51
|
p53 and cyclin G cooperate in mediating genome stability in somatic cells of Drosophila. Sci Rep 2017; 7:17890. [PMID: 29263364 PMCID: PMC5738409 DOI: 10.1038/s41598-017-17973-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022] Open
Abstract
One of the key players in genome surveillance is the tumour suppressor p53 mediating the adaptive response to a multitude of stress signals. Here we identify Cyclin G (CycG) as co-factor of p53-mediated genome stability. CycG has been shown before to be involved in double-strand break repair during meiosis. Moreover, it is also important for mediating DNA damage response in somatic tissue. Here we find it in protein complexes together with p53, and show that the two proteins interact physically in vitro and in vivo in response to ionizing irradiation. In contrast to mammals, Drosophila Cyclin G is no transcriptional target of p53. Genetic interaction data reveal that p53 activity during DNA damage response requires the presence of CycG. Morphological defects caused by overexpression of p53 are ameliorated in cycG null mutants. Moreover, using a p53 biosensor we show that p53 activity is impeded in cycG mutants. As both p53 and CycG are likewise required for DNA damage repair and longevity we propose that CycG plays a positive role in mediating p53 function in genome surveillance of Drosophila.
Collapse
|
52
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
53
|
Gebel J, Tuppi M, Krauskopf K, Coutandin D, Pitzius S, Kehrloesser S, Osterburg C, Dötsch V. Control mechanisms in germ cells mediated by p53 family proteins. J Cell Sci 2017:jcs.204859. [PMID: 28794013 DOI: 10.1242/jcs.204859] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Germ cells are totipotent and, in principle, immortal as they are the source for new germ cells in each generation. This very special role requires tight quality control systems. The p53 protein family constitutes one of the most important quality surveillance systems in cells. Whereas p53 has become famous for its role as the guardian of the genome in its function as the most important somatic tumor suppressor, p63 has been nicknamed 'guardian of the female germ line'. p63 is strongly expressed in resting oocytes and responsible for eliminating those that carry DNA double-strand breaks. The third family member, p73, acts later during oocyte and embryo development by ensuring correct assembly of the spindle assembly checkpoint. In addition to its role in the female germ line, p73 regulates cell-cell contacts between developing sperm cells and supporting somatic cells in the male germ line. Here, we review the involvement of the p53 protein family in the development of germ cells with a focus on quality control in the female germ line and discuss medical implications for cancer patients.
Collapse
Affiliation(s)
- Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Katharina Krauskopf
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Daniel Coutandin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Susanne Pitzius
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max von Laue-Str. 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
54
|
Song S, Herranz H, Cohen SM. The chromatin remodeling BAP complex limits tumor-promoting activity of the Hippo pathway effector Yki to prevent neoplastic transformation in Drosophila epithelia. Dis Model Mech 2017; 10:1201-1209. [PMID: 28754838 PMCID: PMC5665456 DOI: 10.1242/dmm.030122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/21/2017] [Indexed: 12/26/2022] Open
Abstract
Switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are mutated in many human cancers. In this article, we make use of a Drosophila genetic model for epithelial tumor formation to explore the tumor suppressive role of SWI/SNF complex proteins. Members of the BAP complex exhibit tumor suppressor activity in tissue overexpressing the Yorkie (Yki) proto-oncogene, but not in tissue overexpressing epidermal growth factor receptor (EGFR). The Brahma-associated protein (BAP) complex has been reported to serve as a Yki-binding cofactor to support Yki target expression. However, we observed that depletion of BAP leads to ectopic expression of Yki targets both autonomously and non-autonomously, suggesting additional indirect effects. We provide evidence that BAP complex depletion causes upregulation of the Wingless (Wg) and Decapentaplegic (Dpp) morphogens to promote tumor formation in cooperation with Yki.
Collapse
Affiliation(s)
- Shilin Song
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200N, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200N, Denmark
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200N, Denmark
| |
Collapse
|
55
|
Davoodi P, Srinivasan MP, Wang CH. Effective co-delivery of nutlin-3a and p53 genes via core-shell microparticles for disruption of MDM2-p53 interaction and reactivation of p53 in hepatocellular carcinoma. J Mater Chem B 2017; 5:5816-5834. [PMID: 32264215 DOI: 10.1039/c7tb00481h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor suppressor protein p53 is the most frequently inactivated, mutated, or deleted transcriptional factor in tumor cells. Recent studies have shown that the negative regulation of p53 by the murine double minute 2 (MDM2) protein in human cells interrupts the p53 apoptotic pathway and causes tumorigenesis. Therefore, the disruption of the MDM2-p53 complex by small molecules such as nutlin-3a and the administration of the active p53 protein can effectively restore the apoptotic activity of the p53 protein in tumor cells. This study aims to introduce a unique combined p53-based gene and chemotherapy approach using core-shell polymeric microparticles for the localized treatment of cancers. Core-shell microparticles were successfully fabricated in a single step using a modified electrohydrodynamic atomization (EHDA) technique, where the core and shell layers were loaded with nutlin-3a and β-cyclodextrin-g-chitosan/p53 nanoparticles, respectively. The grafting of β-cyclodextrin (β-CD) onto chitosan chains demonstrated remarkable cellular uptake (∼5-fold) compared to pure chitosan at N/P = 6, attributed to a strong interaction and temporary disruption of the lipid bilayer in the cell membrane by the synthesized copolymer. The therapeutic efficiencies of single- and dual-agent loaded microparticle formulations were also evaluated and compared against free-drug treatment in terms of cell viability and intracellular expression of p53, caspase 3, and MDM2 proteins via an MTS assay, an enzyme-linked immunosorbent assay, and an immunostaining assay. The results revealed that the controlled and sustained release of both agents from the microparticles synergistically enhanced the anti-proliferative efficacy of the agents via the continuous overexpression of p53 and caspase 3 proteins over 5 days. However, MDM2 protein expression remained at the basal level over that period. The findings also indicated that nutlin-3a could impose excessive oxidative stress on cancer cells, where the overproduction of reactive oxygen species (ROS) with irreversible destructive effects on subcellular organelles such as the nucleus (DNA) and mitochondria could be considered as a secondary apoptotic pathway induced by nutlin-3a. Inspired by the observations, the proposed drug delivery system can serve as a unique and powerful drug and gene delivery system with a far-reaching application in human cancer therapy.
Collapse
Affiliation(s)
- Pooya Davoodi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
56
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
57
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
58
|
D’Brot A, Kurtz P, Regan E, Jakubowski B, Abrams JM. A platform for interrogating cancer-associated p53 alleles. Oncogene 2017; 36:286-291. [PMID: 26996664 PMCID: PMC5031501 DOI: 10.1038/onc.2016.48] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, 'humanized' for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants.
