51
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
52
|
Potential of Fibrin Glue and Mesenchymal Stem Cells (MSCs) to Regenerate Nerve Injuries: A Systematic Review. Cells 2022; 11:cells11020221. [PMID: 35053336 PMCID: PMC8773549 DOI: 10.3390/cells11020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Cell-based therapy is a promising treatment to favor tissue healing through less invasive strategies. Mesenchymal stem cells (MSCs) highlighted as potential candidates due to their angiogenic, anti-apoptotic and immunomodulatory properties, in addition to their ability to differentiate into several specialized cell lines. Cells can be carried through a biological delivery system, such as fibrin glue, which acts as a temporary matrix that favors cell-matrix interactions and allows local and paracrine functions of MSCs. Thus, the aim of this systematic review was to evaluate the potential of fibrin glue combined with MSCs in nerve regeneration. The bibliographic search was performed in the PubMed/MEDLINE, Web of Science and Embase databases, using the descriptors ("fibrin sealant" OR "fibrin glue") AND "stem cells" AND "nerve regeneration", considering articles published until 2021. To compose this review, 13 in vivo studies were selected, according to the eligibility criteria. MSCs favored axonal regeneration, remyelination of nerve fibers, as well as promoted an increase in the number of myelinated fibers, myelin sheath thickness, number of axons and expression of growth factors, with significant improvement in motor function recovery. This systematic review showed clear evidence that fibrin glue combined with MSCs has the potential to regenerate nervous system lesions.
Collapse
|
53
|
Progress on the Experimental Research of Sciatic Nerve Injury with Acupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:1401756. [PMID: 34976092 PMCID: PMC8718293 DOI: 10.1155/2021/1401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Objective To collect and summarize relevant literatures on the experimental researches of sciatic nerve injury (SNI) with acupuncture during the last decade providing a guideline for effectively treating SNI with acupuncture in the future. Methods The Chinese and English databases including China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform (WanFang Data), VIP Information Chinese Journal Service Platform (VIP Date), and PubMed were searched from 2009 to 2020 with keywords of “acupuncture and moxibustion OR acupuncture OR electroacupuncture OR scalp acupuncture OR wrist-ankle acupuncture OR acupoint injection OR ear acupuncture” AND “sciatic nerve OR sciatic nerve injury OR sciatic injury OR SNI.” The collected data were mainly evaluated in the items of animal model of SNI, type of interventions, selection of acupuncture points (acupoints), course of treatment and its frequency, and approaches of assessment. Results A total of 89 studies were included in this analysis. Among them, the most commonly used animal models of SNI were produced by the clamp or transverse injury in the rats; the most frequently used intervention was electroacupuncture with dilatational wave of 2/100 Hz; the frequency of acupuncture was mainly performed once per day lasting for more than 2 weeks; the mainly selected acupoints were Huantiao (GB30), Zusanli (ST36), and Yanglingquan (GB34); and the approaches of assessment were contained with behavioral, functional, morphological, histological, cellular, and molecular measurements. Conclusion The results indicated that the experimental researches of SNI with acupuncture has made marked progress in recent years, which may provide important clues for further investigating the underlying mechanisms of acupuncture for the treatment of SNI in the future.
Collapse
|
54
|
Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan WE, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Mater Today Bio 2022; 13:100211. [PMID: 35198959 PMCID: PMC8841887 DOI: 10.1016/j.mtbio.2022.100211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury usually impairs neurological functions. The excessive oxidative stress and disrupted bioelectrical conduction gives rise to a hostile microenvironment and impedes nerve regeneration. Therefore, it is of urgent need to develop tissue engineering products which help alleviate the oxidative insults and restore bioelectrical signals. Melatonin (MLT) is an important endogenous hormone that diminishes the accumulation of reactive oxygen species. Reduced graphene oxide (RGO) possesses the excellent electrical conductivity and biocompatibility. In this study, a multilayered MLT/RGO/Polycaprolactone (PCL) composite scaffold was fabricated with beaded nanostructures to improve cell attachment and proliferation. It also exhibited stable mechanical properties by high elastic modulus and guaranteed structural integrity for nerve regeneration. The live/dead cell staining and cell counting kit assay were performed to evaluate the toxicity of the scaffold. JC-1 staining was carried out to assess the mitochondrial potential. The composite scaffold provided a biocompatible interface for cell viability and improved ATP production for energy supply. The scaffold improved the sensory and locomotor function recovery by walking track analysis and electrophysiological evaluation, reduced Schwann cell apoptosis and increased its proliferation. It further stimulated myelination and axonal outgrowth by enhancing S100β, myelin basic protein, β3-tubulin, and GAP43 levels. The findings demonstrated functional and morphological recovery by this biomimetic scaffold and indicated its potential for translational application.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
55
|
Sorkin JA, Rechany Z, Almog M, Dietzmeyer N, Shapira Y, Haastert-Talini K, Rochkind S. A Rabbit Model for Peripheral Nerve Reconstruction Studies Avoiding Automutilation Behavior. J Brachial Plex Peripher Nerve Inj 2022; 17:e22-e29. [PMID: 35747584 PMCID: PMC9213117 DOI: 10.1055/s-0042-1747959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022] Open
Abstract
Background
The rabbit sciatic nerve injury model may represent a valuable alternative for critical gap distance seen in humans but often leads to automutilation. In this study, we modified the complete sciatic nerve injury model for avoiding autophagy.
Materials and Methods
In 20 adult female New Zealand White rabbits, instead of transecting the complete sciatic nerve, we unilaterally transected the tibial portion and preserved the peroneal portion. Thereby loss of sensation in the dorsal aspect of the paw was avoided. The tibial portion was repaired in a reversed autograft approach in a length of 2.6 cm. In an alternative repair approach, a gap of 2.6 cm in length was repaired with a chitosan-based nerve guide.
Results
During the 6-month follow-up period, there were no incidents of autotomy. Nerve regeneration of the tibial portion of the sciatic nerve was evaluated histologically and morphometrically. A clear difference between the distal segments of the healthy contralateral and the repaired tibial portion of the sciatic nerve was detectable, validating the model.
Conclusion
By transecting the isolated tibial portion of the rabbit sciatic nerve and leaving the peroneal portion intact, it was possible to eliminate automutilation behavior.
Collapse
Affiliation(s)
- Jonathan A Sorkin
- Research Center for Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Rechany
- Research Center for Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Yuval Shapira
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Shimon Rochkind
- Research Center for Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
56
|
Tamez-Mata Y, Pedroza-Montoya FE, Martínez-Rodríguez HG, García-Pérez MM, Ríos-Cantú AA, González-Flores JR, Soto-Domínguez A, Montes-de-Oca-Luna R, Simental-Mendía M, Peña-Martínez VM, Vílchez-Cavazos F. Nerve gaps repaired with acellular nerve allografts recellularized with Schwann-like cells: Preclinical trial. J Plast Reconstr Aesthet Surg 2022; 75:296-306. [PMID: 34257032 DOI: 10.1016/j.bjps.2021.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Acellular nerve allografts (ANA) recellularized with mesenchymal stem cells (MSC) or Schwann cells (SC) are, at present, a therapeutic option for peripheral nerve injuries (PNI). This study aimed to evaluate the regenerative and functional capacity of a recellularized allograft (RA) compared with autograft nerve reconstruction in PNI. METHODS Fourteen ovines were randomly included in two groups (n=7). A peroneal nerve gap 30 mm in length was excised, and nerve repair was performed by the transplantation of either an autograft or a recellularized allograft with SC-like cells. Evaluations included a histomorphological analysis of the ANA, MSC pre differentiated into SC-like cells, at one year follow-up functional limb recovery (support and gait), and nerve regeneration using neurophysiological tests and histomorphometric analysis. All evaluations were compared with the contralateral hindlimb as the control. RESULTS The nerve allograft was successfully decellularized and more than 70% of MSC were pre differentiated into SC-like cells. Functional assessment in both treated groups improved similarly over time (p <0.05). Neurophysiological results (latency, amplitude, and conduction velocity) also improved in both treated groups at twelve months. Histological results demonstrated a less organized arrangement of nerve fibers (p <0.05) with an active remyelination process (p <0.05) in both treated groups compared with controls at twelve months. CONCLUSIONS ANA recellularized with SC-like cells proved to be a successful treatment for nerve gaps. Motor recovery and nerve regeneration were satisfactorily achieved in both graft groups compared with their contralateral nontreated nerves. This approach could be useful for the clinical therapy of PNI.
Collapse
Affiliation(s)
- Y Tamez-Mata
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F E Pedroza-Montoya
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - H G Martínez-Rodríguez
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M M García-Pérez
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A A Ríos-Cantú
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - J R González-Flores
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A Soto-Domínguez
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - R Montes-de-Oca-Luna
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M Simental-Mendía
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - V M Peña-Martínez
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F Vílchez-Cavazos
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González".
