs in an intergenic region upstream of eIF4E_me showed a surprising strong association with CBSD responses. Digital expression profile analysis showed differential expression of different eIF4E genes but no significant difference in gene expression was found between susceptible and tolerant cassava accessions despite the association of the intergenic SNPs with CBSD responses.
Collapse
Affiliation(s)
- Shanshan Shi
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Xiuchun Zhang
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - M. Alejandra Mandel
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Zhang
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Morag Ferguson
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Teddy Amuge
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Steve Rounsley
- Genus plc, DeForest, Wisconsin, United States of America
| | - Zhixin Liu
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- * E-mail: (ZX); (ZL)
| | - Zhongguo Xiong
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (ZX); (ZL)
| |
Collapse
|
76
|
Feng X, Guzmán P, Myers JR, Karasev AV. Resistance to Bean common mosaic necrosis virus Conferred by the bc-1 Gene Affects Systemic Spread of the Virus in Common Bean. PHYTOPATHOLOGY 2017; 107:893-900. [PMID: 28475025 DOI: 10.1094/phyto-01-17-0013-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bean common mosaic necrosis virus (BCMNV) isolates belong to two pathogroups (PG), PG-III and PG-VI, which are distinguished in common bean due to the inability of the PG-III isolates of BCMNV to overcome the two recessive resistance alleles bc-1 and bc-12. The biological and molecular basis of this distinction between PG-III and PG-VI isolates of BCMNV is not known. Here, three isolates of BCMNV were typed biologically on a set of 12 bean differentials and molecularly through whole-genome sequencing. Two isolates (1755b and TN1a) were assigned to PG-VI and one isolate (NL8-CA) was assigned to PG-III. Isolate NL8-CA (PG-III) induced only local necrosis on inoculated leaves in 'Top Crop' and 'Jubila' bean harboring the I gene and the bc-1 allele, whereas isolates TN1, TN1a, and 1755b (all PG-VI) induced rapid whole-plant necrosis (WPN) in Top Crop 7 to 14 days postinoculation, and severe systemic necrosis but not WPN in Jubila 3 to 5 weeks postinoculation. In 'Redland Greenleaf C' expressing bc-1 and 'Redland Greenleaf B' expressing bc-12 alleles, isolate NL8-CA was able to systemically infect only a small proportion of upper uninoculated leaves (less than 13 and 3%, respectively). The whole genomes of isolates 1755b, TN1a, and NL8-CA were sequenced and sequence analysis revealed that, despite the overall high nucleotide sequence identity between PG-III and PG-VI isolates (approximately 96%), two areas of the BCMNV genome in the P1/HC-Pro and HC-Pro/P3 cistrons appeared to be more divergent between these two pathotypes of BCMNV. The data suggest that the phenotypic differences among PG-III and PG-VI isolates of BCMNV in common bean cultivars from host resistance groups 2, 3, and 9 carrying bc-1 alleles were related to the impaired systemic movement of the PG-III isolates to the upper, uninoculated leaves, and also suggest a role of the recessive bc-1 gene in interfering with systemic spread of BCMNV.