Collapse
Affiliation(s)
- Alejandro D’Brot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin Regan
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
59
|
Ito T, Igaki T. Dissecting cellular senescence and SASP in Drosophila. Inflamm Regen 2016; 36:25. [PMID: 29259698 PMCID: PMC5725765 DOI: 10.1186/s41232-016-0031-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence can act as both tumor suppressor and tumor promoter depending on the cellular contexts. On one hand, premature senescence has been considered as an innate host defense mechanism against carcinogenesis in mammals. In response to various stresses including oxidative stress, DNA damage, and oncogenic stress, suffered cells undergo irreversible cell cycle arrest, leading to tumor suppression. On the other hand, recent studies in mammalian systems have revealed that senescent cells can drive oncogenesis by secreting diverse proteins such as inflammatory cytokines, matrix remodeling factors, and growth factors, the phenomenon called senescence-associated secretory phenotype (SASP). However, the mechanisms by which these contradictory effects regulate tumor growth and metastasis in vivo have been elusive. Here, we review the recent discovery of cellular senescence in Drosophila and the mechanisms underlying senescence-mediated tumor regulation dissected by Drosophila genetics.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
60
|
Abstract
Throughout the animal kingdom, p53 genes function to restrain mobile elements and recent observations indicate that transposons become derepressed in human cancers. Together, these emerging lines of evidence suggest that cancers driven by p53 mutations could represent "transpospoathies," i.e. disease states linked to eruptions of mobile elements. The transposopathy hypothesis predicts that p53 acts through conserved mechanisms to contain transposon movement, and in this way, prevents tumor formation. How transposon eruptions provoke neoplasias is not well understood but, from a broader perspective, this hypothesis also provides an attractive framework to explore unrestrained mobile elements as inciters of late-onset idiopathic disease. Also see the video abstract here.
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
61
|
NF-Y in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:630-635. [PMID: 27793714 DOI: 10.1016/j.bbagrm.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 01/07/2023]
Abstract
Both Drosophila melanogaster and Caenorhabditis elegans (C. elegans) are useful model organisms to study in vivo roles of NF-Y during development. Drosophila NF-Y (dNF-Y) consists of three subunits dNF-YA, dNF-YB and dNF-YC. In some tissues, dNF-YC-related protein Mes4 may replace dNF-YC in dNF-Y complex. Studies with eye imaginal disc-specific dNF-Y-knockdown flies revealed that dNF-Y positively regulates the sevenless gene encoding a receptor tyrosine kinase, a component of the ERK pathway and negatively regulates the Sensless gene encoding a transcription factor to ensure proper development of R7 photoreceptor cells together with proper R7 axon targeting. dNF-Y also controls the Drosophila Bcl-2 (debcl) to regulate apoptosis. In thorax development, dNF-Y is necessary for both proper Drosophila JNK (basket) expression and JNK signaling activity that is responsible for thorax development. Drosophila p53 gene was also identified as one of the dNF-Y target genes in this system. C. elegans contains two forms of NF-YA subunit, CeNF-YA1 and CeNF-YA2. C. elegans NF-Y (CeNF-Y) therefore consists of CeNF-YB, CeNF-YC and either CeNF-YA1 or CeNF-YA2. CeNF-Y negatively regulates expression of the Hox gene egl-5 (ortholog of Drosophila Abdominal-B) that is involved in tail patterning. CeNF-Y also negatively regulates expression of the tbx-2 gene that is essential for development of the pharyngeal muscles, specification of neural cell fate and adaptation in olfactory neurons. Negative regulation of the expression of egl-5 and tbx-2 by CeNF-Y provides new insight into the physiological meaning of negative regulation of gene expression by NF-Y during development. In addition, studies on NF-Y in platyhelminths are also summarized. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
|
62
|
Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis. Nat Commun 2016; 7:12781. [PMID: 27650264 PMCID: PMC5036004 DOI: 10.1038/ncomms12781] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/01/2016] [Indexed: 12/02/2022] Open
Abstract
Some symbiotic bacteria are capable of interfering with host reproduction in selfish ways. How such bacteria can manipulate host's sex-related mechanisms is of fundamental interest encompassing cell, developmental and evolutionary biology. Here, we uncover the molecular and cellular mechanisms underlying Spiroplasma-induced embryonic male lethality in Drosophila melanogaster. Transcriptomic analysis reveals that many genes related to DNA damage and apoptosis are up-regulated specifically in infected male embryos. Detailed genetic and cytological analyses demonstrate that male-killing Spiroplasma causes DNA damage on the male X chromosome interacting with the male-specific lethal (MSL) complex. The damaged male X chromosome exhibits a chromatin bridge during mitosis, and bridge breakage triggers sex-specific abnormal apoptosis via p53-dependent pathways. Notably, the MSL complex is not only necessary but also sufficient for this cytotoxic process. These results highlight symbiont's sophisticated strategy to target host's sex chromosome and recruit host's molecular cascades toward massive apoptosis in a sex-specific manner. Symbiotic bacteria are able to interfere with host reproduction in ways that are detrimental to the host organism. Here the authors show that Spiroplasma induces DNA damage on the male X chromosome in Drosophila, causing sex-specific apoptosis.
Collapse
|
63
|
Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation. PLoS Biol 2016; 14:e1002536. [PMID: 27584613 PMCID: PMC5008734 DOI: 10.1371/journal.pbio.1002536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/27/2016] [Indexed: 01/05/2023] Open
Abstract
Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. After widespread radiation damage in the developing fruit fly, organs are formed by regeneration from an apoptosis-resistant subpopulation of cells marked by high levels of Wingless and STAT. Like other insects, Drosophila larvae have epithelial structures called imaginal discs that will give rise to most of the external adult structures, such as wings, limbs, or antennae; these organ precursors are formed by a single layer of epithelial cells that folds into a sac. Imaginal discs manage to regenerate efficiently if they are damaged. Previous studies have shown that dying cells produce signals that activate cell proliferation of some of their neighbors, allowing them to regenerate the disc and thereby enabling the flies to develop into normal adults. But a dedicated stem cell population that contributes to regeneration, if any, remained to be identified. Here, we report the identification of a subpopulation of cells in wing imaginal discs that is more resistant to the cytotoxic effects of radiation and drugs. We show that the protection of these cells depends on two signaling pathways—Wingless and STAT—that are conserved in humans. Following tissue damage by radiation, we observe that protected cells change their location and their identity, allowing them to fill in for dead cells in other parts of the same organ precursor. In sum, this work identified ways in which a subset of cells in Drosophila imaginal wing discs is preserved through radiation exposure so that they could participate in regeneration of the organ after radiation damage. We also discuss how this situation may resemble human cancers.