| |
Collapse
|
57
|
Mu L, Chen J, Li J, Sobotka S, Nyirenda T. Limb Muscle Reinnervation with the Nerve-Muscle-Endplate Grafting Technique: An Anatomical Feasibility Study. Neurol Res Int 2021; 2021:6009342. [PMID: 34925918 PMCID: PMC8674082 DOI: 10.1155/2021/6009342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Peroneal nerve injuries results in tibialis anterior (TA) muscle paralysis. TA paralysis could cause "foot drop," a disabling condition that can make walking difficult. As current treatment methods result in poor functional recovery, novel treatment approaches need to be studied. The aim of this study was to explore anatomical feasibility of limb reinnervation with our recently developed nerve-muscle-endplate grafting (NMEG) in the native motor zone (NMZ). METHODS As the NMEG-NMZ technique involves in nerves and motor endplates (MEPs), the nerve supply patterns and locations of the MEP bands within the gastrocnemius (GM) and TA muscles of rats were investigated using Sihler's stain and whole-mount acetylcholinesterase (AChE) staining, respectively. Five adult rats underwent TA nerve transaction. The denervated TA was reinnervated by transferring an NMEG pedicle from the ipsilateral lateral GM. At the end of a 3-month recovery period, maximal muscle force was measured to document functional recovery. RESULTS The results showed that the TA was innervated by the deep peroneal nerve. A single MEP band was located obliquely in the middle of the TA. The GM was composed of two neuromuscular compartments, lateral (GM-l) and medial (GM-m), each of which was innervated by a separate nerve branch derived from the tibial nerve and had a vertically positioned MEP band. The locations of MEP bands in the GM and TA muscles and nerve supply patterns demonstrated that an NMEG pedicle can be harvested from the GM-l and implanted into the NMZ within the TA muscle. The NMEG-NMZ pilot study showed that this technique resulted in optimal muscle force recovery. CONCLUSION NMEG-NMZ surgery is feasible for limb reinnervation. Specifically, the denervated TA caused by peroneal nerve injuries can be reinnervated with a NMEG from the GM-l.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Research Laboratory, Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Jingming Chen
- Upper Airway Research Laboratory, Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Jing Li
- Upper Airway Research Laboratory, Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Stanislaw Sobotka
- Upper Airway Research Laboratory, Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Themba Nyirenda
- Upper Airway Research Laboratory, Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| |
Collapse
|
58
|
Repair of peripheral nerve injuries using a prevascularized cell-based tissue-engineered nerve conduit. Biomaterials 2021; 280:121269. [PMID: 34847434 DOI: 10.1016/j.biomaterials.2021.121269] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
One of the major challenges in the development of a larger and longer nerve conduit for peripheral nerve repair is the limitation in oxygen and nutrient diffusion within the tissue after transplantation preventing Schwann cell and axonal migration. This restriction is due to the slow neovascularization process of the graft starting from both nerve endings. To overcome this limitation, we propose the design of a living tissue-engineered nerve conduit made of an internal tube with a three-dimensional structure supporting axonal migration, which is inserted inside a hollow external tube that plays the role of an epineurium and is strong enough to be stitched to the severed nerve stumps. The internal tube is made of a rolled living fibroblast sheet and can be seeded with endothelial cells to promote the formation of a network containing capillary-like structures which allow rapid inosculation with the host nerve microvasculature after grafting. Human nerve conduits were grafted in immunodeficient rats to bridge a 15 mm sciatic nerve gap. Human capillaries within the pre-vascularized nerve conduit successfully connected to the host circulation 2 weeks after grafting. Twenty-two weeks after surgery, rats transplanted with the nerve conduits had a similar motor function recovery compared to the autograft group. By promoting rapid vascularization of the internal nerve tube from both ends of the nerve stumps, this endothelialized nerve conduit model displays a favorable environment to enhance axonal migration in both larger caliber and longer nerve grafts.
Collapse
|
59
|
Siemionow M, Strojny MM, Kozlowska K, Brodowska S, Grau-Kazmierczak W, Cwykiel J. Application of Human Epineural Conduit Supported with Human Mesenchymal Stem Cells as a Novel Therapy for Enhancement of Nerve Gap Regeneration. Stem Cell Rev Rep 2021; 18:642-659. [PMID: 34787795 PMCID: PMC8930890 DOI: 10.1007/s12015-021-10301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Various therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1rnu): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 106 hMSC. Assessments included: functional tests: toe-spread and pinprick, regeneration assessment by immunofluorescence staining: HLA-1, HLA-DR, NGF, GFAP, Laminin B, S-100, VEGF, vWF and PKH26 labeling; histomorphometric analysis of myelin thickness, axonal density, fiber diameter and myelinated nerve fibers percentage; Gastrocnemius Muscle Index (GMI) and muscle fiber area ratio. Best sensory and motor function recovery, as well as GMI and muscle fiber area ratio, were observed in the autograft group, and were comparable to the hEC with hMSC group (p = 0.038). Significant improvements of myelin thickness (p = 0.003), fiber diameter (p = 0.0296), and percentage of myelinated fibers (p < 0.0001) were detected in hEC group supported with hMSC compared to hEC with saline controls. At 12-weeks after nerve gap repair, hEC combined with hMSC revealed increased expression of neurotrophic and proangiogenic factors, which corresponded with improvement of function comparable with the autograft control. Application of our novel hEC supported with hMSC provides a potential alternative to the autograft nerve repair.
Collapse
Affiliation(s)
- Maria Siemionow
- Poznan University of Medical Sciences, Poznan, Poland. .,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
| | - Marcin Michal Strojny
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katarzyna Kozlowska
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
60
|
Pompili E, De Franchis V, Giampietri C, Leone S, De Santis E, Fornai F, Fumagalli L, Fabrizi C. Protease Activated Receptor 1 and Its Ligands as Main Regulators of the Regeneration of Peripheral Nerves. Biomolecules 2021; 11:1668. [PMID: 34827666 PMCID: PMC8615415 DOI: 10.3390/biom11111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
In contrast with the brain and spinal cord, peripheral nerves possess a striking ability to regenerate after damage. This characteristic of the peripheral nervous system is mainly due to a specific population of glial cells, the Schwann cells. Schwann cells promptly activate after nerve injury, dedifferentiate assuming a repair phenotype, and assist axon regrowth. In general, tissue injury determines the release of a variety of proteases which, in parallel with the degradation of their specific targets, also activate plasma membrane receptors known as protease-activated receptors (PARs). PAR1, the prototypical member of the PAR family, is also known as thrombin receptor and is present at the Schwann cell plasma membrane. This receptor is emerging as a possible regulator of the pro-regenerative capacity of Schwann cells. Here, we summarize the most recent literature data describing the possible contribution of PAR1 and PAR1-activating proteases in regulating the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Valerio De Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Stefano Leone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy;
| | - Elena De Santis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| |
Collapse
|
61
|
Pozzobon LG, Sperling LE, Teixeira CE, Malysz T, Pranke P. Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chem Biol Interact 2021; 348:109621. [PMID: 34450165 DOI: 10.1016/j.cbi.2021.109621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
A promising alternative to conventional nerve grafting is the use of artificial grafts made from biodegradable and biocompatible materials and support cells. The aim of this study has been to produce a biodegradable nerve conduit and investigate the cytocompatibility with stem cells and its regeneration promoting properties in a rat animal model. A poly (lactic-co-glycolic acid) (PLGA) conduit of aligned nanofibers was produced by the electrospinning method, functionalized with gelatin and seeded either with mouse embryonic stem cells (mESCs) or with human mesenchymal stem cells (SHED). The cell proliferation and viability were analyzed in vitro. The conduits were implanted in a rat model of sciatic nerve lesion by transection. The functional recovery was monitored for 8 weeks using the Sciatic Functional Index (SFI) and histological analyses were used to assess the nerve regeneration. Scaffolds of aligned PLGA fibers with an average diameter of 0.90 ± 0.36 μm and an alignment coefficient of 0.817 ± 0.07 were produced. The treatment with gelatin increased the fiber diameter to 1.05 ± 0.32 μm, reduced the alignment coefficient to 0.655 ± 0.045 and made the scaffold very hydrophilic. The cell viability and Live/dead assay showed that the stem cells remained viable and proliferated after 7 days in culture. Confocal images of phalloidin/DAPI staining showed that the cells adhered and proliferated widely, in fully adaptation with the biomaterial. The SFI values of the group that received the conduit were similar to the values of the control lesioned group. In conclusion, conduits composed of PLGA-gelatin nanofibers were produced and promoted a very good interaction with the stem cells. Although in vitro studies have shown this biomaterial to be a promising biomaterial for the regeneration of nerve tissue, in vivo studies of this graft have not shown significant improvements in nerve regeneration.
Collapse
Affiliation(s)
- Laura Gonçalves Pozzobon
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristian E Teixeira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tais Malysz
- Instituto de Ciências básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto de Pesquisa com Células-tronco, IPCT, Porto Alegre, RS, Brazil
| |
Collapse
|
62
|
Katiyar KS, Burrell JC, Laimo FA, Browne KD, Bianchi JR, Walters A, Ayares DL, Smith DH, Ali ZS, Ledebur HC, Cullen DK. Biomanufacturing of Axon-Based Tissue Engineered Nerve Grafts Using Porcine GalSafe Neurons. Tissue Eng Part A 2021; 27:1305-1320. [PMID: 33514288 PMCID: PMC8610031 DOI: 10.1089/ten.tea.2020.0303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Existing strategies for repair of major peripheral nerve injury (PNI) are inefficient at promoting axon regeneration and functional recovery and are generally ineffective for nerve lesions >5 cm. To address this need, we have previously developed tissue engineered nerve grafts (TENGs) through the process of axon stretch growth. TENGs consist of living, centimeter-scale, aligned axon tracts that accelerate axon regeneration at rates equivalent to the gold standard autograft in small and large animal models of PNI, by providing a newfound mechanism-of-action referred to as axon-facilitated axon regeneration (AFAR). To enable clinical-grade biomanufacturing of TENGs, a suitable cell source that is hypoimmunogenic, exhibits low batch-to-batch variability, and able to tolerate axon stretch growth must be utilized. To fulfill these requirements, a genetically engineered, FDA-approved, xenogeneic cell source, GalSafe® neurons, produced by Revivicor, Inc., have been selected to advance TENG biofabrication for eventual clinical use. To this end, sensory and motor neurons were harvested from genetically engineered GalSafe day 40 swine embryos, cultured in custom mechanobioreactors, and axon tracts were successfully stretch-grown to 5 cm within 25 days. Importantly, both sensory and motor GalSafe neurons were observed to tolerate established axon stretch growth regimes of ≥1 mm/day to produce continuous, healthy axon tracts spanning 1, 3, or 5 cm. Once stretch-grown, 1 cm GalSafe TENGs were transplanted into a 1 cm lesion in the sciatic nerve of athymic rats. Regeneration was assessed through histological measures at the terminal time point of 2 and 8 weeks. Neurons from GalSafe TENGs survived and elicited AFAR as observed when using wild-type TENGs. At 8 weeks postrepair, myelinated regenerated axons were observed in the nerve section distal to the injury site, confirming axon regeneration across the lesion. These experiments are the first to demonstrate successful harvest and axon stretch growth of GalSafe neurons for use as starting biomass for bioengineered nerve grafts as well as initial safety and efficacy in an established preclinical model-important steps for the advancement of clinical-grade TENGs for future regulatory testing and eventual clinical trials. Impact statement Biofabrication of tissue engineered medical products requires several steps, one of which is choosing a suitable starting biomass. To this end, we have shown that the clinical-grade, genetically engineered biomass-GalSafe® neurons-is a viable option for biomanufacturing of our tissue engineered nerve grafts (TENGs) to promote regeneration following major peripheral nerve injury. Importantly, this is a first step in clinical-grade TENG biofabrication, proving that GalSafe TENGs recapitulate the mechanism of axon-facilitated axon regeneration seen previously with research-grade TENGs.