Collapse
Affiliation(s)
- Xue Feng
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Pablo Guzmán
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - James R Myers
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Alexander V Karasev
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| |
Collapse
|
77
|
Varela ALN, Komatsu S, Wang X, Silva RG, Souza PFN, Lobo AKM, Vasconcelos IM, Silveira JA, Oliveira JT. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea ( Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV). J Proteomics 2017; 163:76-91. [DOI: 10.1016/j.jprot.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
|
78
|
Sanfaçon H. Grand Challenge in Plant Virology: Understanding the Impact of Plant Viruses in Model Plants, in Agricultural Crops, and in Complex Ecosystems. Front Microbiol 2017; 8:860. [PMID: 28596756 PMCID: PMC5442230 DOI: 10.3389/fmicb.2017.00860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development CentreSummerland, BC, Canada
| |
Collapse
|
79
|
Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, Lübberstedt T, Xu M. An Atypical Thioredoxin Imparts Early Resistance to Sugarcane Mosaic Virus in Maize. MOLECULAR PLANT 2017; 10:483-497. [PMID: 28216424 DOI: 10.1016/j.molp.2017.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane mosaic virus (SCMV) causes substantial losses of grain yield and forage biomass in susceptible maize worldwide. A major quantitative trait locus, Scmv1, has been identified to impart strong resistance to SCMV at the early infection stage. Here, we demonstrate that ZmTrxh, encoding an atypical h-type thioredoxin, is the causal gene at Scmv1, and that its transcript abundance correlated strongly with maize resistance to SCMV. ZmTrxh alleles, whether they are resistant or susceptible, share the identical coding/proximal promoter regions, but vary in the upstream regulatory regions. ZmTrxh lacks two canonical cysteines in the thioredoxin active-site motif and exists uniquely in the maize genome. Because of this, ZmTrxh is unable to reduce disulfide bridges but possesses a strong molecular chaperone-like activity. ZmTrxh is dispersed in maize cytoplasm to suppress SCMV viral RNA accumulation. Moreover, ZmTrxh-mediated maize resistance to SCMV showed no obvious correlation with the salicylic acid- and jasmonic acid-related defense signaling pathways. Taken together, our results indicate that ZmTrxh exhibits a distinct defense profile in maize resistance to SCMV, differing from previously characterized dominant or recessive potyvirus resistance genes.
Collapse
Affiliation(s)
- Qingqing Liu
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Huanhuan Liu
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Yangqing Gong
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Yongfu Tao
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Lu Jiang
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Weiliang Zuo
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Qin Yang
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Jianrong Ye
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Jianyu Wu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Mingliang Xu
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
80
|
Machado JPB, Calil IP, Santos AA, Fontes EPB. Translational control in plant antiviral immunity. Genet Mol Biol 2017; 40:292-304. [PMID: 28199446 PMCID: PMC5452134 DOI: 10.1590/1678-4685-gmb-2016-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.
Collapse
Affiliation(s)
- João Paulo B Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Iara P Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Anésia A Santos
- Department of General Biology, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| |
Collapse
|
81
|
Khalid A, Zhang Q, Yasir M, Li F. Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection. Front Microbiol 2017; 8:43. [PMID: 28167936 PMCID: PMC5253543 DOI: 10.3389/fmicb.2017.00043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Small RNAs regulate a large set of gene expression in all plants and constitute a natural immunity against viruses. Small RNA based genetic engineering (SRGE) technology had been explored for crop protection against viruses for nearly 30 years. Viral resistance has been developed in diverse crops with SRGE technology and a few viral resistant crops have been approved for commercial release. In this review we summarized the efforts generating viral resistance with SRGE in different crops, analyzed the evolution of the technology, its efficacy in different crops for different viruses and its application status in different crops. The challenge and potential solution for application of SRGE in crop protection are also discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
82
|
Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci Rep 2017; 7:39678. [PMID: 28059075 PMCID: PMC5216350 DOI: 10.1038/srep39678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.
Collapse
|
83
|
Moon JY, Park JM. Cross-Talk in Viral Defense Signaling in Plants. Front Microbiol 2016; 7:2068. [PMID: 28066385 PMCID: PMC5174109 DOI: 10.3389/fmicb.2016.02068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms.
Collapse
Affiliation(s)
- Ju Y. Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| | - Jeong M. Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
84
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
85
|
Fondong VN, Nagalakshmi U, Dinesh-Kumar SP. Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses. PHYTOPATHOLOGY 2016; 106:1231-1239. [PMID: 27392181 DOI: 10.1094/phyto-03-16-0145-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.
Collapse
Affiliation(s)
- Vincent N Fondong
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Ugrappa Nagalakshmi
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Savithramma P Dinesh-Kumar
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| |
Collapse
|
86
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
87
|
Li H, Kondo H, Kühne T, Shirako Y. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1449. [PMID: 27746794 PMCID: PMC5043020 DOI: 10.3389/fpls.2016.01449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants.