Collapse
|
64
|
Padash Barmchi M, Gilbert M, Thomas M, Banks L, Zhang B, Auld VJ. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathog 2016; 12:e1005789. [PMID: 27537218 PMCID: PMC4990329 DOI: 10.1371/journal.ppat.1005789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. Human papillomaviruses (HPV) are the causative agents of cervical cancer, one of the leading causes of cancer death in women worldwide. The E6 oncoprotein encoded by HPV has been implicated in the progression of primary tumors to metastatic disease and we have developed a new model in the fruit fly (Drosophila melanogaster) to study the cellular effects of E6. The E6 protein recruits an E3 ubiquitin ligase (UBE3A) to induce the degradation of a number of cellular proteins, including members of the MAGUK family of scaffolding proteins that control the structure and polarity of epithelial cells: Dlg, Scribble and Magi. Expression of E6 and human UBE3A in the wing and eye of Drosophila disrupted these tissues. Similar to human cells we found that Drosophila Magi was a major E6 degradation target and that overexpression of Magi rescued the tissue disruption. However, Drosophila p53 was not degraded by E6/UBE3A, making our fly model potentially useful for studying the p53-independent activities of the E6+UBE3A complex. When we paired E6 expression with oncogenic proteins, including activated Ras, we observed that epithelia were transformed into mesechymal-like cells that left the epithelium and spread through the body. As a test of the potential of our system, we carried out a pilot genetic screen and identified the insulin receptor as a strong modulator of the E6-mediated disruption of Drosophila tissues. Therefore, we have developed a new system and approach to help us better understand the mechanisms that underlie how HPV infection leads to cell transformation and cancer.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Mary Gilbert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Vanessa J. Auld
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (MPB); (BZ); (VJA)
| |
Collapse
|
65
|
Abstract
It is poorly understood how a single protein, p53, can be responsive to so many stress signals and orchestrates very diverse cell responses to maintain/restore cell/tissue functions. The uncovering that TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice variants (isoforms) provides an explanation to its pleiotropic biological activities. Here, we summarize a decade of research on p53 isoforms. The clinical studies and the diverse cellular and animal models of p53 isoforms (zebrafish, Drosophila, and mouse) lead us to realize that a p53-mediated cell response is, in fact, the sum of the intrinsic activities of the coexpressed p53 isoforms and that unbalancing expression of different p53 isoforms leads to cancer, premature aging, (neuro)degenerative diseases, inflammation, embryo malformations, or defects in tissue regeneration. Cracking the p53 isoforms' code is, thus, a necessary step to improve cancer treatment. It also opens new exciting perspectives in tissue regeneration.
Collapse
Affiliation(s)
- Sebastien M Joruiz
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
66
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
67
|
Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster. Genetics 2016; 203:1265-81. [PMID: 27184390 DOI: 10.1534/genetics.116.188581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression.
Collapse
|
68
|
Qi S, Calvi BR. Different cell cycle modifications repress apoptosis at different steps independent of developmental signaling in Drosophila. Mol Biol Cell 2016; 27:1885-97. [PMID: 27075174 PMCID: PMC4907722 DOI: 10.1091/mbc.e16-03-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 11/11/2022] Open
Abstract
Genetic manipulations of the cell cycle repress apoptosis independent of developmental signaling. The findings have broader relevance to understanding the coordination of cell proliferation and apoptosis in development and disease. Apoptotic cell death is important for the normal development of a variety of organisms. Apoptosis is also a response to DNA damage and an important barrier to oncogenesis. The apoptotic response to DNA damage is dampened in specific cell types during development. Developmental signaling pathways can repress apoptosis, and reduced cell proliferation also correlates with a lower apoptotic response. However, because developmental signaling regulates both cell proliferation and apoptosis, the relative contribution of cell division to the apoptotic response has been hard to discern in vivo. Here we use Drosophila oogenesis as an in vivo model system to determine the extent to which cell proliferation influences the apoptotic response to DNA damage. We find that different types of cell cycle modifications are sufficient to repress the apoptotic response to ionizing radiation independent of developmental signaling. The step(s) at which the apoptosis pathway was repressed depended on the type of cell cycle modification—either upstream or downstream of expression of the p53-regulated proapoptotic genes. Our findings have important implications for understanding the coordination of cell proliferation with the apoptotic response in development and disease, including cancer and the tissue-specific responses to radiation therapy.
Collapse
Affiliation(s)
- Suozhi Qi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
69
|
Magi Is Associated with the Par Complex and Functions Antagonistically with Bazooka to Regulate the Apical Polarity Complex. PLoS One 2016; 11:e0153259. [PMID: 27074039 PMCID: PMC4830575 DOI: 10.1371/journal.pone.0153259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.
Collapse
|
70
|
Coutandin D, Osterburg C, Srivastav RK, Sumyk M, Kehrloesser S, Gebel J, Tuppi M, Hannewald J, Schäfer B, Salah E, Mathea S, Müller-Kuller U, Doutch J, Grez M, Knapp S, Dötsch V. Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level. eLife 2016; 5. [PMID: 27021569 PMCID: PMC4876613 DOI: 10.7554/elife.13909] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/28/2016] [Indexed: 01/07/2023] Open
Abstract
Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long
periods of time, during which the high concentration of the p53 family member TAp63α
sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and
exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization
and concomitant activation upon detection of DNA damage. Here we show that the TAp63α
dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism
not requiring further translation of other cellular factors in oocytes and is
associated with unfolding of the inhibitory structure that blocks the tetramerization
interface. Using a combination of biophysical methods as well as cell and ovary
culture experiments we explain how TAp63α is kept inactive in the absence of DNA
damage but causes rapid oocyte elimination in response to a few DNA double strand
breaks thereby acting as the key quality control factor in maternal reproduction. DOI:http://dx.doi.org/10.7554/eLife.13909.001 The irradiation and chemotherapy drugs that are used to destroy cancer cells also
damage healthy cells. Germ cells – from which egg cells and sperm cells develop – are
particularly vulnerable as they contain sensitive quality control mechanisms that
kill any cell that contain damaged DNA. Consequently, after surviving cancer many
patients are confronted with infertility. A protein called p63, which is closely related to another protein that suppresses the
formation of tumors, plays an essential role in detecting and responding to DNA
damage. In immature egg cells (also known as oocytes), p63 mostly exists in an
inactive form. The protein then switches to an active form when DNA damage is
detected to trigger the process of cell self-destruction. Now, Coutandin, Osterburg et al. have performed a range of biochemical, biophysical
and cell culture experiments to study how p63 is kept in its inactive form in the