Collapse
Affiliation(s)
- Kritika S. Katiyar
- Axonova Medical, LLC, Philadelphia, Pennsylvania, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Franco A. Laimo
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Kevin D. Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | - Douglas H. Smith
- Axonova Medical, LLC, Philadelphia, Pennsylvania, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zarina S. Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harry C. Ledebur
- Axonova Medical, LLC, Philadelphia, Pennsylvania, USA
- Battelle Memorial Institute, Columbus, Ohio, USA
| | - D. Kacy Cullen
- Axonova Medical, LLC, Philadelphia, Pennsylvania, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
63
|
Cai M, Shao J, Yung B, Wang Y, Gao NN, Xu X, Zhang HH, Feng YM, Yao DB. Baculoviral inhibitor of apoptosis protein repeat-containing protein 3 delays early Wallerian degeneration after sciatic nerve injury. Neural Regen Res 2021; 17:845-853. [PMID: 34472485 PMCID: PMC8530132 DOI: 10.4103/1673-5374.322474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Wallerian degeneration is a complex biological process that occurs after nerve injury, and involves nerve degeneration and regeneration. Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system. However, Wallerian degeneration regulating nerve injury and repair remains largely unknown, especially the early response. We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury. Baculoviral inhibitor of apoptosis protein repeat-containing protein 3 (BIRC3) is an important factor that regulates apoptosis-inhibiting protein. In this study, we established rat models of right sciatic nerve injury. In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3. The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury. Both BIRC3 upregulation and downregulation affected the migration, proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway. Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury. These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration. The study was approved by the Institutional Animal Care and Use Committee of Nantong University, China (approval No. 2019-nsfc004) on March 1, 2019.
Collapse
Affiliation(s)
- Min Cai
- Nantong University Medical School; School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Shao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bryant Yung
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Wang
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Nan-Nan Gao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Huan-Huan Zhang
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Mei Feng
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Deng-Bing Yao
- Nantong University Medical School; School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
64
|
Zhang J, Zhang B, Zhang J, Lin W, Zhang S. Magnesium Promotes the Regeneration of the Peripheral Nerve. Front Cell Dev Biol 2021; 9:717854. [PMID: 34458271 PMCID: PMC8385315 DOI: 10.3389/fcell.2021.717854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Peripheral nerve injury is a common complication in trauma, and regeneration and function recovery are clinical challenges. It is indispensable to find a suitable material to promote peripheral nerve regeneration due to the limited capacity of peripheral nerve regeneration, which is not an easy task to design a material with good biocompatibility, appropriate degradability. Magnesium has captured increasing attention during the past years as suitable materials. However, there are little types of research on magnesium promoting peripheral nerve regeneration. In this review, we conclude the possible mechanism of magnesium ion promoting peripheral nerve regeneration and the properties and application of different kinds of magnesium-based biomaterials, such as magnesium filaments, magnesium alloys, and others, in which we found some shortcomings and challenges. So, magnesium can promote peripheral nerve regeneration with both challenge and potential.
Collapse
Affiliation(s)
- Jingxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinglan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Baradaran A, El-Hawary H, Efanov JI, Xu L. Peripheral Nerve Healing: So Near and Yet So Far. Semin Plast Surg 2021; 35:204-210. [PMID: 34526869 PMCID: PMC8432994 DOI: 10.1055/s-0041-1731630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injuries represent a considerable portion of chronic disability that especially affects the younger population. Prerequisites of proper peripheral nerve injury treatment include in-depth knowledge of the anatomy, pathophysiology, and options in surgical reconstruction. Our greater appreciation of nerve healing mechanisms and the development of different microsurgical techniques have significantly refined the outcomes in treatment for the past four decades. This work reviews the peripheral nerve regeneration process after an injury, provides an overview of various coaptation methods, and compares other available treatments such as autologous nerve graft, acellular nerve allograft, and synthetic nerve conduits. Furthermore, the formation of neuromas as well as their latest treatment options are discussed.
Collapse
Affiliation(s)
- Aslan Baradaran
- Division of Plastic and Reconstructive Surgery, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Hassan El-Hawary
- Division of Plastic and Reconstructive Surgery, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Johnny Ionut Efanov
- Division of Plastic and Reconstructive Surgery, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Liqin Xu
- Division of Plastic and Reconstructive Surgery, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
66
|
Bone Marrow Mesenchymal Stem Cell Condition Medium Loaded on PCL Nanofibrous Scaffold Promoted Nerve Regeneration After Sciatic Nerve Transection in Male Rats. Neurotox Res 2021; 39:1470-1486. [PMID: 34309780 DOI: 10.1007/s12640-021-00391-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023]
Abstract
Nowadays, researchers pay a vast deal of attention to neural tissue regeneration due to its tremendous effect on the patient's life. There are many strategies, from using conventional autologous nerve grafts to the newly developed methods for reconstructing damaged nerves. Among the various therapeutic methods, incorporating highly potent biomolecules and growth factors, the damaged nerve site would promote nerve regeneration. The aim was to examine the efficiency of a mesenchymal stem cell condition medium (MSC-CM) loaded on a 3D-polycaprolactone (PCL) scaffold as a nerve conduit in an axotomy rat model. Twenty-four mature male rats were classified into four groups: controls (the animals of this group were intact), axotomy (10 mm piece of the nerve was removed), axotomy (10-mm piece of the nerve was removed) + scaffold, and axotomy (10-mm piece of the nerve was removed) + MSC-CM-loaded scaffold. We followed up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemius muscle. At 12 weeks post axotomy, sciatic nerve and dorsal root ganglion specimens and L4 and L5 spinal cord segments were separated from the rats and were analyzed by stereological, immunohistochemistry, and RT-PCR procedures. The rats of the axotomy group presented the expected gross locomotor deficit. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in the CM-loaded scaffold group compared with the axotomy group. The most observed similarity was noted between the results of the control group and the CM-loaded scaffold group. Our results support the potential applicability of MSC-CM-loaded PCL nanofibrous scaffold to treat peripheral nerve injury (PNI).
Collapse
|
67
|
Ma Y, Gao H, Wang H, Cao X. Engineering topography: effects on nerve cell behaviors and applications in peripheral nerve repair. J Mater Chem B 2021; 9:6310-6325. [PMID: 34302164 DOI: 10.1039/d1tb00782c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been extensive studies on the application of topography in the field of tissue repair. A common feature of these studies is that the existence of topological structures in tissue repair scaffolds can effectively regulate a series of behaviors of cells and play a positive role in a variety of tissue repair and regeneration processes. This review focuses on the application of topography in the field of peripheral nerve repair. The integration of the topological structure and biomaterials to construct peripheral nerve conduits to mimic a natural peripheral nerve structure has an important role in promoting the recovery of peripheral nerve function. Therefore, in this review, we systematically analysed the structure of peripheral nerves and summarized the effects of topographic cues of different scales and shapes on the behaviors of nerve cells, including cell morphology, adhesion, proliferation, migration and differentiation. Furthermore, the application and performance of scaffolds with different topological structures in peripheral nerve repair are also discussed. This systematic summary may help to provide more effective strategies for peripheral nerve regeneration (PNR) and shed light on nervous tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ying Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | |
Collapse
|
68
|
Sencar L, Coşkun G, Şaker D, Sapmaz T, Kara S, Çelenk A, Polat S, Yılmaz DM, Dağlıoğlu YK, Polat S. Effects of Theranekron and alpha-lipoic acid combined treatment on GAP-43 and Krox-20 gene expressions and inflammation markers in peripheral nerve injury. Ultrastruct Pathol 2021; 45:167-181. [PMID: 34184615 DOI: 10.1080/01913123.2021.1923600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve injury (PNI) is a major health problem that results in loss of motor and sensory functions. In treatment of PNI, various methods such as anastomosis, nerve grafts, nonneural tissue grafts, and nerve conduits are applied. In the present study, it was aimed to investigate the effects of Theranekron and Alpha-lipoic acid (ALA) combined treatment on nerve healing in experimental PNI by using histomorphometric, electron microscopic, immunohistochemical and molecular biological methods. Sixty-two Wistar rats were divided into six groups; the normal control group, sham operation group, experimental control group having a crush type injury with no treatment, Theranekron treatment group, ALA treatment group and Theranekron+ALA combined treatment group. Sciatic nerve tissue samples were obtained on days 1, 7 and 14 following injury in all groups. GAP-43 expression was upregulated in all PNI received groups compared to the control group. Krox-20 expression was downregulated in all groups that received PNI compared to the control group. While intensely positive TNF-α and IL-6 expressions were observed up to the 1st to the 14th day for the experimental control group, these expressions were seen as "weakly positive" in the treatment groups from the 1st day to the 14th day. The number of myelinated fibers was higher in the control and sham operation groups. Additionally, the number of myelinated nerve fibers increased in the combined treatment group. In conclusion, these findings suggest that combined therapy of Theranekron and ALA promotes structural recovery and it should be considered as an effective treatment protocol following PNI.
Collapse
Affiliation(s)
- Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gülfidan Coşkun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tuğçe Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Alper Çelenk
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Y Kenan Dağlıoğlu
- Medical Sciences and Experimental Research and Application Center of Çukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
69
|
Bolleboom A, Boer K, de Ruiter GCW. Clinical Outcome for Surgical Treatment of Traumatic Neuroma With a Processed Nerve Allograft: Results of a Small Prospective Case Series. J Foot Ankle Surg 2021; 60:386-390. [PMID: 33223437 DOI: 10.1053/j.jfas.2020.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 02/03/2023]
Abstract
Processed nerve allografts are used increasingly in the treatment of traumatic neuroma in small sensory nerves. The goal of the present study was to investigate the use of an allograft after different intervals between injury and repair and to analyze results, not only for the success of pain relief, but also for potential recovery of sensation in time. Four patients with painful neuroma in small sensory nerves in the lower extremity were surgically treated with a decellularized allograft. Patients were followed prospectively for at least 1 y. Clinical outcome was assessed using the Likert scale. Recovery of sensation was tested using Semmes-Weinstein monofilaments. In all 4 cases an allograft of 3-cm was used to reconstruct a defect in the superficial peroneal (3) or sural nerve (1) after excision of the neuroma. Complete relief of pain symptoms was achieved in 2 patients: 1 case concerned the reconstruction of a neuroma with an interval of less than 1 y between injury and repair and 1 case a neuroma-in-continuity. Sensation recovered completely in these 2 cases. In the other 2 cases, that had an interval between injury and reconstruction of more than 1 y, there was neither successful pain relief nor recovery of sensation. This prospective study shows that processed nerve allografts can be successful for the reconstruction of small sensory nerves after excision of the traumatic neuroma both for recovery of pain and sensation, but in this small case series only if the interval between injury and reconstruction was <1 y.