Collapse
Affiliation(s)
- Huangai Li
- Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
- Asian Natural Environmental Science Center, The University of TokyoTokyo, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Thomas Kühne
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-InstitutQuedlinburg, Germany
| | - Yukio Shirako
- Asian Natural Environmental Science Center, The University of TokyoTokyo, Japan
| |
Collapse
|
88
|
Tatineni S, Wosula EN, Bartels M, Hein GL, Graybosch RA. Temperature-Dependent Wsm1 and Wsm2 Gene-Specific Blockage of Viral Long-Distance Transport Provides Resistance to Wheat streak mosaic virus and Triticum mosaic virus in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:724-738. [PMID: 27551888 DOI: 10.1094/mpmi-06-16-0110-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | | | - Melissa Bartels
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Gary L Hein
- 2 Department of Entomology, University of Nebraska-Lincoln; and
| | - Robert A Graybosch
- 3 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| |
Collapse
|
89
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
90
|
Guiu-Aragonés C, Sánchez-Pina MA, Díaz-Pendón JA, Peña EJ, Heinlein M, Martín-Hernández AM. cmv1 is a gate for Cucumber mosaic virus transport from bundle sheath cells to phloem in melon. MOLECULAR PLANT PATHOLOGY 2016; 17:973-84. [PMID: 26661733 PMCID: PMC6638449 DOI: 10.1111/mpp.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 05/24/2023]
Abstract
Cucumber mosaic virus (CMV) has the broadest host range among plant viruses, causing enormous losses in agriculture. In melon, strains of subgroup II are unable to establish a systemic infection in the near-isogenic line SC12-1-99, which carries the recessive resistance gene cmv1 from the accession PI 161375, cultivar 'Songwhan Charmi'. Strains of subgroup I overcome cmv1 resistance in a manner dependent on the movement protein. We characterized the resistance conferred by cmv1 and established that CMV-LS (subgroup II) can move from cell to cell up to the veins in the inoculated leaf, but cannot enter the phloem. Immunogold labelling at transmission electron microscopy level showed that CMV-LS remains restricted to the bundle sheath (BS) cells in the resistant line, and does not invade vascular parenchyma or intermediary cells, whereas, in the susceptible line 'Piel de Sapo' (PS), the virus invades all vein cell types. These observations indicate that the resistant allele of cmv1 restricts systemic infection in a virus strain- and cell type-specific manner by acting as an important gatekeeper for virus progression from BS cells to phloem cells. Graft inoculation experiments showed that CMV-LS cannot move from the infected PS stock into the resistant cmv1 scion, thus suggesting an additional role for cmv1 related to CMV transport within or exit from the phloem. The characterization of this new form of recessive resistance, based on a restriction of virus systemic movement, opens up the possibility to design alternative approaches for breeding strategies in melon.
Collapse
Affiliation(s)
- Cèlia Guiu-Aragonés
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - María Amelia Sánchez-Pina
- Departamento de Biología del Estrés y Patología Vegetal CEBAS (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Juan Antonio Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750, Algarrobo-Costa, Málaga, Spain
| | - Eduardo J Peña
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre Nationale de la Recherche Scientifique, Strasbourg, 67084, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre Nationale de la Recherche Scientifique, Strasbourg, 67084, France
| | - Ana Montserrat Martín-Hernández
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
91
|
Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genet 2016; 12:e1006214. [PMID: 27490800 PMCID: PMC4973933 DOI: 10.1371/journal.pgen.1006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) and Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jean-Luc Gallois
- Institut National de Recherche Agronomique (INRA), UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
92
|
Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain. PLoS One 2016; 11:e0146320. [PMID: 26751216 PMCID: PMC4709182 DOI: 10.1371/journal.pone.0146320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum ‘Bukang’ cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.