oocytes of mice. The experiments showed that in the inactive form, the two ends of
the protein form a sheet that closes a key site on the protein and prevents it from
changing into its active form. However, this closed form can be thought of as being
like a spring-loaded trap – it doesn’t take much energy to spring the trap and open
the protein into its active form. Once this change has occurred, it is
irreversible. Coutandin, Osterburg et al. also found that the oocytes of mice already contain all
the proteins necessary to activate p63. This means that once the switch to the active
form is triggered there is no delay waiting for other proteins to be made, which
makes oocytes extremely sensitive to DNA damage. Further work is now needed to
investigate the exact molecular mechanisms behind the activation of p63. DOI:http://dx.doi.org/10.7554/eLife.13909.002
Collapse
Affiliation(s)
- Daniel Coutandin
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Ratnesh Kumar Srivastav
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Manuela Sumyk
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Jens Hannewald
- MS-DTB-C Protein Purification, Merck KGaA, Darmstadt, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Eidarus Salah
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Sebastian Mathea
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | | | - James Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Stefan Knapp
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom.,Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Buchmann Institute for Molecular Life Science, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
71
|
miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial organization in Drosophila wings. Dev Biol 2016; 412:83-98. [PMID: 26902111 DOI: 10.1016/j.ydbio.2016.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 02/05/2023]
Abstract
The miR-200 microRNA family plays important tumor suppressive roles. The sole Drosophila miR-200 ortholog, miR-8 plays conserved roles in Wingless, Notch and Insulin signaling - pathways linked to tumorigenesis, yet homozygous null animals are viable and often appear morphologically normal. We observed that wing tissues mosaic for miR-8 levels by genetic loss or gain of function exhibited patterns of cell death consistent with a role for miR-8 in modulating cell survival in vivo. Here we show that miR-8 levels impact several actin cytoskeletal regulators that can affect cell survival and epithelial organization. We show that loss of miR-8 can confer resistance to apoptosis independent of an epithelial to mesenchymal transition while the persistence of cells expressing high levels of miR-8 in the wing epithelium leads to increased JNK signaling, aberrant expression of extracellular matrix remodeling proteins and disruption of proper wing epithelial organization. Altogether our results suggest that very low as well as very high levels of miR-8 can contribute to hallmarks associated with cancer, suggesting approaches to increase miR-200 microRNAs in cancer treatment should be moderate.
Collapse
|
72
|
Abstract
Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants, and assays used by various laboratories to study cell death in the context of development and in response to external insults.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| |
Collapse
|
73
|
Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guénal I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis 2015; 21:239-51. [DOI: 10.1007/s10495-015-1209-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Zhang B, Rotelli M, Dixon M, Calvi BR. The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 2015; 22:2058-67. [PMID: 25882045 PMCID: PMC4816103 DOI: 10.1038/cdd.2015.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions.
Collapse
Affiliation(s)
- B Zhang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Rotelli
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Dixon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - B R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
75
|
Elenbaas JS, Mouawad R, Henry RW, Arnosti DN, Payankaulam S. Role of Drosophila retinoblastoma protein instability element in cell growth and proliferation. Cell Cycle 2015; 14:589-97. [PMID: 25496208 DOI: 10.4161/15384101.2014.991182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RB tumor suppressor, a regulator of the cell cycle, apoptosis, senescence, and differentiation, is frequently mutated in human cancers. We recently described an evolutionarily conserved C-terminal "instability element" (IE) of the Drosophila Rbf1 retinoblastoma protein that regulates its turnover. Misexpression of wild-type or non-phosphorylatable forms of the Rbf1 protein leads to repression of cell cycle genes. In contrast, overexpression of a defective form of Rbf1 lacking the IE (ΔIE), a stabilized but transcriptionally less active form of the protein, induced ectopic S phase in cell culture. To determine how mutations in the Rbf1 IE may induce dominant effects in a developmental context, we assessed the impact of in vivo expression of mutant Rbf1 proteins on wing development. ΔIE expression resulted in overgrowth of larval wing imaginal discs and larger adult wings containing larger cells. In contrast, a point mutation in a conserved lysine of the IE (K774A) generated severely disrupted, reduced wings. These contrasting effects appear to correlate with control of apoptosis; expression of the pro-apoptotic reaper gene and DNA fragmentation measured by acridine orange stain increased in flies expressing the K774A isoform and was suppressed by expression of Rbf1ΔIE. Intriguingly, cancer associated mutations affecting RB homologs p130 and p107 may similarly induce dominant phenotypes.
Collapse
Key Words
- Apaf-1, Apoptotic protease activating factor 1
- Ark, Apaf-1 related killer
- CDK, Cyclin-dependent kinase
- COP9, Constitutive photomorphogenic 9
- Dpp, Decapentaplegic
- Drosophila
- E2F, E2 promoter binding factor
- Hid, Head involution defective
- IE, Instability element
- PCNA, Proliferating cell nuclear antigen
- Polα, DNA polymerase α
- Rb, Retinoblastoma
- Wnt, Wingless
- apoptosis
- cell size
- retinoblastoma
- transcriptional regulation
- tumor suppressor
- wing size
Collapse
Affiliation(s)
- Jared S Elenbaas
- a Department of Biochemistry and Molecular Biology ; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
76
|
Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun 2015; 6:8894. [PMID: 26573328 PMCID: PMC4660207 DOI: 10.1038/ncomms9894] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. It is unclear why certain tissues are more susceptible to the consequences of aneuploidy. Here, in Drosophila, Gogendeau et al. identify aneuploidy as the cause of lengthened G1 and premature differentiation in both neural and adult intestinal stem cells, which prevents cells with abnormal genomes from cycling.
Collapse
|
77
|
Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP. J Virol 2015; 90:533-44. [PMID: 26491164 DOI: 10.1128/jvi.02320-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. IMPORTANCE The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the prototypical viral IAP, Op-IAP3, blocks apoptosis indirectly by associating with unstable, autoubiquitinating host IAP in such a way that cellular IAP levels and antiapoptotic activities are maintained. This mechanism explains Op-IAP3's requirement for native cellular IAP as a cofactor and the dispensability of caspase inhibition. Viral IAP-mediated preservation of the host IAP homolog capitalizes on normal IAP-IAP interactions and is likely the result of viral IAP evolution in which degron-mediated destabilization and ubiquitination potential have been reduced. This mechanism illustrates another novel means by which DNA viruses incorporate host death regulators that are modified for resistance to host regulatory controls for the purpose of suppressing host cell apoptosis and acquiring replication advantages.