Collapse
Affiliation(s)
- Anne Bolleboom
- Student, Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Karin Boer
- Hand Therapist, Hand and Wrist Center The Hague, The Hague, The Netherlands
| | - Godard C W de Ruiter
- Neurosurgeon, Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.
| |
Collapse
|
70
|
A systematic review and meta-analysis of studies comparing muscle-in-vein conduits with autologous nerve grafts for nerve reconstruction. Sci Rep 2021; 11:11691. [PMID: 34083605 PMCID: PMC8175734 DOI: 10.1038/s41598-021-90956-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The gold-standard method for reconstruction of segmental nerve defects, the autologous nerve graft, has several drawbacks in terms of tissue availability and donor site morbidity. Therefore, feasible alternatives to autologous nerve grafts are sought. Muscle-in-vein conduits have been proposed as an alternative to autologous nerve grafts almost three decades ago, given the abundance of both tissues throughout the body. Based on the anti-inflammatory effects of veins and the proregenerative environment established by muscle tissue, this approach has been studied in various preclinical and some clinical trials. There is still no comprehensive systematic summary to conclude efficacy and feasibility of muscle-in-vein conduits for reconstruction of segmental nerve defects. Given this lack of a conclusive summary, we performed a meta-analysis to evaluate the potential of muscle-in-vein conduits. This work’s main findings are profound discrepancies regarding the results following nerve repair by means of muscle-in-vein conduits in a preclinical or clinical setting. We identified differences in study methodology, inter-species neurobiology and the limited number of clinical studies to be the main reasons for the still inconclusive results. In conclusion, we advise for large animal studies to elucidate the feasibility of muscle-in-vein conduits for repair of segmental defects of critical size in mixed nerves.
Collapse
|
71
|
Cilingir-Kaya OT, Sumer O, Sirvanci S, Gurler EB, Akcal A, Karsidag S. Effect of Tacrolimus on Peripheral Nerve Regeneration in Allograft Transplantation: A Light and Electron Microscopic Study. EXP CLIN TRANSPLANT 2021; 19:1322-1327. [PMID: 34018473 DOI: 10.6002/ect.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Peripheral nerve injuries are common in Europe; however, the treatment techniques may lead to disabilities. This study aimed to evaluate the effect of tacrolimus use on the capacity of the epineural sheath graft to improve its regeneration quality in rat sciatic nerves as a treatment option for nerve injuries. MATERIALS AND METHODS In the experimental process, 30 male Sprague Dawley were used as recipients and 10 Wistar rats were used as donors. Under anesthesia, all rats were operated on to resect the sciatic nerve. The nerve tissue of Wistar rats was used as allograft. In the autograft group, the resected nerve was reversed and sutured, resulting in an epineural sheath graft. For the allograft groups, rats were randomly divided into 2 groups as the tacrolimus-treated group and the nontreated group after allograft transplant. Tacrolimus was administered intramuscularly at 0.1 mg/kg daily for 12 weeks. After the treatment period, rats were killed and evaluated histomorphologically with light and electron microscopy. RESULTS Histological examination showed no remarkable differences between different regions of the sciatic nerves (distal, middle, and proximal). The axonal density was decreased in the allograft groups compared with the autograft group (P < .001). Results showed that the number of mast cells was increased in the allograft group without tacrolimus treatment (P < .05). Similarly, there was a mild increase in mast cell count in the tacrolimus-treated allograft group. CONCLUSIONS Our results showed that tacrolimus use in rats with implanted epineural nerve sheath supported recovery in terms of morphological and physiological regeneration of the nerve.
Collapse
Affiliation(s)
- Ozlem Tugce Cilingir-Kaya
- From the Marmara University, School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
72
|
Evidence-Based Approach to Nerve Gap Repair in the Upper Extremity: A Review of the Literature and Current Algorithm for Surgical Management. Ann Plast Surg 2021; 84:S369-S374. [PMID: 32039999 DOI: 10.1097/sap.0000000000002278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The upper extremity is the most common site for nerve injuries. In most cases, direct repair can be performed, but when a critical gap occurs, special techniques must be used to enhance nerve regeneration and allow recovery of sensory and motor functions. These techniques include the use of autografts, processed nerve allografts, and conduits. However, surprisingly few studies have compared outcomes from the different methods of nerve gap repair in a rigorous fashion. There is a lack of evidence-based guidelines for the management of digital and motor and mixed nerve injuries with a nerve gap. The purpose of this study is to perform a comprehensive literature review and propose a rational algorithm for management of nerve injuries with a critical gap.
Collapse
|
73
|
Dunn JC, Tadlock J, Klahs KJ, Narimissaei D, McKay P, Nesti LJ. Nerve Reconstruction Using Processed Nerve Allograft in the U.S. Military. Mil Med 2021; 186:e543-e548. [PMID: 33449099 DOI: 10.1093/milmed/usaa494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Processed nerve allograft (PNA) is an alternative to autograft for the reconstruction of peripheral nerves. We hypothesize that peripheral nerve repair with PNA in a military population will have a low rate of meaningful recovery (M ≥ 3) because of the frequency of blasting mechanisms and large zones of injury. METHODS A retrospective review of the military Registry of Avance Nerve Graft Evaluating Utilization and Outcomes for the Reconstruction of Peripheral Nerve Discontinuities database was conducted at the Walter Reed Peripheral Nerve Consortium. All adult active duty military patients who underwent any peripheral nerve repair with PNA for complete nerve injuries augmented with PNA visit were included. Motor strength and sensory function were reported as a consensus from the multidisciplinary Peripheral Nerve Consortium. Motor and sensory testing was conducted in accordance with the British Medical Research Council. RESULTS A total of 23 service members with 25 nerve injuries (3 sensory and 22 mixed motor/sensory) underwent reconstruction with PNA. The average age was 30 years and the majority were male (96%). The most common injury was to the sciatic nerve (28%) from a complex mechanism (gunshot, blast, compression, and avulsion). The average defect was 77 mm. Twenty-four percent of patients achieved a meaningful motor recovery. Longer follow-up was correlated with improved postoperative motor function (r = 0.49 and P = .03). CONCLUSIONS The military population had complex injuries with large nerve gaps. Despite the low rate of meaningful recovery (27.3%), large gaps in motor and mixed motor/sensory nerves are difficult to treat, and further research is needed to determine if autograft would achieve superior results. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic, Level III.
Collapse
Affiliation(s)
- John C Dunn
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA.,Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Joshua Tadlock
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA
| | - Kyle J Klahs
- Department of Orthopaedic Surgery, William Beaumont Army Medical Center, El Paso, TX 79920, USA
| | | | - Patricia McKay
- Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Centers for Advanced Orthopedics, Southern Maryland Orthopedics and Sports Medicine, White Plains, MD 20695, USA
| | - Leon J Nesti
- Department of Surgery, Clinical and Experimental Orthopaedics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
74
|
Minini A, Megaro A. Muscle in vein conduits: our experience. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021163. [PMID: 33944845 PMCID: PMC8142788 DOI: 10.23750/abm.v92is1.9202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Muscle in vein (MIV ) conduits have gradually been employed in the last 20 years as a valuable technique in bridging peripheral nerve gaps after nerve lesions who cannot undergo a direct tension-free coaptation. The advantages of this procedure comparing to the actual benchmark (autograft) is the sparing of the donor site, and the huge availability of both components (i.e. muscle and veins). Here we present a case serie of four MIV performed at our hospital from 2018 to 2019. The results we obtained in our experi-ence confirmed its effectiveness both in nerve regeneration (as sensibility recovery) and in neuropathic pain eradication. Our positive outcomes encourage its use in selected cases of residual nerve gaps up to 30 mm.
Collapse
Affiliation(s)
- Andrea Minini
- Clinica Ortopedica dell'Università degli Studi di Brescia.
| | | |
Collapse
|
75
|
Chen T, Jiang H, Zhu Y, Chen X, Zhang D, Li X, Shen F, Xia H, Min Y, Xie K. Highly Ordered 3D Tissue Engineering Scaffolds as a Versatile Culture Platform for Nerve Cells Growth. Macromol Biosci 2021; 21:e2100047. [PMID: 33893711 DOI: 10.1002/mabi.202100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Tissue engineering scaffolds provide an encouraging alternative for nerve injuries due to their biological support for nerve cell growth, which can be used for neuronal repair. Nerve cells have been reported to be mostly cultured on 2D scaffolds that cannot mimic the native extracellular matrix. Herein, highly ordered 3D scaffolds are fabricated for nerve cell culture by melt electrospinning writing, the microstructures and geometries of the scaffolds could be well modulated. An effective strategy for scaffold surface modification to promote nerve cell growth is proposed. The effects of scaffolds with different surface modifications, viz., plasma treatment, single poly-D-lysine (PDL) coating after plasma treatment, single laminin (LM) coating after plasma treatment, double PDL and LM coatings after plasma treatment, on PC12 cell growth are evaluated. Experiments show the scaffold modified with double PDL and LM coatings after plasma treatment facilitated the growth of PC12 cells most effectively, indicating the synergistic effect of PDL and LM on the growth of nerve cells. This is the first systematic and quantitative study of the effects of different scaffold surface modifications on nerve cell growth. The above results provide a versatile culture platform for growing nerve cells, and for recovery from peripheral nerve injury.
