51
|
Badal KK, Akhmedov K, Lamoureux P, Liu XA, Reich A, Fallahi-Sichani M, Swarnkar S, Miller KE, Puthanveettil SV. Synapse Formation Activates a Transcriptional Program for Persistent Enhancement in the Bi-directional Transport of Mitochondria. Cell Rep 2020; 26:507-517.e3. [PMID: 30650345 DOI: 10.1016/j.celrep.2018.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Mechanisms that regulate the bi-directional transport of mitochondria in neurons for maintaining functional synaptic connections are poorly understood. Here, we show that in the pre-synaptic sensory neurons of the Aplysia gill withdrawal reflex, the formation of functional synapses leads to persistent enhancement in the flux of bi-directional mitochondrial transport. In the absence of a functional synapse, activation of cAMP signaling is sufficient to enhance bi-directional transport in sensory neurons. Furthermore, persistent enhancement in transport does not depend on NMDA and AMPA receptor signaling nor signaling from the post-synaptic neuronal cell body, but it is dependent on transcription and protein synthesis in the pre-synaptic neuron. We identified ∼4,000 differentially enriched transcripts in pre-synaptic neurons, suggesting a long-term change in the transcriptional program produced by synapse formation. These results provide insights into the regulation of bi-directional mitochondrial transport for synapse maintenance.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Komol Akhmedov
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Phillip Lamoureux
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Adrian Reich
- Bioinformatics Core, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Mohammad Fallahi-Sichani
- Bioinformatics Core, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
52
|
Guo G, Kang L, Geng D, Han S, Li S, Du J, Wang C, Cui H. Testosterone modulates structural synaptic plasticity of primary cultured hippocampal neurons through ERK - CREB signalling pathways. Mol Cell Endocrinol 2020; 503:110671. [PMID: 31805308 DOI: 10.1016/j.mce.2019.110671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/24/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022]
Abstract
Although hippocampus-derived androgens play an important role in hippocampal synaptic plasticity, studies at the cellular level have received relatively less attention. Furthermore, the underlying signalling pathways associated with synaptic plasticity remain unclear. Results of the present study demonstrated that testosterone treatment of primary cultured rat hippocampal neurons resulted in a rapid increase in spine density, accompanied by the elevation of protein and messenger RNA levels of synaptophysin, developmentally regulated brain protein (Drebrin), and the N-methyl-D-aspartate receptor NR1 subunit. Testosterone treatment also increased the phosphorylation levels of extracellular-regulated protein kinase (ERK)1/2 and cAMP-responsive element binding protein (CREB), rather than p38 and Jun N-terminal kinase (JNK). U0126 significantly reversed the testosterone-mediated phosphorylation of CREB. Importantly, the increase in spine density was not induced by testosterone under U0126 treatment. These findings suggest that the ERK1/2-CREB signalling pathway plays an important role in testosterone-mediated rapid spinogenesis of cultured rat hippocampal neurons. Results of this study will be helpful in further clarifying the physiological function of testosterone and related signalling pathways in vitro.
Collapse
Affiliation(s)
- Guoxin Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Lin Kang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dandan Geng
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shuo Han
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
53
|
Arey RN, Kaletsky R, Murphy CT. Nervous system-wide profiling of presynaptic mRNAs reveals regulators of associative memory. Sci Rep 2019; 9:20314. [PMID: 31889133 PMCID: PMC6937282 DOI: 10.1038/s41598-019-56908-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Presynaptic protein synthesis is important in the adult central nervous system; however, the nervous system-wide set of mRNAs localized to presynaptic areas has yet to be identified in any organism. Here we differentially labeled somatic and synaptic compartments in adult C. elegans with fluorescent proteins, and isolated synaptic and somatic regions from the same population of animals. We used this technique to determine the nervous system-wide presynaptic transcriptome by deep sequencing. Analysis of the synaptic transcriptome reveals that synaptic transcripts are predicted to have specialized functions in neurons. Differential expression analysis identified 542 genes enriched in synaptic regions relative to somatic regions, with synaptic functions conserved in higher organisms. We find that mRNAs for pumilio RNA-binding proteins are abundant in synaptic regions, which we confirmed through high-sensitivity in situ hybridization. Presynaptic PUMILIOs regulate associative memory. Our approach enables the identification of new mechanisms that regulate synaptic function and behavior.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
54
|
Lee JH, Kang M, Park S, Perez-Flores MC, Zhang XD, Wang W, Gratton MA, Chiamvimonvat N, Yamoah EN. The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging (Albany NY) 2019; 11:11541-11564. [PMID: 31812952 PMCID: PMC6932877 DOI: 10.18632/aging.102553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in humans and animal models. Despite the plethora of causes of HL, only two prevailing mechanisms for HHL have been identified, and in both cases, common structural deficits are implicated in inner hair cell synapses, and demyelination of the auditory nerve (AN). We uncovered that Na+-activated K+ (KNa) mRNA and channel proteins are distinctly and locally expressed in dendritic projections of primary ANs and genetic deletion of KNa channels (Kcnt1 and Kcnt2) results in the loss of proper AN synaptic function, characterized as HHL, without structural synaptic alterations. We further demonstrate that the local functional synaptic alterations transition from HHL to increased hearing-threshold, which entails changes in global Ca2+ homeostasis, activation of caspases 3/9, impaired regulation of inositol triphosphate receptor 1 (IP3R1), and apoptosis-mediated neurodegeneration. Thus, the present study demonstrates how local synaptic dysfunction results in an apparent latent pathological phenotype (HHL) and, if undetected, can lead to overt HL. It also highlights, for the first time, that HHL can precede structural synaptic dysfunction and AN demyelination. The stepwise cellular mechanisms from HHL to canonical HL are revealed, providing a platform for intervention to prevent lasting and irreversible age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Wenying Wang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Head and Neck Surgery, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
55
|
Flamand MN, Meyer KD. The epitranscriptome and synaptic plasticity. Curr Opin Neurobiol 2019; 59:41-48. [PMID: 31108373 PMCID: PMC6858947 DOI: 10.1016/j.conb.2019.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
RNA modifications, collectively referred to as 'the epitranscriptome,' have recently emerged as a pervasive feature of cellular mRNAs which have diverse impacts on gene expression. In the last several years, technological advances improving our ability to identify mRNA modifications, coupled with the discovery of proteins that add and remove these marks, have substantially expanded our knowledge of how the epitranscriptome shapes gene expression. Efforts to uncover functional roles for mRNA modifications have begun to reveal important roles for some marks within the nervous system, and animal models have emerged which demonstrate severe neurodevelopmental and neurocognitive abnormalities resulting from the loss of mRNA modification machinery. Here, we review the recent advances in the field of neuroepitranscriptomics, with a particular emphasis on how modifications to mRNAs within the brain contribute to synaptic activity.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
56
|
Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019; 366:366/6462/eaav2642. [DOI: 10.1126/science.aav2642] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.