Collapse
|
78
|
Cutler T, Sarkar A, Moran M, Steffensmeier A, Puli OR, Mancini G, Tare M, Gogia N, Singh A. Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein (CBP) in Alzheimer's Disease. PLoS One 2015; 10:e0137691. [PMID: 26367392 PMCID: PMC4569556 DOI: 10.1371/journal.pone.0137691] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The progressive neurodegenerative disorder Alzheimer's disease (AD) manifests as loss of cognitive functions, and finally leads to death of the affected individual. AD may result from accumulation of amyloid plaques. These amyloid plaques comprising of amyloid-beta 42 (Aβ42) polypeptides results from the improper cleavage of amyloid precursor protein (APP) in the brain. The Aβ42 plaques have been shown to disrupt the normal cellular processes and thereby trigger abnormal signaling which results in the death of neurons. However, the molecular-genetic mechanism(s) responsible for Aβ42 mediated neurodegeneration is yet to be fully understood. METHODOLOGY/PRINCIPAL FINDINGS We have utilized Gal4/UAS system to develop a transgenic fruit fly model for Aβ42 mediated neurodegeneration. Targeted misexpression of human Aβ42 in the differentiating photoreceptor neurons of the developing eye of transgenic fly triggers neurodegeneration. This progressive neurodegenerative phenotype resembles Alzheimer's like neuropathology. We identified a histone acetylase, CREB Binding Protein (CBP), as a genetic modifier of Aβ42 mediated neurodegeneration. Targeted misexpression of CBP along with Aβ42 in the differentiating retina can significantly rescue neurodegeneration. We found that gain-of-function of CBP rescues Aβ42 mediated neurodegeneration by blocking cell death. Misexpression of Aβ42 affects the targeting of axons from retina to the brain but misexpression of full length CBP along with Aβ42 can restore this defect. The CBP protein has multiple domains and is known to interact with many different proteins. Our structure function analysis using truncated constructs lacking one or more domains of CBP protein, in transgenic flies revealed that Bromo, HAT and polyglutamine (BHQ) domains together are required for the neuroprotective function of CBP. This BHQ domain of CBP has not been attributed to promote survival in any other neurodegenerative disorders. CONCLUSIONS/SIGNIFICANCE We have identified CBP as a genetic modifier of Aβ42 mediated neurodegeneration. Furthermore, we have identified BHQ domain of CBP is responsible for its neuroprotective function. These studies may have significant bearing on our understanding of genetic basis of AD.
Collapse
Affiliation(s)
- Timothy Cutler
- Premedical Program, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Michael Moran
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Andrew Steffensmeier
- Premedical Program, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Greg Mancini
- Premedical Program, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
| | - Amit Singh
- Premedical Program, University of Dayton, Dayton, Ohio, 45469, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, 45469, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, 45469, United States of America
| |
Collapse
|
79
|
Abstract
Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
80
|
Di Cara F, Maile TM, Parsons BD, Magico A, Basu S, Tapon N, King-Jones K. The Hippo pathway promotes cell survival in response to chemical stress. Cell Death Differ 2015; 22:1526-39. [PMID: 26021298 PMCID: PMC4532776 DOI: 10.1038/cdd.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress.
Collapse
Affiliation(s)
- F Di Cara
- Department of Cell Biology, Medical Sciences Building, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - T M Maile
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - B D Parsons
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton AB T6G 2E1, Alberta, Canada
| | - A Magico
- Department of Pediatrics, Faculty of Medicine & Dentistry, Katz Group Centre, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - S Basu
- Centre for Molecular Oncology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - N Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - K King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton T6G 2E9, Alberta, Canada
| |
Collapse
|
81
|
Dally Proteoglycan Mediates the Autonomous and Nonautonomous Effects on Tissue Growth Caused by Activation of the PI3K and TOR Pathways. PLoS Biol 2015; 13:e1002239. [PMID: 26313758 PMCID: PMC4551486 DOI: 10.1371/journal.pbio.1002239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
How cells acquiring mutations in tumor suppressor genes outcompete neighboring wild-type cells is poorly understood. The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) and tuberous sclerosis complex (TSC)-target of rapamycin (TOR) pathways are frequently activated in human cancer, and this activation is often causative of tumorigenesis. We utilized the Gal4-UAS system in Drosophila imaginal primordia, highly proliferative and growing tissues, to analyze the impact of restricted activation of these pathways on neighboring wild-type cell populations. Activation of these pathways leads to an autonomous induction of tissue overgrowth and to a remarkable nonautonomous reduction in growth and proliferation rates of adjacent cell populations. This nonautonomous response occurs independently of where these pathways are activated, is functional all throughout development, takes place across compartments, and is distinct from cell competition. The observed autonomous and nonautonomous effects on tissue growth rely on the up-regulation of the proteoglycan Dally, a major element involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our findings indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. During normal development, the PI3K/PTEN and TSC/TOR pathways play a major role in sensing nutrient availability and modulating the final size of any developing organ. We present evidence that Dally also contributes to integrating nutrient sensing and organ scaling, the fitting of pattern to size. The loss of tumor suppressor genes induces a nonautonomous reduction of growth and proliferation rates in adjacent cell populations by competing for available growth factors; the proteoglycan Dally helps to mediate this effect. The final size of a developing organ is finely modulated by nutrient conditions through the activity of nutrient sensing pathways, and deregulation of these pathways is often causative of tumorigenesis. Besides the well-known roles of these pathways in inducing tissue and cell growth, here we identify a nonautonomous effect of activation of these pathways on growth and proliferation rates and on the final size of neighboring cell populations. We reveal that the observed autonomous and nonautonomous effects on tissue growth and proliferation rates rely on the up-regulation of the proteoglycan Dally, a major factor involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our data indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. Whereas nutrient-sensing pathways modulate the final size of the adult structure according to nutrient availability to the feeding animal, Dpp plays an organ-intrinsic role in the coordination of growth and patterning. We identify the proteoglycan Dally as the rate-limiting factor that contributes to the tissue-autonomous and nonautonomous effects on growth caused by targeted activation of the nutrient-sensing pathways. Thus, our results unravel a role of Dally as a molecular bridge between the organ-intrinsic and organ-extrinsic mechanisms that regulate organ size.
Collapse
|
82
|
Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster. PLoS One 2015; 10:e0133840. [PMID: 26248317 PMCID: PMC4527671 DOI: 10.1371/journal.pone.0133840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/03/2015] [Indexed: 02/04/2023] Open
Abstract
Studying of the effects of low doses of γ-irradiation is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. The goal of this work is to identify changes of lifespan and expression stress-sensitive genes in Drosophila melanogaster, exposed to low doses of γ-irradiation (5 – 40 cGy) on the imaginal stage of development. Although some changes in life extensity in males were identified (the effect of hormesis after the exposure to 5, 10 and 40 cGy) as well as in females (the effect of hormesis after the exposure to 5 and 40 cGy), they were not caused by the organism “physiological” changes. This means that the observed changes in life expectancy are not related to the changes of organism physiological functions after the exposure to low doses of ionizing radiation. The identified changes in gene expression are not dose-dependent, there is not any proportionality between dose and its impact on expression. These results reflect nonlinear effects of low dose radiation and sex-specific radio-resistance of the postmitotic cell state of Drosophila melanogaster imago.
