51
|
Henry SP, Liosi ME, Ippolito JA, Cutrona KJ, Krimmer SG, Newton AS, Schlessinger J, Jorgensen WL. Conversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies. ACS Med Chem Lett 2022; 13:819-826. [PMID: 35586418 PMCID: PMC9109162 DOI: 10.1021/acsmedchemlett.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain. We report here the evolution of a false virtual screen hit into a new JAK2 JH2 series. Optimization guided by computational modeling has yielded analogues with nanomolar affinity for the JAK2 JH2 domain and >100-fold selectivity for the JH2 domain over the JH1 domain. A crystal structure for one of the potent compounds bound to JAK2 JH2 clarifies the origins of the strong binding and selectivity. The compounds expand the platform for seeking molecules to regulate JAK2 signaling, including V617F JAK2 hyperactivation.
Collapse
Affiliation(s)
- Sean P. Henry
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Maria-Elena Liosi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Stefan G. Krimmer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Ana S. Newton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
52
|
Design, Synthesis and Activity Study of Pyridine Derivatives as Highly Effective and Selective TYK2 Inhibitors. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6383893. [PMID: 35586808 PMCID: PMC9110192 DOI: 10.1155/2022/6383893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
Due to the high homology of the ATP sites of the JAK family, the development of selective inhibitors for a certain JAK isoform is extremely challenging. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Based on the clinical compound BMS-986165, through structure-activity relationship studies, a class of acyl compounds with excellent TYK2 inhibitory activity and selectivity to other subtypes of the JAK family was discovered.
Collapse
|
53
|
Narla S, Silverberg JI. The suitability of treating atopic dermatitis with Janus kinase inhibitors. Expert Rev Clin Immunol 2022; 18:439-459. [PMID: 35377276 DOI: 10.1080/1744666x.2022.2060822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease with significant morbidity and reduced quality of life, especially in patients with moderate-severe AD. Recently, topical and oral Janus kinase (JAK)-inhibitors were investigated as potential treatments for mild-moderate and moderate-severe AD. However, rare serious adverse-events observed with JAK-inhibitor therapy in AD, rheumatoid arthritis, and other immune-mediated disorders warrant careful consideration. AREAS COVERED This review examines the efficacy and safety of topical and oral JAK-inhibitors for treatments in AD, and reviews potential treatment applications in patients with moderate-severe AD. EXPERT OPINION JAK-inhibitors have rapid-onset and robust and durable efficacy, which give them considerable versatility for treating the gamut of AD patients. While the U.S. Food and Drug Administration has only approved upadacitinib and abrocitinib to treat moderate-severe AD refractory to treatment with other systemic medications including biologics, or when use of those therapies is not recommended, oral JAK-inhibitors have the potential to be used both as first-line or second-line systemic therapies in moderate-severe AD. However, oral JAK-inhibitors can lead to laboratory anomalies and rare serious adverse events. All of these important characteristics should be addressed in shared-decision making conversations, patient counseling, choosing appropriate therapies for patients, and monitoring patients in clinical practice.