Collapse
Affiliation(s)
- Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Franziska Brüning
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dennis Mircsof
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich–Eidgenosissche Technische Hochschule, Zurich, Switzerland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Maria S. Robles
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
57
|
Kukushkin NV, Williams SP, Carew TJ. Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia. Sci Rep 2019; 9:14379. [PMID: 31591438 PMCID: PMC6779898 DOI: 10.1038/s41598-019-50923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.
Collapse
Affiliation(s)
| | | | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.
| |
Collapse
|
58
|
Upreti C, Konstantinov E, Kassabov SR, Bailey CH, Kandel ER. Serotonin Induces Structural Plasticity of Both Extrinsic Modulating and Intrinsic Mediating Circuits In Vitro in Aplysia Californica. Cell Rep 2019; 28:2955-2965.e3. [PMID: 31509754 DOI: 10.1016/j.celrep.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 07/31/2019] [Indexed: 01/29/2023] Open
Abstract
Long-term sensitization of the gill withdrawal reflex in Aplysia requires heterosynaptic, modulatory input that is mediated in part by the growth of new synaptic connections between sensory neurons and their follower cells (intrinsic mediating circuit). Whether modulatory interneurons (the extrinsic modulatory circuit) also display learning-related structural synaptic plasticity remains unknown. To test this idea, we added a bona fide serotonergic modulatory neuron, the metacerebral cell (MCC), to sensory-motor neuron co-cultures and examined the modulating presynaptic varicosities of MCCs before and after repeated pulses of serotonin (5-HT) that induced long-term facilitation (LTF). We observed robust growth of new serotonergic varicosities that were positive for serotonin and capable of synaptic recycling. Our findings demonstrate that, in addition to structural changes in the intrinsic mediating circuit, there are also significant learning-related structural changes in the extrinsic modulating circuit, and these changes might provide a cellular mechanism for savings and for spread of memory.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Stefan R Kassabov
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Craig H Bailey
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, New York, NY 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
59
|
Hegde AN, Smith SG. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. ACTA ACUST UNITED AC 2019; 26:307-317. [PMID: 31416904 PMCID: PMC6699410 DOI: 10.1101/lm.048769.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding protein. Since then, other transcription factors, such as the Nuclear Receptor 4 family of proteins that play a role in memory formation and maintenance have been identified. In addition, several studies have revealed details of epigenetic mechanisms consisting of new types of chemical alterations of DNA such as hydroxymethylation, and various histone modifications in long-term synaptic plasticity and memory. Our understanding of translational control critical for memory formation began with the identification of molecules that impinge on the 5′ and 3′ untranslated regions of mRNAs and continued with the appreciation for local translation near synaptic sites. Lately, a role for noncoding RNAs such as microRNAs in regulating translation factors and other molecules critical for memory has been found. This review describes the past research in brief and mainly focuses on the recent work on molecular mechanisms of transcriptional and translational regulation that form the underpinnings of long-term synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| | - Spencer G Smith
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| |
Collapse
|
60
|
Yap EL, Greenberg ME. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 2019; 100:330-348. [PMID: 30359600 DOI: 10.1016/j.neuron.2018.10.013] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective niches, transcription further allows mature cells to interact dynamically with their external environment while reliably retaining fundamental information about past experiences. In this Review, we provide an overview of the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper understanding of how activity-dependent transcription promotes the refinement and plasticity of neural circuits for cognitive function.