Collapse
|
93
|
Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K. Molecular insights into the function of the viral RNA silencing suppressor HCPro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:30-45. [PMID: 26611351 DOI: 10.1111/tpj.13088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Katri Eskelin
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Marta Bašić
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
94
|
Hily JM, Poulicard N, Mora MÁ, Pagán I, García-Arenal F. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism. THE NEW PHYTOLOGIST 2016; 209:812-22. [PMID: 26365599 DOI: 10.1111/nph.13631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plant-virus interactions vary between antagonism and conditional mutualism according to environmental conditions. This hypothesis is based on scant experimental evidence, and to test it we examined the effect of abiotic factors on the Arabidopsis thaliana-Cucumber mosaic virus (CMV) interaction. Four Arabidopsis genotypes clustering into two allometric groups were grown under six environments defined by three temperature and two light-intensity conditions. Plants were either CMV-infected or mock-inoculated, and the effects of environment and infection on temporal and resource allocation life-history traits were quantified. Life-history traits significantly differed between allometric groups over all environments, with group 1 plants tolerating abiotic stress better than those of group 2. The effect of CMV infection on host fitness (virulence) differed between genotypes, being lower in group 1 genotypes. Tolerance to abiotic stress and to infection was similarly achieved through life-history trait responses, which resulted in resource reallocation from growth to reproduction. Effects of infection varied according to plant genotype and environment from detrimental to beneficial for host fitness. These results are highly relevant and demonstrate that plant viruses can be pleiotropic parasites along the antagonism-mutualism continuum, which should be considered in analyses of the evolution of plant-virus interactions.
Collapse
Affiliation(s)
- Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Miguel-Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| |
Collapse
|
95
|
Feng X, Myers JR, Karasev AV. Bean common mosaic virus Isolate Exhibits a Novel Pathogenicity Profile in Common Bean, Overcoming the bc-3 Resistance Allele Coding for the Mutated eIF4E Translation Initiation Factor. PHYTOPATHOLOGY 2015; 105:1487-1495. [PMID: 26196181 DOI: 10.1094/phyto-04-15-0108-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resistance against Bean common mosaic virus (BCMV) in Phaseolus vulgaris is governed by six recessive resistance alleles at four loci. One of these alleles, bc-3, is able to protect P. vulgaris against all BCMV strains and against other potyviruses; bc-3 was identified as the eIF4E allele carrying mutated eukaryotic translation initiation factor gene. Here, we characterized a novel BCMV isolate 1755a that was able to overcome bc-2 and bc-3 alleles in common bean. Thus, it displayed a novel pattern of interactions with resistance genes in P. vulgaris, and was assigned to a new pathogroup, PG-VIII. The IVT7214 cultivar supporting the replication of BCMV-1755a was found to have the intact homozygous bc-3 cleaved amplified polymorphic sequences marker and corresponding mutations in the eIF4E allele that confer resistance to BCMV isolates from all other pathogroups as well as to other potyviruses. The VPg protein of 1755a had seven amino acid substitutions relative to VPgs of other BCMV isolates unable to overcome bc-3. The 1755a genome was found to be a recombinant between NL1, US1 (both PG-I), and a yet unknown BCMV strain. Analysis of the recombination patterns in the genomes of NL1 and US1 (PG-I), NY15P (PG-V), US10 and RU1-OR (PG-VII), and 1755a (PG-VIII), indicated that P1/HC-Pro cistrons of BCMV strains may interact with most resistance genes. This is the first report of a BCMV isolate able to overcome the bc-3 resistance allele, suggesting that the virus has evolved mechanisms to overcome multiple resistance genes available in common bean.
Collapse
Affiliation(s)
- Xue Feng
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - James R Myers
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Alexander V Karasev
- First and third authors: Department of PSES, University of Idaho, Moscow; second author: Department of Horticulture, Oregon State University, Corvallis; and third author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| |
Collapse
|
96
|
Poque S, Pagny G, Ouibrahim L, Chague A, Eyquard JP, Caballero M, Candresse T, Caranta C, Mariette S, Decroocq V. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:159. [PMID: 26109391 PMCID: PMC4479089 DOI: 10.1186/s12870-015-0559-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. RESULTS Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. CONCLUSION These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.