Collapse
Affiliation(s)
- Tingkuo Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiming Jiang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yibin Zhu
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xueliu Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dao Zhang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiang Li
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fangcheng Shen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongyan Xia
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kang Xie
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
76
|
Lee JI, Gurjar AA, Talukder MAH, Rodenhouse A, Manto K, O'Brien M, Karuman Z, Govindappa PK, Elfar JC. Purposeful Misalignment of Severed Nerve Stumps in a Standardized Transection Model Reveals Persistent Functional Deficit With Aberrant Neurofilament Distribution. Mil Med 2021; 186:696-703. [PMID: 33499508 DOI: 10.1093/milmed/usaa344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Functional recovery following primary nerve repair of a transected nerve is often poor even with advanced microsurgical techniques. Recently, we developed a novel sciatic nerve transection method where end-to-end apposition of the nerve endings with minimal gap was performed with fibrin glue. We demonstrated that transected nerve repair with gluing results in optimal functional recovery with improved axonal neurofilament distribution profile compared to the end-to-end micro-suture repair. However, the impact of axonal misdirection and misalignment of nerve fascicles remains largely unknown in nerve-injury recovery. We addressed this issue using a novel nerve repair model with gluing. METHODS In our complete "Flip and Transection with Glue" model, the nerve was "first" transected to 40% of its width from each side and distal stump was transversely flipped, then 20 µL of fibrin glue was applied around the transection site and the central 20% nerve was completely transected before fibrin glue clotting. Mice were followed for 28 days with weekly assessment of sciatic function. Immunohistochemistry analysis of both sciatic nerves was performed for neurofilament distribution and angiogenesis. Tibialis anterior muscles were analyzed for atrophy and histomorphometry. RESULTS Functional recovery following misaligned repair remained persistently low throughout the postsurgical period. Immunohistochemistry of nerve sections revealed significantly increased aberrant axonal neurofilaments in injured and distal nerve segments compared to proximal segments. Increased aberrant neurofilament profiles in the injured and distal nerve segments were associated with significantly increased nerve blood-vessel density and branching index than in the proximal segment. Injured limbs had significant muscle atrophy, and muscle fiber distribution showed significantly increased numbers of smaller muscle fibers and decreased numbers of larger muscle fibers. CONCLUSIONS These findings in a novel nerve transection mouse model with misaligned repair suggest that aberrant neurofilament distributions and axonal misdirections play an important role in functional recovery and muscle atrophy.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.,Department of Orthopedic Surgery, Hanyang University College of Medicine, Hayang University Guri Hospital, Guri-si, Gyeonggi-do, 11923, South Korea
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Andrew Rodenhouse
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kristen Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Zara Karuman
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
77
|
Crosio A, Ronchi G, Fornasari BE, Odella S, Raimondo S, Tos P. Experimental Methods to Simulate and Evaluate Postsurgical Peripheral Nerve Scarring. J Clin Med 2021; 10:jcm10081613. [PMID: 33920209 PMCID: PMC8070420 DOI: 10.3390/jcm10081613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
As a consequence of trauma or surgical interventions on peripheral nerves, scar tissue can form, interfering with the capacity of the nerve to regenerate properly. Scar tissue may also lead to traction neuropathies, with functional dysfunction and pain for the patient. The search for effective antiadhesion products to prevent scar tissue formation has, therefore, become an important clinical challenge. In this review, we perform extensive research on the PubMed database, retrieving experimental papers on the prevention of peripheral nerve scarring. Different parameters have been considered and discussed, including the animal and nerve models used and the experimental methods employed to simulate and evaluate scar formation. An overview of the different types of antiadhesion devices and strategies investigated in experimental models is also provided. To successfully evaluate the efficacy of new antiscarring agents, it is necessary to have reliable animal models mimicking the complications of peripheral nerve scarring and also standard and quantitative parameters to evaluate perineural scars. So far, there are no standardized methods used in experimental research, and it is, therefore, difficult to compare the results of the different antiadhesion devices.
Collapse
Affiliation(s)
- Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
| | - Simonetta Odella
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (B.E.F.)
- Correspondence: ; Tel.: +39-011-670-5433
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Piazza Andrea Ferrari 1, 20122 Milano, Italy; (A.C.); (S.O.); (P.T.)
| |
Collapse
|
78
|
Odorico SK, Shulzhenko NO, Zeng W, Dingle AM, Francis DO, Poore SO. Effect of Nimodipine and Botulinum Toxin A on Peripheral Nerve Regeneration in Rats: A Pilot Study. J Surg Res 2021; 264:208-221. [PMID: 33838405 DOI: 10.1016/j.jss.2021.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/05/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve damage is a frequent problem, with an estimated 2.8%-5.0% of trauma admissions involving peripheral nerve injury. End-to-end, tension-free microsurgical repair (neurorrhaphy) is the current gold standard treatment for complete transection (neurotmesis). While neurorrhaphy reapproximates the nerve, it does not address the complex molecular regenerative process. Evidence suggests that botulinum toxin A (BTX) and nimodipine (NDP) may improve functional recovery, but mechanisms of action remain unknown. METHODS This research investigates BTX and NDP for their novel capacity to improve neural regeneration in the setting of neurorrhaphy using a Lewis rat tibial nerve neurotmesis model. In a triple-masked, placebo-controlled, randomized study design, we compared functional (rotarod, horizontal ladder walk), electrophysiological (conduction velocity, duration), and stereological (axon count, density) outcomes of rats treated with: NDP+saline injection, BTX+NDP, Saline+placebo, and BTX+placebo. Additional controls included sham surgery +/- BTX. RESULTS NDP+saline outperformed other treatment groups in the ladder walk. This group had the fewest deep slips (15.07% versus 30.77% in BTX+NDP, P = 0.122), and the most correct steps (70.53% versus 55.58% in BTX+NDP, P = 0.149) in functional testing. NDP+saline also had the fastest nerve conduction velocity (0.811m/s versus 0.598m/s in BTX+NDP, P = 0.126) among treatment groups. BTX+NDP had the highest axon count (10,012.36 versus 7,738.18 in NDP+Saline, P = 0.009). CONCLUSION This study is the first to test NDP with BTX in a multimodal assessment of nerve recovery following neurotmesis and neurorrhaphy. NDP outperformed BTX+NDP functionally. Future work will focus on nimodipine in an effort to improve nerve recovery in trauma patients.
Collapse
Affiliation(s)
- Scott K Odorico
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Nikita O Shulzhenko
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Weifeng Zeng
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Aaron M Dingle
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - David O Francis
- University of Wisconsin School of Medicine and Public Health, Division of Otolaryngology, Department of Surgery, Madison, Wisconsin; University of Wisconsin School of Medicine and Public Health, Wisconsin Surgical Outcomes Research Program, Department of Surgery, Madison, Wisconsin
| | - Samuel O Poore
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin.
| |
Collapse
|
79
|
Meade A, Hembd A, Cho MJ, Zhang AY. Surgical Treatment of Upper Extremity Gunshot Injures: An Updated Review. Ann Plast Surg 2021; 86:S312-S318. [PMID: 33346543 DOI: 10.1097/sap.0000000000002634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Firearm morbidity and mortality have been increasing in recent years, and with this, the demand for medical personnel firearm injury treatment knowledge. Extremities contribute to a majority of firearm injuries, with these injuries being particularly complex because of neurovascular proximity within a confined space. Knowledge of firearm mechanism of injury and treatment management options is important for any trauma hand surgeon. Many factors play vital roles in the treatment of complex upper extremity (UE) gunshot wounds (GSWs). The aim of our review and case illustrations is to provide hand surgeons with an up-to-date guide for initial emergent management, soft tissue, bony, and nerve repair and reconstruction. PATIENT AND METHODS A literature review was conducted in the current management of UE GSW injuries, and 2 specific patient case examples were included. High-energy versus low-energy GSWs were documented and compared, as well as containment injures. Management including soft tissue, bony, and nerve injuries was explored along with patient outcome. Based on these findings, guidelines for GSW management were purposed. CONCLUSION Gunshot wounds of the UE encompass a group of highly heterogeneous injuries. High-energy wounds are more extensive, and concomitant injuries to bone, vessel, nerve, muscle, and soft tissue are common. Early treatment with adequate debridement, skeletal fixation, and soft tissue coverage is indicated for complex injuries, and antibiotic treatment in the pre-, peri-, and postoperative period is indicated for operative injuries. Soft tissue coverage options include the entire reconstructive ladder, with pattern of injury and considerations of wound characteristics dictating reconstructive choice. There are arguments to using either external or internal bony fixation techniques for bone fracture management, with choice tailored to the patient. For management of nerve injuries, we advocate earlier nerve repair and a shorter duration of observation before secondary reconstruction in selective cases. If transected nerve endings cannot be brought together, nerve autografts of shorter length are recommended to bridge nerve ending gaps. A significant number of patients with GSW fail to make necessary follow-up appointments, which adds to challenges in treatment.
Collapse
Affiliation(s)
- Anna Meade
- From the Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
80
|
Comparison of Decellularization Protocols to Generate Peripheral Nerve Grafts: A Study on Rat Sciatic Nerves. Int J Mol Sci 2021; 22:ijms22052389. [PMID: 33673602 PMCID: PMC7957587 DOI: 10.3390/ijms22052389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
In critical nerve gap repair, decellularized nerve allografts are considered a promising tissue engineering strategy that can provide superior regeneration results compared to nerve conduits. Decellularized nerves offer a well-conserved extracellular matrix component that has proven to play an important role in supporting axonal guiding and peripheral nerve regeneration. Up to now, the known decellularized techniques are time and effort consuming. The present study, performed on rat sciatic nerves, aims at investigating a novel nerve decellularization protocol able to combine an effective decellularization in short time with a good preservation of the extracellular matrix component. To do this, a decellularization protocol proven to be efficient for tendons (DN-P1) was compared with a decellularization protocol specifically developed for nerves (DN-P2). The outcomes of both the decellularization protocols were assessed by a series of in vitro evaluations, including qualitative and quantitative histological and immunohistochemical analyses, DNA quantification, SEM and TEM ultrastructural analyses, mechanical testing, and viability assay. The overall results showed that DN-P1 could provide promising results if tested in vivo, as the in vitro characterization demonstrated that DN-P1 conserved a better ultrastructure and ECM components compared to DN-P2. Most importantly, DN-P1 was shown to be highly biocompatible, supporting a greater number of viable metabolically active cells.
Collapse
|
81
|
Kornfeld T, Nessler J, Helmer C, Hannemann R, Waldmann KH, Peck CT, Hoffmann P, Brandes G, Vogt PM, Radtke C. Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model. Biomaterials 2021; 271:120692. [PMID: 33607544 DOI: 10.1016/j.biomaterials.2021.120692] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injuries with substantial tissue loss require autologous nerve transplantation or alternatively reconstruction with nerve conduits. Axonal elongation after nerve transection is about 1 mm/day. The precise time course of axonal regeneration on an ultrastructural level in nerve gap repair using either autologous or artificial implants has not been described. As peripheral nerve regeneration is a highly time critical process due to deterioration of the neuromuscular junction, this in vivo examination in a large animal model was performed in order to investigate axonal elongation rates and spider silk material degradation in a narrowly delimited time series (20, 30, 40, 50, 90, 120, 150 and 180 days) by using a novel spider silk based artificial nerve graft as a critical prerequisite for clinical translation. Autologous nerves or artificial nerve conduits based on spider silk of the spider species Trichonephila edulis were transplanted in a 6.0 cm nerve defect model in the black headed mutton. At each of the post-implant time point, electrophysiology recordings were performed to assess functional reinnervation of axonal fibers into the implants. Samples were analyzed by histology and immunofluorescence in order to verify the timeline of axonal regeneration including axonal regeneration rates of the spider silk implant and the autologous transplant groups. Spider silk was degraded within 3 month by a light immune response mainly mediated by Langhans Giant cells. In conjunction with behavioral analysis and electrophysiological measurements, the results indicate that the spider silk nerve implant supported an axonal regeneration comparable to an autologous nerve graft which is the current gold standard in nerve repair surgery. These findings indicate that a biomaterial based spider silk nerve conduit is as effective as autologous nerve implants and may be an important approach for long nerve defects.