Collapse
Affiliation(s)
- Shanthi Narla
- Department of Dermatology, St. Luke's University Health Network, Easton, PA, 18045
| | - Jonathan I Silverberg
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037
| |
Collapse
|
54
|
Tehlirian C, Singh RSP, Pradhan V, Roberts ES, Tarabar S, Peeva E, Vincent MS, Gale JD. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J Am Acad Dermatol 2022; 87:333-342. [DOI: 10.1016/j.jaad.2022.03.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
55
|
Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science 2022; 376:163-169. [PMID: 35271300 PMCID: PMC9306331 DOI: 10.1126/science.abn8933] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus Kinases (JAKs). We report the 3.6-Å resolution cryo-EM structure of full-length JAK1 complexed with a cytokine receptor intracellular Box1/Box2 domain, captured as an activated homodimer bearing the Val→Phe (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit whose dimerization is mediated by close-packed pseudokinase (PK) domains. The oncogenic VF mutation lies within the core of the JAK1 PK dimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The C-terminal tyrosine kinase domains are poised to phosphorylate the receptor STAT-recruiting motifs projecting from the overhanging FERM-SH2 domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals new opportunities for selective therapeutic targeting of oncogenic JAK signaling.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
56
|
Dutta A, Nath D, Yang Y, Le BT, Rahman MFU, Faughnan P, Wang Z, Stuver M, He R, Tan W, Hutchison RE, Foulks JM, Warner SL, Zang C, Mohi G. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia 2022; 36:746-759. [PMID: 34741118 PMCID: PMC8891046 DOI: 10.1038/s41375-021-01464-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Myelofibrosis (MF) is the deadliest form of myeloproliferative neoplasm (MPN). The JAK inhibitor Ruxolitinib can reduce constitutional symptoms but it does not substantially improve bone marrow fibrosis. Pim1 expression is significantly elevated in MPN/MF hematopoietic progenitors. Here, we show that genetic ablation of Pim1 blocked the development of myelofibrosis induced by Jak2V617F and MPLW515L. Pharmacologic inhibition of Pim1 with a second-generation Pim kinase inhibitor TP-3654 significantly reduced leukocytosis and splenomegaly, and attenuated bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of MF. Combined treatment of TP-3654 and Ruxolitinib resulted in greater reduction of spleen size, normalization of blood leukocyte counts and abrogation of bone marrow fibrosis in murine models of MF. TP-3654 treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, we show that TP-3654 treatment significantly inhibits mTORC1, MYC and TGF-β signaling in Jak2V617F mutant hematopoietic cells and diminishes the expression of fibrotic markers in the bone marrow. Collectively, our results suggest that Pim1 plays an important role in the pathogenesis of MF, and inhibition of Pim1 with TP-3654 might be useful for treatment of MF.
Collapse
Affiliation(s)
- Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Dipmoy Nath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mohammad Ferdous-Ur Rahman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Patrick Faughnan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Stuver
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Rongquan He
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wuwei Tan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert E Hutchison
- Department of Pathology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, USA
| | - Jason M Foulks
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Steven L Warner
- Sumitomo Dainippon Pharma Oncology, Inc (formerly Tolero Pharmaceuticals, Inc), Lehi, UT, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
57
|
Yang T, Cui X, Tang M, Qi W, Zhu Z, Shi M, Yang L, Pei H, Zhang W, Xie L, Xu Y, Yang Z, Chen L. Identification of a Novel 2,8-Diazaspiro[4.5]decan-1-one Derivative as a Potent and Selective Dual TYK2/JAK1 Inhibitor for the Treatment of Inflammatory Bowel Disease. J Med Chem 2022; 65:3151-3172. [PMID: 35113547 DOI: 10.1021/acs.jmedchem.1c01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we described a series of 2,8-diazaspiro[4.5]decan-1-one derivatives as selective TYK2/JAK1 inhibitors. Systematic exploration of the structure-activity relationship through the introduction of spirocyclic scaffolds based on the reported selective TYK2 inhibitor 14l led to the discovery of the superior derivative compound 48. Compound 48 showed excellent potency on TYK2/JAK1 kinases with IC50 values of 6 and 37 nM, respectively, and exhibited more than 23-fold selectivity for JAK2. Compound 48 also demonstrated excellent metabolic stability and more potent anti-inflammatory efficacy than tofacitinib in acute ulcerative colitis models. Moreover, the excellent anti-inflammatory effect of compound 48 was mediated by regulating the expression of related TYK2/JAK1-regulated genes, as well as the formation of Th1, Th2, and Th17 cells. Taken together, these findings suggest that compound 48 is a selective dual TYK2/JAK inhibitor, deserving to be developed as a clinical candidate.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zejiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wanhua Zhang
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lixin Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaohui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
58
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
59
|
Gurevich E, Segev Y, Landau D. Growth Hormone and IGF1 Actions in Kidney Development and Function. Cells 2021; 10:cells10123371. [PMID: 34943879 PMCID: PMC8699155 DOI: 10.3390/cells10123371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Daniel Landau
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3925-3651
| |
Collapse
|
60
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1248] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
61
|
Bohiltea RE, Niculescu-Mizil E, Mihai BM, Furtunescu F, Ducu I, Munteanu O, Georgescu TA, Grigoriu C. Polycythemia vera in pregnancy represents a challenge for a multidisciplinary collaboration: A case report and literature review. Exp Ther Med 2021; 23:19. [PMID: 34815771 DOI: 10.3892/etm.2021.10941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023] Open
Abstract
Polycythemia vera (PV) is a rare chronic myeloproliferative neoplasm which represents an additional thrombotic factor in pregnancy. PV may be difficult to diagnose, particularly as its incidence is extremely uncommon among young women. The main diagnostic method involves a bone marrow biopsy, and high hemoglobin and platelet counts are usually indicative of the condition, after excluding other more frequent pathologies. PV is associated with a high risk of thrombosis, particularly in pregnancy, and requires anti-platelet treatment. At present, only a limited number of PV cases in pregnancy have been reported in the literature, at least to the best of our knowledge, with the largest case series being a retrospective study that included 25 pregnancies in 15 women. The present study describes the case of a patient diagnosed with JAK2-positive PV and also discusses this rare condition with particular focus on the following: i) The management of PV in pregnancy along with the additional pathologies in this specific case; and ii) the particularities of the pregnancy course. By identifying women suffering from PV superimposed by other possible procoagulant factors and applying the latest standard in healthcare, fetal and maternal prognosis may be significantly improved.