Collapse
Affiliation(s)
- Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat Commun 2019; 10:3469. [PMID: 31375688 PMCID: PMC6677776 DOI: 10.1038/s41467-019-11409-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023] Open
Abstract
The formation of new memories requires transcription. However, the mechanisms that limit signaling of relevant gene programs in space and time for precision of information coding remain poorly understood. We found that, during learning, the cellular patterns of expression of early response genes (ERGs) are regulated by class IIa HDACs 4 and 5, transcriptional repressors that transiently enter neuronal nuclei from cytoplasm after sensory input. Mice lacking these repressors in the forebrain have abnormally broad experience-dependent expression of ERGs, altered synaptic architecture and function, elevated anxiety, and severely impaired memory. By acutely manipulating the nuclear activity of class IIa HDACs in behaving animals using a chemical-genetic technique, we further demonstrate that rapid induction of transcriptional programs is critical for memory acquisition but these programs may become dispensable when a stable memory is formed. These results provide new insights into the molecular basis of memory storage. The molecular mechanisms of memory storage remain poorly understood. In this study, authors describe a new mechanism that regulates the cellular patterns of early response gene signaling during learning via the recruitment of two functionally redundant nuclear repressors, class IIa histone deacetylases (HDACs) 4 and 5
Collapse
|
62
|
Jura B. A Mechanism of Synaptic Clock Underlying Subjective Time Perception. Front Neurosci 2019; 13:716. [PMID: 31354421 PMCID: PMC6633209 DOI: 10.3389/fnins.2019.00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Temporal resolution of visual information processing is thought to be an important factor in predator-prey interactions, shaped in the course of evolution by animals' particular ecology. Here I show that light can be considered to have a dual role of a source of information, which guides motor actions, and an environmental feedback for those actions. I consequently show how temporal perception might depend on feedback-based behavioral adaptations realized in the nervous system through activity-dependent synaptic plasticity. I propose an underlying mechanism of synaptic clock, with every synapse having its characteristic time unit, determined by the persistence of memory traces of synaptic inputs, which is used by the synapse to tell time, and postulate the existence of a specific brain-wide distribution of synaptic clocks with different time units. The present theory offers a simple, testable link between the fields of neurobiology of memory, time perception and ecology, which may account for numerous experimental findings, including the interspecies variation in the temporal resolution and the properties of subjective time perception in humans, specifically the variable speed of perceived time passage, depending on emotional or attentional states or tasks performed.
Collapse
Affiliation(s)
- Bartosz Jura
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
63
|
Abstract
Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Cyril Hanus
- Institute for Psychiatry and Neurosciences of Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 75014 Paris, France;
| |
Collapse
|
64
|
Local translation in neurons: visualization and function. Nat Struct Mol Biol 2019; 26:557-566. [PMID: 31270476 DOI: 10.1038/s41594-019-0263-5] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Neurons are among the most compartmentalized and interactive of all cell types. Like all cells, neurons use proteins as the main sensors and effectors. The modification of the proteome in axons and dendrites is used to guide the formation of synaptic connections and to store information. In this Review, we discuss the data indicating that an important source of protein for dendrites, axons and their associated elements is provided by the local synthesis of proteins. We review the data indicating the presence of the machinery required for protein synthesis, the direct visualization and demonstration of protein synthesis, and the established functional roles for local translation for many different neuronal functions. Finally, we consider the open questions and future directions in this field.
Collapse
|
65
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
66
|
Runyan JD, Moore AN, Dash PK. Coordinating what we’ve learned about memory consolidation: Revisiting a unified theory. Neurosci Biobehav Rev 2019; 100:77-84. [DOI: 10.1016/j.neubiorev.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
67
|
Mirisis AA, Carew TJ. The ELAV family of RNA-binding proteins in synaptic plasticity and long-term memory. Neurobiol Learn Mem 2019; 161:143-148. [PMID: 30998973 DOI: 10.1016/j.nlm.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
Abstract
The mechanisms of de novo gene expression and translation of specific gene transcripts have long been known to support long-lasting changes in synaptic plasticity and behavioral long-term memory. In recent years, it has become increasingly apparent that gene expression is heavily regulated not only on the level of transcription, but also through post-transcriptional gene regulation, which governs the subcellular localization, stability, and likelihood of translation of mRNAs. Specific families of RNA-binding proteins (RBPs) bind transcripts which contain AU-rich elements (AREs) within their 3' UTR and thereby govern their downstream fate. These post-transcriptional gene regulatory mechanisms are coordinated through the same cell signaling pathways that play critical roles in long-term memory formation. In this review, we discuss recent results that demonstrate the roles that these ARE-binding proteins play in LTM formation.
Collapse
Affiliation(s)
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
68
|
Biever A, Donlin-Asp PG, Schuman EM. Local translation in neuronal processes. Curr Opin Neurobiol 2019; 57:141-148. [PMID: 30861464 DOI: 10.1016/j.conb.2019.02.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Neurons exhibit a unique degree of spatial compartmentalization and are able to maintain and remodel their proteomes independently from the cell body. While much effort has been devoted to understanding the capacity and role for local protein synthesis in dendrites and spines, local mRNA translation in mature axons, projecting over distances up to a meter, has received much less attention. Also, little is known about the spatio-temporal dynamics of axonal and dendritic gene expression as function of mRNA abundance, protein synthesis and degradation. Here, we summarize key recent findings that have shaped our knowledge of the precise location of local protein production and discuss unique strategies used by neurons to shape presynaptic and postsynaptic proteomes.
Collapse
Affiliation(s)
- Anne Biever
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
69
|
Baltaci SB, Mogulkoc R, Baltaci AK. Molecular Mechanisms of Early and Late LTP. Neurochem Res 2019; 44:281-296. [PMID: 30523578 DOI: 10.1007/s11064-018-2695-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
Abstract
LTP is the most intensively studied cellular model of the memory and generally divided at least two distinct phases as early and late. E-LTP requires activation of CaMKII that initiates biochemical events and trafficking of proteins, which eventually potentiate synaptic transmission, and is independent of de novo protein synthesis. In contrast, L-LTP requires gene expression and local protein synthesis regulated via TrkB receptor- and functional prions CPEB2-3-mediated translation. Maintenance of LTP for longer periods depends on constitutively active PKMζ. Throughout this review, current knowledge about early and late phases of LTP will be reviewed.