Collapse
Affiliation(s)
- T Kornfeld
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - J Nessler
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - C Helmer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - R Hannemann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - K H Waldmann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - C T Peck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P Hoffmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - G Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - C Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
82
|
Rochkind S, Almog M, Meilin S, Nevo Z. Reviving Matrix for Nerve Reconstruction in Rabbit Model of Chronic Peripheral Nerve Injury With Massive Loss Defect. Front Surg 2021; 7:609638. [PMID: 33521046 PMCID: PMC7844361 DOI: 10.3389/fsurg.2020.609638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Background and Aims: The aim of this study was to investigate the innovative guiding regenerative gel (GRG) and antigliotic GRG (AGRG) fillings for nerve conduits, prepared with Food and Drug Administration (FDA)-approved agents and expected to provide an alternative to autologous nerve graft and to enable reconnection of massive nerve gaps in a rabbit model of chronic peripheral nerve injury with massive loss defect that simulates the human condition of chronic injury with a large gap. Methods: The components and dosimetry for GRG and AGRG formulations were investigated in vitro on nerve cell culture and in vivo on 10-mm reconstructed sciatic nerves of 72 rats using different concentrations of agents and completed on a rabbit model of delayed (chronic) complete peripheral nerve injury with a 25-mm gap. Forty rabbits underwent delayed (9 weeks after complete injury of the tibial portion of the sciatic nerve) nerve tube reconstruction of a gap that is 25 mm long. GRG and AGRG groups were compared with autologous and empty tube reconstructed groups. Rats and rabbits underwent electrophysiological and histochemical assessments (19 weeks for rats and 40 weeks for rabbits). Results: Application of AGRG showed a significant increase of about 78% in neurite length per cell and was shown to have the most promising effect on neuronal outgrowth, with total number of neurites increasing by 4-fold. The electrophysiological follow-up showed that AGRG treatment is most promising for the reconstruction of the tibial portion of the sciatic nerve with a critical gap of 25 mm. The beneficial effect of AGRG was found when compared with the autologous nerve graft reconstruction. Thirty-one weeks post the second surgery (delayed reconstruction), histochemical observation showed significant regeneration after using AGRG neurogel, compared with the empty tube, and succeeded in significantly regenerating the nerve, as well as the autologous nerve graft, which was almost similar to a healthy nerve. Conclusion: We demonstrate that in the model of delayed peripheral nerve repair with massive loss defect, the application of AGRG led to a stronger nerve recovery and can be an alternative to autologous nerve graft.
Collapse
Affiliation(s)
- Shimon Rochkind
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Meilin
- Neurology R&D Division, MD Biosciences, Ness Ziona, Israel
| | - Zvi Nevo
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
83
|
Hellenbrand DJ, Haldeman CL, Lee JS, Gableman AG, Dai EK, Ortmann SD, Gotchy JC, Miller KK, Doucas AM, Nowak NC, Murphy WL, Hanna AS. Functional recovery after peripheral nerve injury via sustained growth factor delivery from mineral-coated microparticles. Neural Regen Res 2021; 16:871-877. [PMID: 33229722 PMCID: PMC8178781 DOI: 10.4103/1673-5374.297786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gold standard for treating peripheral nerve injuries that have large nerve gaps where the nerves cannot be directly sutured back together because it creates tension on the nerve, is to incorporate an autologous nerve graft. However, even with the incorporation of a nerve graft, generally patients only regain a small portion of function in limbs affected by the injury. Although, there has been some promising results using growth factors to induce more axon growth through the nerve graft, many of these previous therapies are limited in their ability to release growth factors in a sustained manner and tailor them to a desired time frame. The ideal drug delivery platform would deliver growth factors at therapeutic levels for enough time to grow axons the entire length of the nerve graft. We hypothesized that mineral coated microparticles (MCMs) would bind, stabilize and release biologically active glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in a sustained manner. Therefore, the objective of this study was to test the ability of MCMs releasing growth factors at the distal end of a 10 mm sciatic nerve graft, to induce axon growth through the nerve graft and restore hind limb function. After sciatic nerve grafting in Lewis rats, the hind limb function was tested weekly by measuring the angle of the ankle at toe lift-off while walking down a track. Twelve weeks after grafting, the grafts were harvested and myelinated axons were analyzed proximal to the graft, in the center of the graft, and distal to the graft. Under physiological conditions in vitro, the MCMs delivered a burst release of NGF and GDNF for 3 days followed by a sustained release for at least 22 days. In vivo, MCMs releasing NGF and GDNF at the distal end of sciatic nerve grafts resulted in significantly more myelinated axons extending distal to the graft when compared to rats that received nerve grafts without growth factor treatment. The rats with nerve grafts incorporated with MCMs releasing NGF and GDNF also showed significant improvement in hind limb function starting at 7 weeks postoperatively and continuing through 12 weeks postoperatively when compared to rats that received nerve grafts without growth factor treatment. In conclusion, MCMs released biologically active NGF and GDNF in a sustained manner, which significantly enhanced axon growth resulting in a significant improvement of hind limb function in rats. The animal experiments were approved by University of Wisconsin-Madison Animal Care and Use Committee (ACUC, protocol# M5958) on January 3, 2018.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery; Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Clayton L Haldeman
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Jae-Sung Lee
- Department of Biomedical Engineering; Department of Orthopedics and Rehabilitation University of Wisconsin, Madison, WI, USA
| | - Angela G Gableman
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Elena K Dai
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stephen D Ortmann
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Jerrod C Gotchy
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kierra K Miller
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Adrianna M Doucas
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Nicole C Nowak
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering; Department of Orthopedics and Rehabilitation University of Wisconsin, Madison, WI, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
84
|
Liu H, Zhao Y, Tong J, Shi X, Chen Y, Du Y. Electrofabrication of flexible and mechanically strong tubular chitosan implants for peripheral nerve regeneration. J Mater Chem B 2021; 9:5537-5546. [PMID: 34161401 DOI: 10.1039/d1tb00247c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of peripheral nerve tissue engineering requires a safe and reliable methodology to construct biodegradable conduits. Herein, a new type of chitosan-based nerve-guide hydrogel conduit (CNHC) with enhanced mechanical flexibility in the wet state was fabricated using a one-step electrofabrication technology. The formation of the chitosan conduit is a physical process which can be conducted in a mild water phase without toxic crosslinks. The current density during electrofabrication has a profound effect on the physical and structural properties of the conduits. Cytocompatibility results indicate that the CNHC can promote cell proliferation and adhesion. Functional and histological tests indicate that the CNHC has the ability to guide the growth of axons through the conduit to reach a distal stump, which is closely similar to the autograft group. Overall, the results of this study demonstrate that the CNHCs from electrofabrication have a great potential in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Yanan Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan 430071, China.
| | - Jun Tong
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan 430071, China.
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
85
|
Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 2021; 329:237-256. [DOI: 10.1016/j.jconrel.2020.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
86
|
Lee JI, Gurjar AA, Talukder MAH, Rodenhouse A, Manto K, O'Brien M, Govindappa PK, Elfar JC. A novel nerve transection and repair method in mice: histomorphometric analysis of nerves, blood vessels, and muscles with functional recovery. Sci Rep 2020; 10:21637. [PMID: 33303798 PMCID: PMC7729850 DOI: 10.1038/s41598-020-78481-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve transection is associated with permanent functional deficit even after advanced microsurgical repair. While it is difficult to investigate the reasons of poor functional outcomes of microsurgical repairs in humans, we developed a novel pre-clinical nerve transection method that allows reliable evaluation of nerve regeneration, neural angiogenesis, muscle atrophy, and functional recovery. Adult male C57BL/6 mice were randomly assigned to four different types of sciatic nerve transection: Simple Transection (ST), Simple Transection & Glue (TG), Stepwise Transection and Sutures (SU), and Stepwise Transection and Glue (STG). Mice were followed for 28 days for sciatic function index (SFI), and sciatic nerves and hind limb muscles were harvested for histomorphological and cellular analyses. Immunohistochemistry revealed more directional nerve fiber growth in SU and STG groups compared with ST and TG groups. Compared to ST and TG groups, optimal neural vessel density and branching index in SU and STG groups were associated with significantly decreased muscle atrophy, increased myofiber diameter, and improved SFI. In conclusion, our novel STG method represents an easily reproducible and reliable model with close resemblance to the pathophysiological characteristics of SU model, and this can be easily reproduced by any lab.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA.,Department of Orthopedic Surgery, Hanyang University College of Medicine, Hayang University Guri Hospital, Guri, South Korea
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA.
| | - Andrew Rodenhouse
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA
| | - Kristen Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, PA, 17033, USA.
| |
Collapse
|
87
|
Rodriguez-Fontan F, Reeves B, Tuaño K, Colakoglu S, D' Agostino L, Banegas R. Tobacco use and neurogenesis: A theoretical review of pathophysiological mechanism affecting the outcome of peripheral nerve regeneration. J Orthop 2020; 22:59-63. [PMID: 32280170 PMCID: PMC7138932 DOI: 10.1016/j.jor.2020.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve injury often requires medical intervention. Unfortunately, many patients never have a full recovery, despite a multi-disciplinary approach, including operative intervention and physical and/or occupational therapy. Outcomes are multifactorial, but are largely affected by the original injury severity, and patient comorbidities. A lcoholism, diabetes mellitus and ageing may detrimentally affect the outcomes of nerve injury; however little is known about tobacco's potential impact on nerve regeneration. Tobacco has known immunomodulatory effects, which suggests that it might affect peripheral nerve regeneration and functional recovery following injury. This review characterizes the effects of tobacco use on the complex cellular and chemokine interactions in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Francisco Rodriguez-Fontan
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Bradley Reeves
- University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Krystle Tuaño
- Division of Plastic and Reconstructive Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Salih Colakoglu
- Division of Plastic and Reconstructive Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
88
|
A reformed “release hypothesis” for Marcus Gunn Syndrome, based on newer clinic observations and experimental evidences. Med Hypotheses 2020; 144:110210. [DOI: 10.1016/j.mehy.2020.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/21/2022]
|
89
|
Sari A, Ozcelik IB, Bayirli D, Ayik O, Mert M, Ercin BS, Baki H, Mersa B. Management of upper extremity war injuries in the subacute period: A review of 62 cases. Injury 2020; 51:2601-2611. [PMID: 32868071 DOI: 10.1016/j.injury.2020.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, we aimed to describe the relationship between the localization of rarely seen upper extremity war injuries and their complications in the subacute period, and define our preferences for surgery and antibiotic use. METHODS Patients with an upper extremity war injury who presented to our institution between 2015 and 2018 were retrospectively evaluated. Data regarding demographics, time between injury and presentation, location of injury, type of damage, complications, treatment methods, infection rates and antibiotic use were recorded. Tissue defects, fracture fixation, neurovascular damage, infection development and treatment approaches were analyzed. RESULTS Sixty-two male patients with isolated upper extremity injuries (mean age: 31.66 ± 8.28 years) were included in the study. The average time between trauma and hospitalization was 14 days. The mean hematocrit (Hct) level at presentation was 36.3 ± 6.8%. Patients had been followed up for an average period of 95.6 ± 32.1 days. Twenty-nine patients (46.8%) had nerve injury, eight (12.9%) had arterial injury that required repair, and 23 had infection (37.1%), of which five developed osteomyelitis. Infection was polymicrobial in nine cases and monobacterial in 14. A positive correlation was found between the presence of fracture and nerve injury (p = 0.013). The frequency of nerve injuries due to gunshot wounds was higher in the mid-section and lower part of the arms and in the proximal forearm when compared to other regions (p = 0.011). The infection rates were significantly higher in patients with fractures (p = 0.033). The mean hematocrit (Hct) level at presentation of the patients with infection (32.1 ± 6.3%) was significantly lower than that of those who did not have infection (38.8 ± 5.9%) (p<0.001). CONCLUSION Upper extremity war injuries require case-specific solutions. Microbiological samples should be taken prior to empirical antibiotic treatment for infection management and rational antibiotic use principles should be applied according to the culture and antibiogram results. The holistic and ambiguous character of nerve injuries often requires early exploration and combined reconstructive interventions. Arterial injuries can be overlooked by physical examination alone and thus routine angiography should be performed. Completion of the bone and soft tissue reconstructions in the same session using a holistic approach minimizes the possible risks.