Collapse
|
83
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
84
|
Chakraborty R, Li Y, Zhou L, Golic KG. Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop. PLoS Genet 2015; 11:e1005400. [PMID: 26230084 PMCID: PMC4521751 DOI: 10.1371/journal.pgen.1005400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor P53 is a critical mediator of the apoptotic response to DNA double-strand breaks through the transcriptional activation of pro-apoptotic genes. This mechanism is evolutionarily conserved from mammals to lower invertebrates, including Drosophila melanogaster. P53 also transcriptionally induces its primary negative regulator, Mdm2, which has not been found in Drosophila. In this study we identified the Drosophila gene companion of reaper (corp) as a gene whose overexpression promotes survival of cells with DNA damage in the soma but reduces their survival in the germline. These disparate effects are shared by p53 mutants, suggesting that Corp may be a negative regulator of P53. Confirming this supposition, we found that corp negatively regulates P53 protein level. It has been previously shown that P53 transcriptionally activates corp; thus, Corp produces a negative feedback loop on P53. We further found that Drosophila Corp shares a protein motif with vertebrate Mdm2 in a region that mediates the Mdm2:P53 physical interaction. In Corp, this motif mediates physical interaction with Drosophila P53. Our findings implicate Corp as a functional analog of vertebrate Mdm2 in flies.
Collapse
Affiliation(s)
- Riddhita Chakraborty
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
85
|
Tousled-like kinase mediated a new type of cell death pathway in Drosophila. Cell Death Differ 2015; 23:146-57. [PMID: 26088162 DOI: 10.1038/cdd.2015.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) has an important role in sculpting organisms during development. However, much remains to be learned about the molecular mechanism of PCD. We found that ectopic expression of tousled-like kinase (tlk) in Drosophila initiated a new type of cell death. Furthermore, the TLK-induced cell death is likely to be independent of the canonical caspase pathway and other known caspase-independent pathways. Genetically, atg2 RNAi could rescue the TLK-induced cell death, and this function of atg2 was likely distinct from its role in autophagy. In the developing retina, loss of tlk resulted in reduced PCD in the interommatidial cells (IOCs). Similarly, an increased number of IOCs was present in the atg2 deletion mutant clones. However, double knockdown of tlk and atg2 by RNAi did not have a synergistic effect. These results suggested that ATG2 may function downstream of TLK. In addition to a role in development, tlk and atg2 RNAi could rescue calcium overload-induced cell death. Together, our results suggest that TLK mediates a new type of cell death pathway that occurs in both development and calcium cytotoxicity.
Collapse
|
86
|
Simón R, Aparicio R, Housden BE, Bray S, Busturia A. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 2015; 19:1430-43. [PMID: 24858703 DOI: 10.1007/s10495-014-1000-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Rocío Simón
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c) Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
87
|
Abstract
The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | |
Collapse
|
88
|
Zhang S, Chen C, Wu C, Yang Y, Li W, Xue L. The canonical Wg signaling modulates Bsk-mediated cell death in Drosophila. Cell Death Dis 2015; 6:e1713. [PMID: 25855961 PMCID: PMC4650552 DOI: 10.1038/cddis.2015.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Cell death is an essential regulatory mechanism for removing unneeded cells in animal development and tissue homeostasis. The c-Jun N-terminal kinase (JNK) pathway has pivotal roles in the regulation of cell death in response to various intrinsic and extrinsic stress signals. The canonical Wingless (Wg) signaling has been implicated in cell proliferation and cell fate decisions, whereas its role in cell death remains largely elusive. Here, we report that activated Bsk (the Drosophila JNK homolog) induced cell death is mediated by the canonical Wg signaling. First, loss of Wg signaling abrogates Bsk-mediated caspase-independent cell death. Second, activation of Wg signaling promotes cell death in a caspase-independent manner. Third, activation of Bsk signaling results in upregulated transcription of wingless (wg) gene. Finally, Wg pathway participates in the physiological function of Bsk signaling in development. These findings not only reveal a previously undiscovered role of Wg signaling in Bsk-mediated cell death, but also provide a novel mechanism for the interplay between the two important signaling pathways in development.
Collapse
Affiliation(s)
- S Zhang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - C Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - C Wu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Y Yang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - W Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - L Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
89
|
Insect inhibitor-of-apoptosis (IAP) proteins are negatively regulated by signal-induced N-terminal degrons absent within viral IAP proteins. J Virol 2015; 89:4481-93. [PMID: 25653450 DOI: 10.1128/jvi.03659-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Inhibitor-of-apoptosis (IAP) proteins are key regulators of the innate antiviral response by virtue of their capacity to respond to signals affecting cell survival. In insects, wherein the host IAP provides a primary restriction to apoptosis, diverse viruses trigger rapid IAP depletion that initiates caspase-mediated apoptosis, thereby limiting virus multiplication. We report here that the N-terminal leader of two insect IAPs, Spodoptera frugiperda SfIAP and Drosophila melanogaster DIAP1, contain distinct instability motifs that regulate IAP turnover and apoptotic consequences. Functioning as a protein degron, the cellular IAP leader dramatically shortened the life span of a long-lived viral IAP (Op-IAP3) when fused to its N terminus. The SfIAP degron contains mitogen-activated kinase (MAPK)-like regulatory sites, responsible for MAPK inhibitor-sensitive phosphorylation of SfIAP. Hyperphosphorylation correlated with increased SfIAP turnover independent of the E3 ubiquitin-ligase activity of the SfIAP RING, which also regulated IAP stability. Together, our findings suggest that the SfIAP phospho-degron responds rapidly to a signal-activated kinase cascade, which regulates SfIAP levels and thus apoptosis. The N-terminal leader of dipteran DIAP1 also conferred virus-induced IAP depletion by a caspase-independent mechanism. DIAP1 instability mapped to previously unrecognized motifs that are not found in lepidopteran IAPs. Thus, the leaders of cellular IAPs from diverse insects carry unique signal-responsive degrons that control IAP turnover. Rapid response pathways that trigger IAP degradation and initiate apoptosis independent of canonical prodeath gene (Reaper-Grim-Hid) expression may provide important innate immune advantages. Furthermore, the elimination of these response motifs within viral IAPs, including those of baculoviruses, explains their unusual stability and their potent antiapoptotic activity. IMPORTANCE Apoptosis is an effective means by which a host controls virus infection. In insects, inhibitor-of-apoptosis (IAP) proteins act as regulatory sentinels by responding to cellular signals that determine the fate of infected cells. We discovered that lepidopteran (moth and butterfly) IAPs, which are degraded upon baculovirus infection, are controlled by a conserved phosphorylation-sensitive degron within the IAP N-terminal leader. The degron likely responds to virus-induced kinase-specific signals for degradation through SKP1/Cullin/F-box complex-mediated ubiquitination. Such signal-induced destruction of cellular IAPs is distinct from degradation caused by well-known IAP antagonists, which act to expel IAP-bound caspases. The major implication of this study is that insects have multiple signal-responsive mechanisms by which the sentinel IAPs are actively degraded to initiate host apoptosis. Such diversity of pathways likely provides insects with rapid and efficient strategies for pathogen control. Furthermore, the absence of analogous degrons in virus-encoded IAPs explains their relative stability and antiapoptotic potency.