Collapse
Affiliation(s)
- S Poque
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan.
| | - G Pagny
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - L Ouibrahim
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - A Chague
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - J-P Eyquard
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - M Caballero
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - T Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - C Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - S Mariette
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: INRA, UMR 1202 Biogeco, F- 33610, Cestas, France.
- Current address: Univ. Bordeaux, UMR1202 Biogeco, F-33400, Talence, France.
| | - V Decroocq
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| |
Collapse
|
97
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
98
|
Ilardi V, Tavazza M. Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. FRONTIERS IN PLANT SCIENCE 2015; 6:379. [PMID: 26106397 PMCID: PMC4458569 DOI: 10.3389/fpls.2015.00379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants.
Collapse
Affiliation(s)
- Vincenza Ilardi
- Centro di Ricerca per la Patologia Vegetale, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Mario Tavazza
- UTAGRI Centro Ricerche Casaccia, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| |
Collapse
|
99
|
Hwang J, Lee S, Lee JH, Kang WH, Kang JH, Kang MY, Oh CS, Kang BC. Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1. PLoS One 2015; 10:e0128014. [PMID: 26020533 PMCID: PMC4447259 DOI: 10.1371/journal.pone.0128014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic translation elongation factor 1 (eEF1) has two components: the G-protein eEF1A and the nucleotide exchange factor eEF1B. In plants, eEF1B is itself composed of a structural protein (eEF1Bγ) and two nucleotide exchange subunits (eEF1Bα and eEF1Bβ). To test the effects of elongation factors on virus infection, we isolated eEF1A and eEF1B genes from pepper (Capsicum annuum) and suppressed their homologs in Nicotiana benthamiana using virus-induced gene silencing (VIGS). The accumulation of a green fluorescent protein (GFP)-tagged Potato virus X (PVX) was significantly reduced in the eEF1Bβ- or eEF1Bɣ-silenced plants as well as in eEF1A-silenced plants. Yeast two-hybrid and co-immunoprecipitation analyses revealed that eEF1Bα and eEF1Bβ interacted with eEF1A and that eEF1A and eEF1Bβ interacted with triple gene block protein 1 (TGBp1) of PVX. These results suggest that both eEF1A and eEF1Bβ play essential roles in the multiplication of PVX by physically interacting with TGBp1. Furthermore, using eEF1Bβ deletion constructs, we found that both N- (1-64 amino acids) and C-terminal (150-195 amino acids) domains of eEF1Bβ are important for the interaction with PVX TGBp1 and that the C-terminal domain of eEF1Bβ is involved in the interaction with eEF1A. These results suggest that eEF1Bβ could be a potential target for engineering virus-resistant plants.
Collapse
Affiliation(s)
- JeeNa Hwang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
- Korea Institute of Science and Technology Information, Seoul, 130–741, Korea
| | - Seonhee Lee
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
| | - Jin-Ho Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232–916, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 446–701, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Korea
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232–916, Korea
| |
Collapse
|
100
|
Valkonen JP. Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. BREEDING SCIENCE 2015; 65:69-76. [PMID: 25931981 PMCID: PMC4374565 DOI: 10.1270/jsbbs.65.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/25/2015] [Indexed: 05/03/2023]
Abstract
Potato virus Y (PVY) and Potato mop-top virus (PMTV) are viruses whose geographical distribution is expanding and economic losses are increasing, in contrast to most of other viruses infecting potato crops. Most potato cultivars lack broad-spectrum resistance to the new, genetically complex strains of PVY, and no efficient resistance to PMTV is known in potato. Control of the vectors of these viruses is not an efficient or possible strategy to prevent infections. Studies on molecular virus-host interactions can discover plant genes that are important to viral infection or antiviral defence. Both types of genes may be utilized in resistance breeding, which is discussed in this paper. The advanced gene technologies provide means to fortify potato cultivars with effective virus resistance genes or mutated, non-functional host factors that interfere with virus infection.
Collapse
Affiliation(s)
- Jari P.T. Valkonen
- Department of Agricultural Sciences,
P O Box 27, FI-00014 University of Helsinki,
Finland
| |
Collapse
|