Collapse
Affiliation(s)
- Abdulkadir Sari
- Department of Orthopedics and Traumatology, Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey.
| | - Ismail Bulent Ozcelik
- Istanbul Hand Surgery and Microsurgery Group, Yeni Yüzyıl University, Hand and Upper Extremity Surgery Unit, Gaziosmanpaşa Private Hospital, Nisantasi University Vocational High School, Istanbul, Turkey
| | - Derya Bayirli
- Infectious Diseases Clinic, Gaziosmanpaşa Private Hospital, Yeni Yüzyıl University, Istanbul, Turkey
| | - Omer Ayik
- Department of Orthopedics and Traumatology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Mert
- Orthopedics and Traumatology Clinic, Gaziosmanpaşa Private Hospital, Yeni Yüzyıl University, Istanbul, Turkey
| | - Burak Sercan Ercin
- Mikroplast Hand Surgery and Microsurgery Group, Plastic and Reconstructive Surgery Clinic, Gebze Medical Park Hospital, Kocaeli, Turkey
| | - Humam Baki
- Orthopedics and Traumatology Clinic, Gaziosmanpaşa Private Hospital, Yeni Yüzyıl University, Istanbul, Turkey
| | - Berkan Mersa
- Istanbul Hand Surgery and Microsurgery Group, Yeni Yüzyıl University, Hand and Upper Extremity Surgery Unit, Gaziosmanpaşa Private Hospital, Nisantasi University Vocational High School, Istanbul, Turkey
| |
Collapse
|
90
|
Chen J, Yang R, Li H, Lao J. Green Tea Polyphenols Promote Functional Recovery from Peripheral Nerve Injury in Rats. Med Sci Monit 2020; 26:e923806. [PMID: 32851993 PMCID: PMC7476353 DOI: 10.12659/msm.923806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a common and progressive disorder with sensory and motor deficits in the peripheral nervous system (PNS). Treatment is difficult, with unfavorable prognosis. Green tea polyphenols (GTPs) exert neuroprotective effects on regeneration of the central nervous system (CNS). However, the effects of GTPs on functional recovery of the PNS have not been fully characterized. Consequently, the present study investigated the effects of GTPs on nerve regeneration of rats with PNI. Material/Methods The model of PNI was established in rats by sciatic nerve injury (SNI). Adult male Wistar rats with SNI were randomly divided into a vehicle group and a GTPs group. The compound muscle action potential (CMAP) of rat sciatic nerves (SN) was measured using the CM6240 physiological signal acquisition and processing system. The wet weight of the triceps muscle was determined using an analytical balance. The number of myelinated nerve fibers was counted under an optical microscope. Ultrastructure of the regenerated nerves in SN was observed by transmission electron microscopy. The mRNA and protein expression of nerve growth factor (NGF), growth-associated protein-43 (GAP-43), neurofilament 200 (NF200), and myelin-associated glycoprotein (MAG) in SN stumps were measured by real-time quantification PCR (RT-qPCR) and Western blot, respectively. Results In rats with SNI, GTPs relieved the adhesion between nerve anastomosis and surrounding tissues, and significantly increased nerve conduction velocity, wet weight of the triceps muscle, and development and axonal regeneration of myelinated nerve fibers. Moreover, GTPs promoted the mRNA and protein expressions of NGF, GAP-43, NF200, and MAG in SN stumps. Conclusions GTPs promotes nerve regeneration in rats with SNI.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| | - Rongyuan Yang
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| | - Honghan Li
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)
| | - Jie Lao
- Department of Hand Surgery, Huashan Affiliated Hospital of Fudan University, Shanghai, China (mainland)
| |
Collapse
|
91
|
Tissue Plasminogen Activator Loaded PCL Nanofibrous Scaffold Promoted Nerve Regeneration After Sciatic Nerve Transection in Male Rats. Neurotox Res 2020; 39:413-428. [PMID: 32852719 DOI: 10.1007/s12640-020-00276-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
According to the studies, damages to the peripheral nerve as a result of a trauma or acute compression, stretching, or burns accounts for a vast range of discomforts which strongly impressed the patient's life quality. Applying highly potent biomolecules and growth factors in the damaged nerve site would promote the probability of nerve regeneration and functional recovery. Tissue plasminogen activator (tPA) is one of the components that can contribute importantly to degenerating and regenerating the peripheral nerves following the injuries occurred and the absence of this biomolecule hinders the recoveries of the nerves. This technique would guarantee the direct accessibility of tPA for the regenerating axons. Structural, physical, and in vitro cytotoxicity evaluations were done before in vivo experiments. In this study, twenty-four mature male rats have been exploited. The rats have been classified into four groups: controls, axotomy, axotomy + scaffold, and axotomy + tPA-loaded scaffold. Four, 8, and 12 weeks post-surgical, the sciatic functional index (SFI) has been measured. After 12 weeks, the spinal cord, sciatic nerve, and dorsal root ganglion specimens have been removed and stereological procedures, immunohistochemistry, and gene expression have been used to analyze them. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in tPA-loaded scaffold group compared with axotomy group. The most similarity was observed between the results of control group and tPA-loaded scaffold group. According to the results, a good regeneration of the functional nerve tissues in a short time was observed as a result of introducing tPA.
Collapse
|
92
|
Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020; 21:ijms21165792. [PMID: 32806758 PMCID: PMC7461058 DOI: 10.3390/ijms21165792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system controls the functions of sensation, movement and motor coordination of the body. Peripheral nerves can get damaged easily by trauma or neurodegenerative diseases. The injury can cause a devastating effect on the affected individual and his aides. Treatment modalities include anti-inflammatory medications, physiotherapy, surgery, nerve grafting and rehabilitation. 3D bioprinted peripheral nerve conduits serve as nerve grafts to fill the gaps of severed nerve bodies. The application of induced pluripotent stem cells, its derivatives and bioprinting are important techniques that come in handy while making living peripheral nerve conduits. The design of nerve conduits and bioprinting require comprehensive information on neural architecture, type of injury, neural supporting cells, scaffold materials to use, neural growth factors to add and to streamline the mechanical properties of the conduit. This paper gives a perspective on the factors to consider while bioprinting the peripheral nerve conduits.
Collapse
|
93
|
Fregnan F, Muratori L, Bassani GA, Crosio A, Biagiotti M, Vincoli V, Carta G, Pierimarchi P, Geuna S, Alessandrino A, Freddi G, Ronchi G. Preclinical Validation of SilkBridge TM for Peripheral Nerve Regeneration. Front Bioeng Biotechnol 2020; 8:835. [PMID: 32850714 PMCID: PMC7426473 DOI: 10.3389/fbioe.2020.00835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridgeTM) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. As demonstrated in a previous work, the silk material has proven to be able to provide a valid substrate for cells to grow on, differentiate and start the fundamental cellular regenerative activities in vitro and, in vivo, at the short time point of 2 weeks, to allow the starting of regenerative processes in terms of good integration with the surrounding tissues and colonization of the wall layers and of the lumen with several cell types. In the present study, a 10 mm long gap in the median nerve was repaired with 12 mm SilkBridgeTM conduit and evaluated at middle (4 weeks) and at longer time points (12 and 24 weeks). The SilkBridgeTM conduit led to a very good functional and morphological recovery of the median nerve, similar to that observed with the reference autograft nerve reconstruction procedure. Taken together, all these results demonstrated that SilkBridgeTM has an optimized balance of biomechanical and biological properties, which allowed proceeding with a first-in-human clinical study aimed at evaluating safety and effectiveness of using the device for the reconstruction of digital nerve defects in humans.
Collapse
Affiliation(s)
- Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | - Alessandro Crosio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Department of Orthopaedics and Traumatology for Hand, ASST Gaetano Pini, Milan, Italy
| | | | | | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | | | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
94
|
Lim CJ, Shen Y, Choi MC, Ryu PD. Primo Bundles Identified by Microcomputed Tomography in Primo Vascular Tissue on the Surface of Rat Abdominal Organs. J Acupunct Meridian Stud 2020; 13:136-145. [PMID: 32768624 DOI: 10.1016/j.jams.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The primo vascular system (PVS) is a novel network composed of primo nodes (PNs) and primo vessels (PVs). Currently, its anatomy is not fully understood. OBJECTIVES The aim of this study was to elucidate the three-dimensional PN-PV structure. METHODS Organ-surface PVS tissue was isolated from healthy and anemic rats. The tissues were analyzed by X-ray microcomputed tomography (CT), hematoxylin and eosin staining, and scanning electron microscopy. RESULTS From CT images, we identified one or more bundles in a PV. In the PN, the bundles were enlarged and existed in isolation and/or in anastomosis. The transverse CT images revealed four areas of distinct intensities: zero, low, intermediate, and high. The first two were considered to be the sinuses and the subvessels of the PVS and were identified in the hematoxylin and eosin-stained PN sections. The enlargement of the PN from anemic rats was associated with an increase in the intermediate-intensity area. The high-intensity area demarcated the bundle and was overlapped with the mesothelial cells. In scanning electron microscopy, the PV bundles branched out, tapering down to a single bundle at some distance from the PN. Each bundle was composed of several subvessels (∼5 μm). Clustered round microcells (1-25 μm), scattered flat oval cells (∼15 μm), and amorphous extracellular matrix were observed on the surface of the PVS tissue. CONCLUSIONS The results newly showed that the primo bundle is a structural unit of both PVs and PNs. A bundle was demarcated by high CT intensity and mesothelial cells and consisted of multiple subvessels. The PN bundles contained also sinuses.