Collapse
Affiliation(s)
- Saltuk Bugra Baltaci
- Faculty of Medicine, Department of Physiology, Selcuk University, 42031, Konya, Turkey
| | - Rasim Mogulkoc
- Faculty of Medicine, Department of Physiology, Selcuk University, 42031, Konya, Turkey
| | | |
Collapse
|
70
|
Liang Y. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity. Cells 2019; 8:cells8010034. [PMID: 30634508 PMCID: PMC6357011 DOI: 10.3390/cells8010034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity and function. As the contact sites between neurons, synapses rely heavily on precisely regulated protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy is an effective degradative pathway that can digest cellular components and maintain cellular proteostasis. Perturbations of autophagy have been implicated in aging and neurodegeneration due to a failure to remove damaged proteins and defective organelles. Recent evidence has demonstrated that autophagosome formation is prominent at synaptic terminals and neuronal autophagy is regulated in a compartment-specific fashion. Moreover, synaptic components including synaptic proteins and vesicles, postsynaptic receptors and synaptic mitochondria are known to be degraded by autophagy, thereby contributing to the remodeling of synapses. Indeed, emerging studies indicate that modulation of autophagy may be required for different forms of synaptic plasticity and memory formation. In this review, I will discuss our current understanding of the important role of neuronal/synaptic autophagy in maintaining neuronal function by degrading synaptic components and try to propose a conceptual framework of how the degradation of synaptic components via autophagy might impact synaptic function and contribute to synaptic plasticity.
Collapse
Affiliation(s)
- YongTian Liang
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany.
- NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
71
|
Rangaraju V, Lauterbach M, Schuman EM. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 2019; 176:73-84.e15. [PMID: 30612742 DOI: 10.1016/j.cell.2018.12.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.
Collapse
Affiliation(s)
- Vidhya Rangaraju
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany.
| |
Collapse
|
72
|
Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ SCIENCE OF LEARNING 2019; 4:9. [PMID: 31285847 PMCID: PMC6606636 DOI: 10.1038/s41539-019-0048-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
It has been 70 years since Donald Hebb published his formalized theory of synaptic adaptation during learning. Hebb's seminal work foreshadowed some of the great neuroscientific discoveries of the following decades, including the discovery of long-term potentiation and other lasting forms of synaptic plasticity, and more recently the residence of memories in synaptically connected neuronal assemblies. Our understanding of the processes underlying learning and memory has been dominated by the view that synapses are the principal site of information storage in the brain. This view has received substantial support from research in several model systems, with the vast majority of studies on the topic corroborating a role for synapses in memory storage. Yet, despite the neuroscience community's best efforts, we are still without conclusive proof that memories reside at synapses. Furthermore, an increasing number of non-synaptic mechanisms have emerged that are also capable of acting as memory substrates. In this review, we address the key findings from the synaptic plasticity literature that make these phenomena such attractive memory mechanisms. We then turn our attention to evidence that questions the reliance of memory exclusively on changes at the synapse and attempt to integrate these opposing views.
Collapse
Affiliation(s)
- Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - Owen D. Jones
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9010 New Zealand
| | - David L. Glanzman
- Departments of Integrative Biology and Physiology, and Neurobiology, and the Brain Research Institute, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
73
|
Vadakkan KI. A potential mechanism for first-person internal sensation of memory provides evidence for the relationship between learning and LTP induction. Behav Brain Res 2018; 360:16-35. [PMID: 30502355 DOI: 10.1016/j.bbr.2018.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Studies conducted to verify learning-induced changes anticipated from Hebb's postulate led to the finding of long-term potentiation (LTP). Even though several correlations have been found between behavioural markers of memory retrieval and LTP, it is not known how memories are retrieved using learning-induced changes. In this context, the following non-correlated findings between learning and LTP induction provide constraints for discovering the mechanism: 1) Requirement of high stimulus intensity for LTP induction in contrast to what is expected for a learning mechanism, 2) Delay of at least 20 to 30 s from stimulation to LTP induction, in contrast to mere milliseconds for associative learning, and 3) A sudden drop in peak-potentiated effect (short-term potentiation) that matches with short-lasting changes expected during working memory and occurs only at the time of delayed LTP induction. When memories are viewed as first-person internal sensations, a newly uncovered mechanism provides explanation for the relationship between memory and LTP. This work interconnects large number of findings from the fields of neuroscience and psychology and provides a further verifiable mechanism of learning.
Collapse
|
74
|
AlOkda AM, Nasr MM, Amin SN. Between an ugly truth and a perfect lie: Wiping off fearful memories using beta-adrenergic receptors antagonists. J Cell Physiol 2018; 234:5722-5727. [PMID: 30417468 DOI: 10.1002/jcp.27441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders such as anxiety, phobias, and post-traumatic stress disorder are considered of high global prevalence. Currently, a therapeutic approach to treat these disorders using beta-blockers, which antagonize the beta-adrenergic receptors (B1, B2, and B3) is being studied. This approach claims that beta-blockers, such as propranolol, inhibit fear memory reconsolidation. However, there are several studies refuting such claims by discrediting their experimental design and pointing out both the drugs pharmacokinetic properties and confounding factors. In this review, we explore the different effects of central beta-adrenergic agonists and antagonists on the fear memory consolidation providing mixed-evidence, limitations, and future directions.