Collapse
Affiliation(s)
- Roxana Elena Bohiltea
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital Bucharest, 050098 Bucharest, Romania.,Department of Obstetrics and Gynecology, Life Memorial Hospital, 012244 Bucharest, Romania
| | | | - Bianca Margareta Mihai
- Department of Obstetrics and Gynecology, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| | - Florentina Furtunescu
- Department of Public Health and Management, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania
| | - Ionita Ducu
- Department of Obstetrics and Gynecology, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| | - Octavian Munteanu
- Department of Obstetrics and Gynecology, University Emergency Hospital Bucharest, 050098 Bucharest, Romania.,Department of Anatomy, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Tiberiu Augustin Georgescu
- Department of Pathology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania
| | - Corina Grigoriu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
62
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
63
|
Persaud SP, Ritchey JK, Kim S, Lim S, Ruminski PG, Cooper ML, Rettig MP, Choi J, DiPersio JF. Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. J Clin Invest 2021; 131:145501. [PMID: 34730109 DOI: 10.1172/jci145501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the curative potential of hematopoietic stem cell transplantation (HSCT), conditioning-associated toxicities preclude broader clinical application. Antibody-drug conjugates (ADC) provide an attractive approach to HSCT conditioning that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have largely focused on syngeneic HSCT. However, to treat acute leukemias or induce tolerance for solid organ transplantation, this approach must be expanded to allogeneic HSCT (allo-HSCT). Using murine allo-HSCT models, we show that pharmacologic Janus kinase 1/2 (JAK1/2) inhibition combined with CD45- or cKit-targeted ADCs enables robust multilineage alloengraftment. Strikingly, myeloid lineage donor chimerism exceeding 99% was achievable in fully MHC-mismatched HSCT using this approach. Mechanistic studies using the JAK1/2 inhibitor baricitinib revealed marked impairment of T and NK cell survival, proliferation and effector function. NK cells were exquisitely sensitive to JAK1/2 inhibition due to interference with IL-15 signaling. Unlike irradiated mice, ADC-conditioned mice did not develop pathogenic graft-versus-host alloreactivity when challenged with mismatched T cells. Finally, the combination of ADCs and baricitinib balanced graft-versus-host disease and graft-versus-leukemia responses in delayed donor lymphocyte infusion models. Our allo-HSCT conditioning strategy exemplifies the promise of immunotherapy to improve the safety of HSCT for treating hematologic diseases.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - Julie K Ritchey
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Sena Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Sora Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Peter G Ruminski
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Matthew L Cooper
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Michael P Rettig
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Jaebok Choi
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
64
|
Stivala S, Meyer SC. Recent Advances in Molecular Diagnostics and Targeted Therapy of Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13205035. [PMID: 34680185 PMCID: PMC8534234 DOI: 10.3390/cancers13205035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN) are clonal hematologic malignancies with dysregulated myeloid blood cell production driven by JAK2, calreticulin, and MPL gene mutations. Technological advances have revealed a heterogeneous genomic landscape with additional mutations mainly in epigenetic regulators and splicing factors, which are of diagnostic and prognostic value and may inform treatment decisions. Thus, genetic testing has become an integral part of the state-of-the-art work-up for MPN. The finding that JAK2, CALR, and MPL mutations activate JAK2 signaling has promoted the development of targeted JAK2 inhibitor therapies. However, their disease-modifying potential remains limited and investigations of additional molecular vulnerabilities in MPN are imperative to advance the development of new therapeutic options. Here, we summarize the current insights into the genetic basis of MPN, its use as diagnostic and prognostic tool in clinical settings, and recent advances in targeted therapies for MPN. Abstract Somatic mutations in JAK2, calreticulin, and MPL genes drive myeloproliferative neoplasms (MPN), and recent technological advances have revealed a heterogeneous genomic landscape with additional mutations in MPN. These mainly affect genes involved in epigenetic regulation and splicing and are of diagnostic and prognostic value, predicting the risk of progression and informing decisions on therapeutic management. Thus, genetic testing has become an integral part of the current state-of-the-art laboratory work-up for MPN patients and has been implemented in current guidelines for disease classification, tools for prognostic risk assessment, and recommendations for therapy. The finding that JAK2, CALR, and MPL driver mutations activate JAK2 signaling has provided a rational basis for the development of targeted JAK2 inhibitor therapies and has fueled their translation into clinical practice. However, the disease-modifying potential of JAK2 inhibitors remains limited and is further impeded by loss of therapeutic responses in a substantial proportion of patients over time. Therefore, the investigation of additional molecular vulnerabilities involved in MPN pathogenesis is imperative to advance the development of new therapeutic options. Combination of novel compounds with JAK2 inhibitors are of specific interest to enhance therapeutic efficacy of molecularly targeted treatment approaches. Here, we summarize the current insights into the genetic basis of MPN, its use as a diagnostic and prognostic tool in clinical settings, and the most recent advances in targeted therapies for MPN.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
- Division of Hematology, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-556-5965; Fax: +41-61-265-4568
| |
Collapse
|
65
|
Fuente R, Gehring N, Bettoni C, Gil-Peña H, Alonso-Durán L, Michalke B, Santos F, Wagner CA, Rubio-Aliaga I. Systemic Jak1 activation causes extrarenal calcitriol production and skeletal alterations provoking stunted growth. FASEB J 2021; 35:e21721. [PMID: 34118090 DOI: 10.1096/fj.202100587r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Mineral homeostasis is regulated by a complex network involving endocrine actions by calcitriol, parathyroid hormone (PTH), and FGF23 on several organs including kidney, intestine, and bone. Alterations of mineral homeostasis are found in chronic kidney disease and other systemic disorders. The interplay between the immune system and the skeletal system is not fully understood, but cytokines play a major role in modulating calcitriol production and function. One of the main cellular signaling pathways mediating cytokine function is the Janus kinase (JAK)--signal transducer and activator of transcription (STAT) pathway. Here, we used a mouse model (Jak1S645P+/- ) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans, and shows altered mineral metabolism, with higher fibroblast growth factor 23 (FGF23) levels, lower PTH levels, and higher calcitriol levels. The higher calcitriol levels are probably due to extrarenal calcitriol production. Furthermore, systemic Jak1/Stat3 activation led to growth impairment and skeletal alterations. The growth plate in long bones showed decreased chondrocyte proliferation rates and reduced height of terminal chondrocytes. Furthermore, we demonstrate that Jak1 is also involved in bone remodeling early in life. Jak1S645P+/- animals have decreased bone and cortical volume, imbalanced bone remodeling, reduced MAP kinase signaling, and local inflammation. In conclusion, Jak1 plays a major role in bone health probably both, directly and systemically by regulating mineral homeostasis. Understanding the role of this signaling pathway will contribute to a better knowledge in bone growth and in mineral physiology, and to the development of selective Jak inhibitors as osteoprotective agents.
Collapse
Affiliation(s)
- Rocío Fuente
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.,Division of Pediatrics, University of Oviedo, Oviedo, Spain
| | - Nicole Gehring
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | | | | | - Bernhard Michalke
- Department of Environmental Science, Research Unit Analytical, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fernando Santos
- Division of Pediatrics, University of Oviedo, Oviedo, Spain.,Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
66
|
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis 2021; 80:865-875. [PMID: 33741556 PMCID: PMC8237188 DOI: 10.1136/annrheumdis-2020-219012] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. METHODS In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. RESULTS JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. CONCLUSION Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.