Collapse
|
90
|
Merino MM, Rhiner C, Lopez-Gay JM, Buechel D, Hauert B, Moreno E. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell 2015; 160:461-76. [PMID: 25601460 PMCID: PMC4313366 DOI: 10.1016/j.cell.2014.12.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/26/2014] [Accepted: 11/24/2014] [Indexed: 01/01/2023]
Abstract
Viable yet damaged cells can accumulate during development and aging. Although eliminating those cells may benefit organ function, identification of this less fit cell population remains challenging. Previously, we identified a molecular mechanism, based on “fitness fingerprints” displayed on cell membranes, which allows direct fitness comparison among cells in Drosophila. Here, we study the physiological consequences of efficient cell selection for the whole organism. We find that fitness-based cell culling is naturally used to maintain tissue health, delay aging, and extend lifespan in Drosophila. We identify a gene, azot, which ensures the elimination of less fit cells. Lack of azot increases morphological malformations and susceptibility to random mutations and accelerates tissue degeneration. On the contrary, improving the efficiency of cell selection is beneficial for tissue health and extends lifespan. Fitness-based cell culling maintains tissue health Azot ensures the elimination of less fit cells Lack of azot accelerates tissue degeneration Improving the efficiency of cell selection extends lifespan
Collapse
Affiliation(s)
- Marisa M Merino
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland
| | - Christa Rhiner
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland
| | - Jesus M Lopez-Gay
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland; Polarity Division and Morphogenesis, Institut Curie, CNRS UMR 3215, INSERM U934 Paris, France
| | - David Buechel
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland
| | - Barbara Hauert
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland
| | - Eduardo Moreno
- Institute of Cell Biology, IZB, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
91
|
Abstract
DNA damage has been implicated in neurodegenerative disorders, including Alzheimer's disease and other tauopathies, but the consequences of genotoxic stress to postmitotic neurons are poorly understood. Here we demonstrate that p53, a key mediator of the DNA damage response, plays a neuroprotective role in a Drosophila model of tauopathy. Further, through a whole-genome ChIP-chip analysis, we identify genes controlled by p53 in postmitotic neurons. We genetically validate a specific pathway, synaptic function, in p53-mediated neuroprotection. We then demonstrate that the control of synaptic genes by p53 is conserved in mammals. Collectively, our results implicate synaptic function as a central target in p53-dependent protection from neurodegeneration.
Collapse
|
92
|
Beira JV, Springhorn A, Gunther S, Hufnagel L, Pyrowolakis G, Vincent JP. The Dpp/TGFβ-dependent corepressor Schnurri protects epithelial cells from JNK-induced apoptosis in drosophila embryos. Dev Cell 2014; 31:240-7. [PMID: 25307481 PMCID: PMC4220000 DOI: 10.1016/j.devcel.2014.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022]
Abstract
Jun N-terminal kinase (JNK) often mediates apoptosis in response to cellular stress. However, during normal development, JNK signaling controls a variety of live cell behaviors, such as during dorsal closure in Drosophila embryos. During this process, the latent proapoptotic activity of JNK becomes apparent following Dpp signaling suppression, which leads to JNK-dependent transcriptional activation of the proapoptotic gene reaper. Dpp signaling also protects cells from JNK-dependent apoptosis caused by epithelial disruption. We find that repression of reaper transcription by Dpp is mediated by Schnurri. Moreover, reporter gene analysis shows that a transcriptional regulatory module comprising AP-1 and Schnurri binding sites located upstream of reaper integrate the activities of JNK and Dpp. This arrangement allows JNK to control a migratory behavior without triggering apoptosis. Dpp plays a dual role during dorsal closure. It cooperates with JNK in stimulating cell migration and also prevents JNK from inducing apoptosis.
Collapse
Affiliation(s)
- Jorge V Beira
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Alexander Springhorn
- BIOSS Centre for Biological Signalling Studies and Institute for Biology I, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Research Training Program GRK 1104, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Stefan Gunther
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Giorgos Pyrowolakis
- BIOSS Centre for Biological Signalling Studies and Institute for Biology I, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Jean-Paul Vincent
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
93
|
Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev Cell 2014; 30:731-45. [PMID: 25241934 DOI: 10.1016/j.devcel.2014.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022]
Abstract
Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome missegregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the spindle assembly checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia and demonstrate the robust compensatory mechanisms at the cellular and organismal level.
Collapse
|
94
|
Zhang B, Mehrotra S, Ng WL, Calvi BR. Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. PLoS Genet 2014; 10:e1004581. [PMID: 25211335 PMCID: PMC4161308 DOI: 10.1371/journal.pgen.1004581] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022] Open
Abstract
Apoptotic cell death is an important response to genotoxic stress that prevents oncogenesis. It is known that tissues can differ in their apoptotic response, but molecular mechanisms are little understood. Here, we show that Drosophila polyploid endocycling cells (G/S cycle) repress the apoptotic response to DNA damage through at least two mechanisms. First, the expression of all the Drosophila p53 protein isoforms is strongly repressed at a post-transcriptional step. Second, p53-regulated pro-apoptotic genes are epigenetically silenced in endocycling cells, preventing activation of a paused RNA Pol II by p53-dependent or p53-independent pathways. Over-expression of the p53A isoform did not activate this paused RNA Pol II complex in endocycling cells, but over-expression of the p53B isoform with a longer transactivation domain did, suggesting that dampened p53B protein levels are crucial for apoptotic repression. We also find that the p53A protein isoform is ubiquitinated and degraded by the proteasome in endocycling cells. In mitotic cycling cells, p53A was the only isoform expressed to detectable levels, and its mRNA and protein levels increased after irradiation, but there was no evidence for an increase in protein stability. However, our data suggest that p53A protein stability is regulated in unirradiated cells, which likely ensures that apoptosis does not occur in the absence of stress. Without irradiation, both p53A protein and a paused RNA pol II were pre-bound to the promoters of pro-apoptotic genes, preparing mitotic cycling cells for a rapid apoptotic response to genotoxic stress. Together, our results define molecular mechanisms by which different cells in development modulate their apoptotic response, with broader significance for the survival of normal and cancer polyploid cells in mammals. In order to maintain genome integrity, eukaryotic cells have evolved multiple ways to respond to DNA damage stress. One of the major cellular responses is apoptosis, during which the cell undergoes programmed cell death in order to prevent the propagation of the damaged genome to daughter cells. Although clinical observations and other studies have shown that tissues can differ in their apoptotic response, the molecular mechanisms underlying these differences are largely unknown. We have shown in our model system, Drosophila, that endocycling cells do not initiate cell death in response to DNA damage. The endocycle is a cell cycle variation that is widely found in nature and conserved from plant to animals. During the endocycle, cells duplicate their genomic DNA but do not enter mitosis to segregate chromosomes, resulting in a polyploid genome content. In this study, we investigate how the apoptotic response to DNA damage is repressed in endocycling cells. We find that the Drosophila ortholog of the human p53 tumor suppressor protein is expressed at very low levels in endocycling cells. Moreover, the downstream pro-apoptotic genes that are regulated by p53 are epigenetically silenced in endocycling cells. Our results provide important insights into tissue-specific apoptotic responses in development, with possible broader impact on understanding radiation therapy response and cancer of different tissues.