Collapse
Affiliation(s)
| | - Mostafa M Nasr
- Biomedical Sciences Program, Zewail City of Science and Technology, Egypt
| | - Shaimaa N Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
75
|
Kumar N, Stanford W, de Solis C, Aradhana, Abraham ND, Dao TMJ, Thaseen S, Sairavi A, Gonzalez CU, Ploski JE. The Development of an AAV-Based CRISPR SaCas9 Genome Editing System That Can Be Delivered to Neurons in vivo and Regulated via Doxycycline and Cre-Recombinase. Front Mol Neurosci 2018; 11:413. [PMID: 30483052 PMCID: PMC6243075 DOI: 10.3389/fnmol.2018.00413] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
The RNA-guided Cas9 nuclease, from the type II prokaryotic clustered regularly interspersed short palindromic repeats (CRISPR) adaptive immune system, has been adapted by scientists to enable site specific genome editing of eukaryotic cells both in vitro and in vivo. Previously, we reported the development of an adeno-associated virus (AAV)-mediated CRISPR Streptococcus pyogenes (Sp) Cas9 system, in which the genome editing function can be regulated by controlling the expression of the guide RNA (sgRNA) in a doxycycline (Dox)-dependent manner. Here, we report the development of an AAV vector tool kit utilizing the Cas9 from Staphylococcus aureus (SaCas9). We demonstrate in vitro genome editing in human derived 293FT cells and mouse derived Neuro2A (N2A) cells and in vivo in neurons of the mouse brain. We also demonstrate the ability to regulate the induction of genome editing temporally with Dox and spatially with Cre-recombinase. The combination of these systems enables AAV-mediated CRISPR/Cas9 genome editing to be regulated both spatially and temporally.
Collapse
Affiliation(s)
- Namrata Kumar
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - William Stanford
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Christopher de Solis
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Aradhana
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Nigel D Abraham
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Trieu-Mi J Dao
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Sadiqa Thaseen
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Anusha Sairavi
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Cuauhtemoc Ulises Gonzalez
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
76
|
Getz AM, Wijdenes P, Riaz S, Syed NI. Uncovering the Cellular and Molecular Mechanisms of Synapse Formation and Functional Specificity Using Central Neurons of Lymnaea stagnalis. ACS Chem Neurosci 2018. [PMID: 29528213 DOI: 10.1021/acschemneuro.7b00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All functions of the nervous system are contingent upon the precise organization of neuronal connections that are initially patterned during development, and then continually modified throughout life. Determining the mechanisms that specify the formation and functional modulation of synaptic circuitry are critical to advancing both our fundamental understanding of the nervous system as well as the various neurodevelopmental, neurological, neuropsychiatric, and neurodegenerative disorders that are met in clinical practice when these processes go awry. Defining the cellular and molecular mechanisms underlying nervous system development, function, and pathology has proven challenging, due mainly to the complexity of the vertebrate brain. Simple model system approaches with invertebrate preparations, on the other hand, have played pivotal roles in elucidating the fundamental mechanisms underlying the formation and plasticity of individual synapses, and the contributions of individual neurons and their synaptic connections that underlie a variety of behaviors, and learning and memory. In this Review, we discuss the experimental utility of the invertebrate mollusc Lymnaea stagnalis, with a particular emphasis on in vitro cell culture, semi-intact and in vivo preparations, which enable molecular and electrophysiological identification of the cellular and molecular mechanisms governing the formation, plasticity, and specificity of individual synapses at a single-neuron or single-synapse resolution.
Collapse
Affiliation(s)
- Angela M. Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Pierre Wijdenes
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Saba Riaz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naweed I. Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
77
|
Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. Single Synaptic Observation of Cholinergic Neurotransmission on Living Neurons: Concentration and Dynamics. J Am Chem Soc 2018; 140:7764-7768. [PMID: 29883110 DOI: 10.1021/jacs.8b01989] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetylcholine, the first neurotransmitter identified more than a century ago, plays critical roles in human activities and health; however, its synaptic concentration dynamics have remained unknown. Here, we demonstrate the in situ simultaneous measurements of synaptic cholinergic transmitter concentration and release dynamics. We used nanoscale electroanalytical methods: nanoITIES electrode of 15 nm in radius and nanoresolved scanning electrochemical microscopy (SECM). Time-resolved in situ measurements unveiled information on synaptic acetylcholine concentration and release dynamics of living Aplysia neurons. The measuring technique enabled the quantitative sensing of acetylcholine with negligible interference of other ionic and redox-active species. We measured cholinergic transmitter concentrations very close to the synapse, with values as high as 2.4 mM. We observed diverse synaptic transmitter concentration dynamics consisting of singlet, doublet and multiplet events with a signal-to-noise ratio of 6 to 130. The unprecedented details about synaptic neurotransmission unveiled are instrumental for understanding brain communication and diseases in a way distinctive from extra-synaptic studies.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Zizheng Qu
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Justin DesLaurier
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Theresa M Welle
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Ran Chen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
78
|
Sossin WS. Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal. Front Synaptic Neurosci 2018; 10:5. [PMID: 29695960 PMCID: PMC5904272 DOI: 10.3389/fnsyn.2018.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Synapses are diverse in form and function. While there are strong evidential and theoretical reasons for believing that memories are stored at synapses, the concept of a specialized “memory synapse” is rarely discussed. Here, we review the evidence that memories are stored at the synapse and consider the opposing possibilities. We argue that if memories are stored in an active fashion at synapses, then these memory synapses must have distinct molecular complexes that distinguish them from other synapses. In particular, examples from Aplysia sensory-motor neuron synapses and synapses on defined engram neurons in rodent models are discussed. Specific hypotheses for molecular complexes that define memory synapses are presented, including persistently active kinases, transmitter receptor complexes and trans-synaptic adhesion proteins.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
79
|
Memory allocation mechanisms underlie memory linking across time. Neurobiol Learn Mem 2018; 153:21-25. [PMID: 29496645 DOI: 10.1016/j.nlm.2018.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/22/2022]
Abstract
Memories are dynamic in nature. A cohesive representation of the world requires memories to be altered over time, linked with other memories and eventually integrated into a larger framework of sematic knowledge. Although there is a considerable literature on how single memories are encoded, retrieved and updated, little is known about the mechanisms that govern memory linking, e.g., linking and integration of various memories across hours or days. In this review, we present evidence that specific memory allocation mechanisms, such as changes in CREB and intrinsic excitability, ensure memory storage in ways that facilitate effective recall and linking at a later time. Beyond CREB and intrinsic excitability, we also review a number of other phenomena with potential roles in memory linking.