Collapse
Affiliation(s)
- Paqui G Traves
- Inflammation Biology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | | | - René Galien
- Translational Research, Galapagos SASU, Romainville, France
| | - Amy Meng
- Clinical Pharmacology, Gilead Sciences, Foster City, California, USA
| | - Julie A Di Paolo
- External Innovation, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
67
|
Li H, Xu W, Liu X, Wang T, Wang S, Liu J, Jiang H. JAK2 deficiency improves erectile function in diabetic mice through attenuation of oxidative stress, apoptosis, and fibrosis. Andrology 2021; 9:1662-1671. [PMID: 34085398 PMCID: PMC8672361 DOI: 10.1111/andr.13061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Background Janus kinase 2 (JAK2) is activated in diabetic mellitus (DM) conditions and may enhance oxidative stress, apoptosis and fibrosis in many tissues. Whether JAK2 activation is involved in the occurrence of diabetic erectile dysfunction (ED) is unknown. Objectives We performed this study to investigate the effect of JAK2 deficiency on diabetic ED. Materials and methods Conditional JAK2 gene knockout mice (Cre+/+‐JAK2fl/fl) were used, in which JAK2 gene knockout could be induced by tamoxifen. Mice fell into four groups: control, JAK2 knockout (JAK2−/−), DM, and DM with JAK2−/−. DM was induced by intraperitoneal injection of streptozotocin. Two months later, JAK2 gene knockout was induced with tamoxifen in Cre+/+‐JAK2fl/fl mice. After another 2 months, erectile function was measured by electrical stimulation of the cavernous nerve, and penile tissues were harvested. Ratio of maximal intracavernosal pressure (MIP) to mean arterial blood pressure (MAP), expression and phosphorylation of JAK2, oxidative stress level, NO/Cyclic Guanosine Monophosphate (cGMP) pathway, apoptosis, fibrosis, and transforming growth factor beta 1 (TGF‐β1)/Smad/Collagen IV pathway in corpus cavernosum, were measured. Results JAK2 expression was remarkably decreased after induction with tamoxifen. JAK2 was activated in penile tissues of diabetic mice, and JAK2 deficiency could improve the impaired erectile function caused by DM. However, in mice without DM, JAK2 deficiency had no apparent influence on erectile function. Levels of oxidative stress, apoptosis, fibrosis, and TGF‐β1/Smad/Collagen IV pathway were all elevated by DM, whereas JAK2 deficiency lessened these alterations in diabetic mice. Moreover, JAK2 deficiency improved the expression of the down‐regulated NO/cGMP pathway in diabetic mice. In non‐diabetic mice, no apparent changes were found in aforementioned parameters after JAK2 gene knockout. Discussion and conclusion Our study showed that JAK2 deficiency could improve erectile function in diabetic mice, which might be mediated by reduction in oxidative stress, apoptosis, and fibrosis in corpus cavernosum.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
69
|
Fasouli ES, Katsantoni E. JAK-STAT in Early Hematopoiesis and Leukemia. Front Cell Dev Biol 2021; 9:669363. [PMID: 34055801 PMCID: PMC8160090 DOI: 10.3389/fcell.2021.669363] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells and are controlled by extracellular signals from the microenvironment, the bone marrow (BM) niche, as well as intrinsic cell signals. Intrinsic signals include the tightly controlled action of signaling pathways, as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Activation of JAK-STAT leads to phosphorylation of members of the STAT family to regulate proliferation, survival, and self-renewal of HSCs. Mutations in components of the JAK-STAT pathway are linked with defects in HSCs and hematologic malignancies. Accumulating mutations in HSCs and aging contribute to leukemia transformation. Here an overview of hematopoiesis, and the role of the JAK-STAT pathway in HSCs and in the promotion of leukemic transformation is presented. Therapeutic targeting of JAK-STAT and clinical implications of the existing research findings are also discussed.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
70
|
Remenyi J, Naik RJ, Wang J, Razsolkov M, Verano A, Cai Q, Tan L, Toth R, Raggett S, Baillie C, Traynor R, Hastie CJ, Gray NS, Arthur JSC. Generation of a chemical genetic model for JAK3. Sci Rep 2021; 11:10093. [PMID: 33980892 PMCID: PMC8115619 DOI: 10.1038/s41598-021-89356-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
Janus Kinases (JAKs) have emerged as an important drug target for the treatment of a number of immune disorders due to the central role that they play in cytokine signalling. 4 isoforms of JAKs exist in mammalian cells and the ideal isoform profile of a JAK inhibitor has been the subject of much debate. JAK3 has been proposed as an ideal target due to its expression being largely restricted to the immune system and its requirement for signalling by cytokine receptors using the common γ-chain. Unlike other JAKs, JAK3 possesses a cysteine in its ATP binding pocket and this has allowed the design of isoform selective covalent JAK3 inhibitors targeting this residue. We report here that mutating this cysteine to serine does not prevent JAK3 catalytic activity but does greatly increase the IC50 for covalent JAK3 inhibitors. Mice with a Cys905Ser knockin mutation in the endogenous JAK3 gene are viable and show no apparent welfare issues. Cells from these mice show normal STAT phosphorylation in response to JAK3 dependent cytokines but are resistant to the effects of covalent JAK3 inhibitors. These mice therefore provide a chemical-genetic model to study JAK3 function.