Collapse
Affiliation(s)
- Chae Jeong Lim
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Cheol Choi
- Department of Medical Imaging, College of Veterinary Medicine and Research Institute of Veterinary Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
95
|
Ventre DM, Cluff A, Gagnon C, Diaz Vera D, Koppes RA, Koppes AN. The effects of low intensity focused ultrasonic stimulation on dorsal root ganglion neurons and Schwann cells in vitro. J Neurosci Res 2020; 99:374-391. [PMID: 32743823 DOI: 10.1002/jnr.24700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/14/2023]
Abstract
Satisfactory treatment of peripheral nerve injury (PNI) faces difficulties owing to the intrinsic biological barriers in larger injuries and invasive surgical interventions. Injury gaps >3 cm have low chances of full motor and sensory recovery, and the unmet need for PNI repair techniques which increase the likelihood of functional recovery while limiting invasiveness motivate this work. Building upon prior work in ultrasound stimulation (US) of dorsal root ganglion (DRG) neurons, the effects of US on DRG neuron and Schwann cell (SC) cocultures were investigated to uncover the role of SCs in mediating the neuronal response to US in vitro. Acoustic intensity-dependent alteration in selected neuromorphometrics of DRG neurons in coculture with SCs was observed in total outgrowth, primary neurites, and length compared to previously reported DRG monoculture in a calcium-independent manner. SC viability and proliferation were not impacted by US. Conditioned medium studies suggest secreted factors from SCs subjected to US impact DRG neuron morphology. These findings advance the current understanding of mechanisms by which these cell types respond to US, which may lead to new noninvasive US therapies for treating PNI.
Collapse
Affiliation(s)
- Daniel M Ventre
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Avery Cluff
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - David Diaz Vera
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ryan A Koppes
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Abigail N Koppes
- Department of Biology, Northeastern University, Boston, MA, USA.,Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
96
|
Yang S, Wang C, Zhu J, Lu C, Li H, Chen F, Lu J, Zhang Z, Yan X, Zhao H, Sun X, Zhao L, Liang J, Wang Y, Peng J, Wang X. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 2020; 10:8227-8249. [PMID: 32724468 PMCID: PMC7381722 DOI: 10.7150/thno.44276] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system is closely related to the role that Schwann cells (SCs) play in construction of the basement membrane containing multiple extracellular matrix proteins and secretion of neurotrophic factors, including laminin (LN) and brain-derived neurotrophic factor (BDNF). Here, we developed a self-assembling peptide (SAP) nanofiber hydrogel based on self-assembling backbone Ac-(RADA)4-NH2 (RAD) dual-functionalized with laminin-derived motif IKVAV (IKV) and a BDNF-mimetic peptide epitope RGIDKRHWNSQ (RGI) for peripheral nerve regeneration, with the hydrogel providing a three-dimensional (3D) microenvironment for SCs and neurites. Methods: Circular dichroism (CD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the secondary structures, microscopic structures, and morphologies of self-assembling nanofiber hydrogels. Then the SC adhesion, myelination and neurotrophin secretion were evaluated on the hydrogels. Finally, the SAP hydrogels were injected into hollow chitosan tubes to bridge a 10-mm-long sciatic nerve defect in rats, and in vivo gene expression at 1 week, axonal regeneration, target muscular re-innervation, and functional recovery at 12 weeks were assessed. Results: The bioactive peptide motifs were covalently linked to the C-terminal of the self-assembling peptide and the functionalized peptides could form well-defined nanofibrous hydrogels capable of providing a 3D microenvironment similar to native extracellular matrix. SCs displayed improved cell adhesion on hydrogels with both IKV and RGI, accompanied by increased cell spreading and elongation relative to other groups. RSCs cultured on hydrogels with IKV and RGI showed enhanced gene expression of NGF, BDNF, CNTF, PMP22 and NRP2, and decreased gene expression of NCAM compared with those cultured on other three groups after a 7-day incubation. Additionally, the secretion of NGF, BDNF, and CNTF of RSCs was significantly improved on dual-functionalized peptide hydrogels after 3 days. At 1 week after implantation, the expressions of neurotrophin and myelin-related genes in the nerve grafts in SAP and Autograft groups were higher than that in Hollow group, and the expression of S100 in groups containing both IKV and RGI was significantly higher than that in groups containing either IKV or RGI hydrogels, suggesting enhanced SC proliferation. The morphometric parameters of the regenerated nerves, their electrophysiological performance, the innervated muscle weight and remodeling of muscle fibers, and motor function showed that RAD/IKV/RGI and RAD/IKV-GG-RGI hydrogels could markedly improve axonal regeneration with enhanced re-myelination and motor functional recovery through the synergetic effect of IKV and RGI functional motifs. Conclusions: We found that the dual-functionalized SAP hydrogels promoted RSC adhesion, myelination, and neurotrophin secretion in vitro and successfully bridged a 10-mm gap representing a sciatic nerve defect in rats in vivo. The results demonstrated the synergistic effect of IKVAV and RGI on axonal regrowth and function recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
- Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing 100191, China
| | - Haitao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
| | - Fuyu Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
| | - Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Yan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Liang
- Department of Pediatrics, Tianjin Hospital, Tianjin University, No. 406 Jiefang Nan Road, Tianjin 300211, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226007, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
97
|
Management of Nerve Trauma in the Mangled Extremity. CURRENT TRAUMA REPORTS 2020. [DOI: 10.1007/s40719-020-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
98
|
Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. eNeuro 2020; 7:ENEURO.0030-19.2020. [PMID: 32471846 PMCID: PMC7317182 DOI: 10.1523/eneuro.0030-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The search for therapeutic strategies to promote neuronal regeneration following injuries toward functional recovery is of great importance. Brief low-frequency electrical stimulation (ES) has been reported as a useful method to improve neuronal regeneration in different animal models; however, the effect of ES on single neuron behavior has not been shown. Here, we study the effect of brief ES on neuronal regeneration of the CNS of adult medicinal leeches. Studying the regeneration of selected sets of identified neurons allow us to quantify the ES effect per cell type at the single-cell level. Chains of the CNS that were subjected to cut injury were observed for 3 d, and the spontaneous regeneration was compared with the electrically stimulated injured chains. We show that the ES improves the efficiency of regeneration of Retzius cells, as larger masses of the total branching tree traverse the injury site with better directed growth with no effect on the average branching tree length. No antero-posterior polarity was found along regeneration within the leech CNS. Moreover, the microglial cell distribution was examined revealing more microglial cells in proximity to the stimulation site compared with non-stimulated. Our results lay a foundation for future ES-based neuroregenerative therapies.
Collapse
|
99
|
Lee BC, Kim HJ, Choi YL, Jeon BJ, Sung DH. Radial neuropathy caused by intraneural leiomyoma: A case report. Medicine (Baltimore) 2020; 99:e20196. [PMID: 32481384 DOI: 10.1097/md.0000000000020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Leiomyoma of peripheral nerve is a rare condition characterized by neuropathy of affected nerve. We herein report a rare presentation of leiomyoma of radial nerve which presented with wrist drop. PATIENT CONCERNS A 37-year-old man visited our clinic with a history of sudden onset weakness of the wrist dorsiflexion/finger extension of the right side. DIAGNOSIS T2-weighted with fat saturation image of MRI demonstrated a well-defined, intra-neural, round mass of about 0.8 cm × 0.5 cm within the radial nerve. Excision of mass established the pathological diagnosis of intra-neural leiomyoma. INTERVENTIONS The patient underwent excision of mass and attached nerve tissue, followed his medial antebrachial nerve graft for repair of the defected radial nerve. OUTCOMES As of the 1-year follow-up, no symptoms of recurrence have been observed. Also, the strength of wrist dorsiflexion improved to grade 4/5 CONCLUSION:: This rare case demonstrates the importance of MR imaging to differentiate intra-neural leiomyomas from other benign peripheral nerve sheath tumors. Surgical treatment plays an important role in the treatment of patient with intraneural leiomyoma with neurologic deficits.
Collapse
Affiliation(s)
| | - Hyun Jin Kim
- Department of Pathology and Translational genomics
| | - Yoon La Choi
- Department of Pathology and Translational genomics
| | - Byung Joon Jeon
- Department of Plastic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
100
|
Katiyar KS, Struzyna LA, Morand JP, Burrell JC, Clements B, Laimo FA, Browne KD, Kohn J, Ali Z, Ledebur HC, Smith DH, Cullen DK. Tissue Engineered Axon Tracts Serve as Living Scaffolds to Accelerate Axonal Regeneration and Functional Recovery Following Peripheral Nerve Injury in Rats. Front Bioeng Biotechnol 2020; 8:492. [PMID: 32523945 PMCID: PMC7261940 DOI: 10.3389/fbioe.2020.00492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Strategies to accelerate the rate of axon regeneration would improve functional recovery following peripheral nerve injury, in particular for cases involving segmental nerve defects. We are advancing tissue engineered nerve grafts (TENGs) comprised of long, aligned, centimeter-scale axon tracts developed by the controlled process of axon "stretch-growth" in custom mechanobioreactors. The current study used a rat sciatic nerve model to investigate the mechanisms of axon regeneration across nerve gaps bridged by TENGs as well as the extent of functional recovery compared to nerve guidance tubes (NGT) or autografts. We established that host axon growth occurred directly along TENG axons, which mimicked the action of "pioneer" axons during development by providing directed cues for accelerated outgrowth. Indeed, axon regeneration rates across TENGs were 3-4 fold faster than NGTs and equivalent to autografts. The infiltration of host Schwann cells - traditional drivers of peripheral axon regeneration - was also accelerated and progressed directly along TENG axons. Moreover, TENG repairs resulted in functional recovery levels equivalent to autografts, with both several-fold superior to NGTs. These findings demonstrate that engineered axon tracts serve as "living scaffolds" to guide host axon outgrowth by a new mechanism - which we term "axon-facilitated axon regeneration" - that leads to enhanced functional recovery.
Collapse
Affiliation(s)
- Kritika S. Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - Laura A. Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Morand
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Basak Clements
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Axonova Medical LLC, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|