Collapse
|
80
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
81
|
Mathur C, Johnson KR, Tong BA, Miranda P, Srikumar D, Basilio D, Latorre R, Bezanilla F, Holmgren M. Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation. Sci Rep 2018; 8:2207. [PMID: 29396520 PMCID: PMC5797086 DOI: 10.1038/s41598-018-20684-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Local translation of membrane proteins in neuronal subcellular domains like soma, dendrites and axon termini is well-documented. In this study, we isolated the electrical signaling unit of an axon by dissecting giant axons from mature squids (Dosidicus gigas). Axoplasm extracted from these axons was found to contain ribosomal RNAs, ~8000 messenger RNA species, many encoding the translation machinery, membrane proteins, translocon and signal recognition particle (SRP) subunits, endomembrane-associated proteins, and unprecedented proportions of SRP RNA (~68% identical to human homolog). While these components support endoplasmic reticulum-dependent protein synthesis, functional assessment of a newly synthesized membrane protein in axolemma of an isolated axon is technically challenging. Ion channels are ideal proteins for this purpose because their functional dynamics can be directly evaluated by applying voltage clamp across the axon membrane. We delivered in vitro transcribed RNA encoding native or Drosophila voltage-activated Shaker KV channel into excised squid giant axons. We found that total K+ currents increased in both cases; with added inactivation kinetics on those axons injected with RNA encoding the Shaker channel. These results provide unambiguous evidence that isolated axons can exhibit de novo synthesis, assembly and membrane incorporation of fully functional oligomeric membrane proteins.
Collapse
Affiliation(s)
- Chhavi Mathur
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Brian A Tong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Pablo Miranda
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Deepa Srikumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Daniel Basilio
- Facultad de Ciencias, Universidad de Chile, Santiago, 7750000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, 2366103, Chile.
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois, 60637, USA.
| | - Miguel Holmgren
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
82
|
Fontes MM, Guvenek A, Kawaguchi R, Zheng D, Huang A, Ho VM, Chen PB, Liu X, O'Dell TJ, Coppola G, Tian B, Martin KC. Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Sci Rep 2017; 7:17377. [PMID: 29234016 PMCID: PMC5727029 DOI: 10.1038/s41598-017-17407-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.
Collapse
Affiliation(s)
- Mariana M Fontes
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alden Huang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria M Ho
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Kelsey C Martin
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
83
|
Bozler J, Kacsoh BZ, Chen H, Theurkauf WE, Weng Z, Bosco G. A systems level approach to temporal expression dynamics in Drosophila reveals clusters of long term memory genes. PLoS Genet 2017; 13:e1007054. [PMID: 29084214 PMCID: PMC5679645 DOI: 10.1371/journal.pgen.1007054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/09/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
The ability to integrate experiential information and recall it in the form of memory is observed in a wide range of taxa, and is a hallmark of highly derived nervous systems. Storage of past experiences is critical for adaptive behaviors that anticipate both adverse and positive environmental factors. The process of memory formation and consolidation involve many synchronized biological events including gene transcription, protein modification, and intracellular trafficking: However, many of these molecular mechanisms remain illusive. With Drosophila as a model system we use a nonassociative memory paradigm and a systems level approach to uncover novel transcriptional patterns. RNA sequencing of Drosophila heads during and after memory formation identified a number of novel memory genes. Tracking the dynamic expression of these genes over time revealed complex gene networks involved in long term memory. In particular, this study focuses on two functional gene clusters of signal peptides and proteases. Bioinformatics network analysis and prediction in combination with high-throughput RNA sequencing identified previously unknown memory genes, which when genetically knocked down resulted in behaviorally validated memory defects.
Collapse
Affiliation(s)
- Julianna Bozler
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Balint Z. Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Hao Chen
- Bioinformatics Program, Boston University, Boston, MA, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - William E. Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| |
Collapse
|
84
|
Abrams TW. Synaptic Plasticity: Cleaved Kinases and the Specificity of Erasing Traumatic Memories. Curr Biol 2017; 27:R1020-R1023. [PMID: 28950086 DOI: 10.1016/j.cub.2017.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New possibilities for treating posttraumatic stress disorder and anxiety disorders involving abnormal memories are emerging from analysis of persistent protein kinase activation and mechanisms of synapse-specific modification, known as synaptic tagging.
Collapse
Affiliation(s)
- Thomas W Abrams
- Department of Pharmacology, Department of Anesthesiology, Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
85
|
Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. Sci Rep 2017; 7:12048. [PMID: 28935957 PMCID: PMC5608697 DOI: 10.1038/s41598-017-12162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nemneineng Haokip
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
86
|
Noma K, Goncharov A, Ellisman MH, Jin Y. Microtubule-dependent ribosome localization in C. elegans neurons. eLife 2017; 6:26376. [PMID: 28767038 PMCID: PMC5577916 DOI: 10.7554/elife.26376] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 01/23/2023] Open
Abstract
Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons.