Collapse
Affiliation(s)
- Bingqing Zhang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Sonam Mehrotra
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Wei Lun Ng
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
95
|
Barrio L, Dekanty A, Milán M. MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation. Cell Rep 2014; 8:528-41. [PMID: 25017064 DOI: 10.1016/j.celrep.2014.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 02/01/2023] Open
Abstract
Multiple conserved mechanisms sense nutritional conditions and coordinate metabolic changes in the whole organism. We unravel a role for the Drosophila homolog of p53 (Dp53) in the fat body (FB; a functional analog of vertebrate adipose and hepatic tissues) in starvation adaptation. Under nutrient deprivation, FB-specific depletion of Dp53 accelerates consumption of major energy stores and reduces survival rates of adult flies. We show that Dp53 is regulated by the microRNA (miRNA) machinery and miR-305 in a nutrition-dependent manner. In well-fed animals, TOR signaling contributes to miR-305-mediated inhibition of Dp53. Nutrient deprivation reduces the levels of miRNA machinery components and leads to Dp53 derepression. Our results uncover an organism-wide role for Dp53 in nutrient sensing and metabolic adaptation and open up avenues toward understanding the molecular mechanisms underlying p53 activation under nutrient deprivation.
Collapse
Affiliation(s)
- Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Andrés Dekanty
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, 08028 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain.
| |
Collapse
|
96
|
Zhang C, Casas-Tintó S, Li G, Lin N, Chung M, Moreno E, Moberg KH, Zhou L. An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia. Oncogene 2014; 34:2385-97. [PMID: 24931167 PMCID: PMC4268096 DOI: 10.1038/onc.2014.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022]
Abstract
Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.
Collapse
Affiliation(s)
- C Zhang
- 1] Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, University of Florida, Gainesville, FL, USA [2] Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Casas-Tintó
- Cajal Institute, Spanish Research Council (CSIC), Madrid, Spain
| | - G Li
- 1] Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, University of Florida, Gainesville, FL, USA [2] UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - N Lin
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - M Chung
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - E Moreno
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - K H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - L Zhou
- 1] Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, University of Florida, Gainesville, FL, USA [2] UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
97
|
Kashio S, Obata F, Miura M. Interplay of cell proliferation and cell death in Drosophila tissue regeneration. Dev Growth Differ 2014; 56:368-75. [PMID: 24819984 DOI: 10.1111/dgd.12139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Abstract
Regeneration is a fascinating process that allows some organisms to reconstruct damaged tissues. In addition to the classical regeneration model of the Drosophila larval imaginal discs, the genetically induced tissue ablation model has promoted the understanding of molecular mechanisms underlying cell death, proliferation, and remodeling for tissue regeneration. Recent studies have also revealed that tissue injury responses occur not only locally but also systemically, even in the uninjured region. Genetic studies in Drosophila have demonstrated the dynamic role of the cell death-induced tissue response in the reconstruction of damaged tissues.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033
| | | | | |
Collapse
|
98
|
Milán M, Clemente-Ruiz M, Dekanty A, Muzzopappa M. Aneuploidy and tumorigenesis in Drosophila. Semin Cell Dev Biol 2014; 28:110-5. [DOI: 10.1016/j.semcdb.2014.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
|
99
|
Ma YC, Ke Y, Zi X, Zhao W, Shi XJ, Liu HM. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells. Curr Cancer Drug Targets 2014; 13:611-24. [PMID: 23597192 DOI: 10.2174/15680096113139990030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 06/02/2012] [Indexed: 12/26/2022]
Abstract
Isodon rubescens, a Chinese herb, has been used as a folk, botanical medicine in China for inflammatory diseases and cancer treatment for many years. Recently, we isolated a new ent-kaurene diterpenoid, named Jaridonin, from Isodon rubescens. The chemical structure of Jaridonin was verified by infrared (IR), nuclear magnetic resonance (NMR), and mass spectrum (MS) data as well as X-ray spectra. Jaridonin potently reduced viabilities of several esophageal cancer cell lines, including EC109, EC9706 and EC1. Jaridonin treatment resulted in typical apoptotic morphological characteristics, increased the number of annexin V-positive staining cells, as well as caused a G2/M arrest in cell cycle progression. Furthermore, Jaridonin resulted in a significant loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and then activation of Caspase-9 and -3, leading to activation of the mitochondria mediated apoptosis. Furthermore, these effects of Jaridonin were accompanied by marked reactive oxygen species (ROS) production and increased expression of p53, p21(waf1/Cip1) and Bax, whereas two ROS scavengers, N-acetyl-L-cysteine (LNAC) and Vitamin C, significantly attenuated the effects of Jaridonin on the mitochondrial membrane potential, DNA damage, expression of p53 and p21(waf1/Cip1) and reduction of cell viabilities. Taken together, our results suggest that a natural ent-kaurenoid diterpenoid, Jaridonin, is a novel apoptosis inducer and deserves further investigation as a new chemotherapeutic strategy for patients with esophageal cancer.
Collapse
Affiliation(s)
- Yong-Cheng Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | | | | | | | | | | |
Collapse
|
100
|
Dekanty A, Barrio L, Milán M. Contributions of DNA repair, cell cycle checkpoints and cell death to suppressing the DNA damage-induced tumorigenic behavior of Drosophila epithelial cells. Oncogene 2014; 34:978-85. [DOI: 10.1038/onc.2014.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|