Collapse
Affiliation(s)
- Kentaro Noma
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Alexandr Goncharov
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Mark H Ellisman
- National Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California, San Diego, San Diego, United States
| | - Yishi Jin
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| |
Collapse
|
87
|
Abstract
Memory is an adaptation to particular temporal properties of past events, such as the frequency of occurrence of a stimulus or the coincidence of multiple stimuli. In neurons, this adaptation can be understood in terms of a hierarchical system of molecular and cellular time windows, which collectively retain information from the past. We propose that this system makes various timescales of past experience simultaneously available for future adjustment of behavior. More generally, we propose that the ability to detect and respond to temporally structured information underlies the nervous system's capacity to encode and store a memory at molecular, cellular, synaptic, and circuit levels.
Collapse
Affiliation(s)
| | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
88
|
Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron 2017; 92:479-492. [PMID: 27764673 DOI: 10.1016/j.neuron.2016.09.040] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain.
Collapse
Affiliation(s)
- Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Barna Dudok
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary; School of Ph.D. Studies, Semmelweis University, Budapest 1085, Hungary
| | - Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
89
|
Distinct cis elements in the 3' UTR of the C. elegans cebp-1 mRNA mediate its regulation in neuronal development. Dev Biol 2017; 429:240-248. [PMID: 28673818 DOI: 10.1016/j.ydbio.2017.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
The 3' untranslated regions (3' UTRs) of mRNAs mediate post-transcriptional regulation of genes in many biological processes. Cis elements in 3' UTRs can interact with RNA-binding factors in sequence-specific or structure-dependent manners, enabling regulation of mRNA stability, translation, and localization. Caenorhabditis elegans CEBP-1 is a conserved transcription factor of the C/EBP family, and functions in diverse contexts, from neuronal development and axon regeneration to organismal growth. Previous studies revealed that the levels of cebp-1 mRNA in neurons depend on its 3' UTR and are also negatively regulated by the E3 ubiquitin ligase RPM-1. Here, by systematically dissecting cebp-1's 3' UTR, we test the roles of specific cis elements in cebp-1 expression and function in neurons. We present evidence for a putative stem-loop in the cebp-1 3' UTR that contributes to basal expression levels of mRNA and to negative regulation by rpm-1. Mutant animals lacking the endogenous cebp-1 3' UTR showed a noticeable increased expression of cebp-1 mRNA and enhanced the neuronal developmental phenotypes of rpm-1 mutants. Our data reveal multiple cis elements within cebp-1's 3' UTR that help to optimize CEBP-1 expression levels in neuronal development.
Collapse
|
90
|
Hu J, Ferguson L, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S. Selective Erasure of Distinct Forms of Long-Term Synaptic Plasticity Underlying Different Forms of Memory in the Same Postsynaptic Neuron. Curr Biol 2017. [PMID: 28648820 DOI: 10.1016/j.cub.2017.05.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Generalization of fear responses to non-threatening stimuli is a feature of anxiety disorders. It has been challenging to target maladaptive generalized memories without affecting adaptive memories. Synapse-specific long-term plasticity underlying memory involves the targeting of plasticity-related proteins (PRPs) to activated synapses. If distinct tags and PRPs are used for different forms of plasticity, one could selectively remove distinct forms of memory. Using a stimulation paradigm in which associative long-term facilitation (LTF) occurs at one input and non-associative LTF at another input to the same postsynaptic neuron in an Aplysia sensorimotor preparation, we found that each form of LTF is reversed by inhibiting distinct isoforms of protein kinase M (PKM), putative PRPs, in the postsynaptic neuron. A dominant-negative (dn) atypical PKM selectively reversed associative LTF, while a dn classical PKM selectively reversed non-associative LTF. Although both PKMs are formed from calpain-mediated cleavage of protein kinase C (PKC) isoforms, each form of LTF is sensitive to a distinct dn calpain expressed in the postsynaptic neuron. Associative LTF is blocked by dn classical calpain, whereas non-associative LTF is blocked by dn small optic lobe (SOL) calpain. Interfering with a putative synaptic tag, the adaptor protein KIBRA, which protects the atypical PKM from degradation, selectively erases associative LTF. Thus, the activity of distinct PRPs and tags in a postsynaptic neuron contribute to the maintenance of different forms of synaptic plasticity at separate inputs, allowing for selective reversal of synaptic plasticity and providing a cellular basis for developing therapeutic strategies for selectively reversing maladaptive memories.
Collapse
Affiliation(s)
- Jiangyuan Hu
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kerry Adler
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Samuel Schacher
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
91
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
92
|
Rangaraju V, Tom Dieck S, Schuman EM. Local translation in neuronal compartments: how local is local? EMBO Rep 2017; 18:693-711. [PMID: 28404606 DOI: 10.15252/embr.201744045] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Efficient neuronal function depends on the continued modulation of the local neuronal proteome. Local protein synthesis plays a central role in tuning the neuronal proteome at specific neuronal regions. Various aspects of translation such as the localization of translational machinery, spatial spread of the newly translated proteins, and their site of action are carried out in specialized neuronal subcompartments to result in a localized functional outcome. In this review, we focus on the various aspects of these local translation compartments such as size, biochemical and organelle composition, structural boundaries, and temporal dynamics. We also discuss the apparent absence of definitive components of translation in these local compartments and the emerging state-of-the-art tools that could help dissecting these conundrums in greater detail in the future.
Collapse
Affiliation(s)
- Vidhya Rangaraju
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
93
|
Hu J, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity. J Neurosci 2017; 37:2746-2763. [PMID: 28179558 PMCID: PMC5354326 DOI: 10.1523/jneurosci.2805-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity.SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long-term plasticity. This study provides evidence that the cell-specific activities of different PKM isoforms generated from PKCs by calpain-mediated cleavage maintain two forms of persistent synaptic plasticity, which are the cellular analogs of two forms of long-term memory. Moreover, we found that the activation of specific calpains depends on the features of the stimuli evoking the different forms of synaptic plasticity. Given the recent controversy over the role of PKMζ maintaining memory, these findings are significant in identifying roles of multiple PKMs in the retention of memory.
Collapse
Affiliation(s)
- Jiangyuan Hu
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032,
| | - Kerry Adler
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032
| | - Carole Abi Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| | - Samuel Schacher
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
94
|
Rizzo V, Touzani K, Raveendra BL, Swarnkar S, Lora J, Kadakkuzha BM, Liu XA, Zhang C, Betel D, Stackman RW, Puthanveettil SV. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:158-169. [PMID: 28503670 DOI: 10.1016/j.bpsc.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. METHODS Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. RESULTS We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. CONCLUSIONS Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Khalid Touzani
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Bindu L Raveendra
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Joan Lora
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | - Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Robert W Stackman
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | | |
Collapse
|
95
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|
96
|
Abstract
Prions are proteins that can adopt self-perpetuating conformations and are traditionally regarded as etiological agents of infectious neurodegenerative diseases in humans, such as Creutzfeldt-Jakob disease, kuru, and transmissible encephalopathies. More recently, a growing consensus has emerged that prion-like, self-templating mechanisms also underlie a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, and Huntington's disease. Perhaps most surprising, not all prion-like aggregates are associated with pathological changes. There are now several examples of prion-like proteins in mammals that serve positive biological functions in their aggregated state. In this review, we discuss functional prions in the nervous system, with particular emphasis on the cytoplasmic polyadenylation element-binding protein (CPEB) and the role of its prion-like aggregates in synaptic plasticity and memory. We also mention a more recent example of a functional prion-like protein in the brain, TIA-1, and its role during stress. These studies of functional prion-like proteins have provided a number of generalizable insights on how prion-based protein switches may operate to serve physiological functions in higher eukaryotes.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032.,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York 10032.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789.,Zuckerman Mind Brain Behavior Institute, New York, New York 10027.,Kavli Institute for Brain Science, New York, New York 10032
| |
Collapse
|
97
|
Levy R, Levitan D, Susswein AJ. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process. eLife 2016; 5:e17769. [PMID: 27919318 PMCID: PMC5140267 DOI: 10.7554/elife.17769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.
Collapse
Affiliation(s)
- Roi Levy
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - David Levitan
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Abraham J Susswein
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
98
|
Kosik KS. Life at Low Copy Number: How Dendrites Manage with So Few mRNAs. Neuron 2016; 92:1168-1180. [DOI: 10.1016/j.neuron.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
|
99
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
100
|
Lee SH, Shim J, Cheong YH, Choi SL, Jun YW, Lee SH, Chae YS, Han JH, Lee YS, Lee JA, Lim CS, Si K, Kassabov S, Antonov I, Kandel ER, Kaang BK, Jang DJ. ApCPEB4, a non-prion domain containing homolog of ApCPEB, is involved in the initiation of long-term facilitation. Mol Brain 2016; 9:91. [PMID: 27770822 PMCID: PMC5075418 DOI: 10.1186/s13041-016-0271-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022] Open
Abstract
Two pharmacologically distinct types of local protein synthesis are required for synapse- specific long-term synaptic facilitation (LTF) in Aplysia: one for initiation and the other for maintenance. ApCPEB, a rapamycin sensitive prion-like molecule regulates a form of local protein synthesis that is specifically required for the maintenance of the LTF. However, the molecular component of the local protein synthesis that is required for the initiation of LTF and that is sensitive to emetine is not known. Here, we identify a homolog of ApCPEB responsible for the initiation of LTF. ApCPEB4 which we have named after its mammalian CPEB4-like homolog lacks a prion-like domain, is responsive to 5-hydroxytryptamine, and is translated (but not transcribed) in an emetine-sensitive, rapamycin-insensitive, and PKA-dependent manner. The ApCPEB4 binds to different target RNAs than does ApCPEB. Knock-down of ApCPEB4 blocked the induction of LTF, whereas overexpression of ApCPEB4 reduces the threshold of the formation of LTF. Thus, our findings suggest that the two different forms of CPEBs play distinct roles in LTF; ApCPEB is required for maintenance of LTF, whereas the ApCPEB4, which lacks a prion-like domain, is required for the initiation of LTF.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.,Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Jaehoon Shim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Ye-Hwang Cheong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Sun-Lim Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangjusi, Gyeongsangbuk-do, 37224, South Korea
| | - Sue-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Yeon-Su Chae
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Jin-Hee Han
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Yong-Seok Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science, College of Life Science and Nano Technology, Hannam University, Daejeon, 34054, South Korea
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Stefan Kassabov
- Howard Hughes Medical Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Igor Antonov
- Howard Hughes Medical Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Eric R Kandel
- Howard Hughes Medical Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Neuroscience, New York State Psychiatric Institute, Kavli Institute for Brain Sciences, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangjusi, Gyeongsangbuk-do, 37224, South Korea.
| |
Collapse
|