Collapse
Affiliation(s)
- Judit Remenyi
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Rangeetha Jayaprakash Naik
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Momchil Razsolkov
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Alyssa Verano
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Quan Cai
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Rachel Toth
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Samantha Raggett
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Carla Baillie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ryan Traynor
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - C James Hastie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
71
|
Jo CE, Gooderham M, Beecker J. TYK 2 inhibitors for the treatment of dermatologic conditions: the evolution of JAK inhibitors. Int J Dermatol 2021; 61:139-147. [PMID: 33929045 DOI: 10.1111/ijd.15605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Increasing understanding of cytokines as major drivers of immune-mediated diseases has revolutionized targeted treatments for these conditions. As the pathogenesis of autoimmune conditions is mediated by a complex interplay of various cytokines, Janus kinase (JAK) inhibitors have been of particular interest due to their ability to target multiple cytokines simultaneously. However, due to safety concerns with first generation JAK inhibitors, most notably from JAK2 and JAK3 inhibition, interest has shifted to more selective inhibition of TYK2. Three key TYK2 inhibitors that have advanced furthest in clinical trials for treatment of dermatologic autoimmune conditions are deucravacitinib (BMS-986165), brepocitinib (PF-06700841), and PF-06826647. This review outlines the current understanding of the efficacy and safety of these three TYK2 inhibitors from completed phase I and II studies and summarizes studies currently in progress for dermatologic conditions.
Collapse
Affiliation(s)
- Christine E Jo
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Melinda Gooderham
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,SKiN Centre for Dermatology, Peterborough, Ontario, Canada.,Probity Medical Research Inc., Waterloo, Ontario, Canada
| | - Jennifer Beecker
- Probity Medical Research Inc., Waterloo, Ontario, Canada.,Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
72
|
Dai Z, Chen J, Chang Y, Christiano AM. Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata. JCI Insight 2021; 6:142205. [PMID: 33830087 PMCID: PMC8119218 DOI: 10.1172/jci.insight.142205] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) are key intracellular mediators in the signal transduction of many cytokines and growth factors. Common γ chain cytokines and interferon-γ that use the JAK/STAT pathway to induce biological responses have been implicated in the pathogenesis of alopecia areata (AA), a T cell-mediated autoimmune disease of the hair follicle. We previously showed that therapeutic targeting of JAK/STAT pathways using the first-generation JAK1/2 inhibitor, ruxolitinib, and the pan-JAK inhibitor, tofacitinib, was highly effective in the treatment of human AA, as well as prevention and reversal of AA in the C3H/HeJ mouse model. To better define the role of individual JAKs in the pathogenesis of AA, in this study, we tested and compared the efficacy of several next-generation JAK-selective inhibitors in the C3H/HeJ mouse model of AA, using both systemic and topical delivery. We found that JAK1-selective inhibitors as well as JAK3-selective inhibitors robustly induced hair regrowth and decreased AA-associated inflammation, whereas several JAK2-selective inhibitors failed to restore hair growth in treated C3H/HeJ mice with AA. Unlike JAK1, which is broadly expressed in many tissues, JAK3 expression is largely restricted to hematopoietic cells. Our study demonstrates inhibiting JAK3 signaling is sufficient to prevent and reverse disease in the preclinical model of AA.
Collapse
Affiliation(s)
| | | | | | - Angela M. Christiano
- Department of Dermatology and
- Department of Genetics and Development, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
73
|
Young J, Bell S, Qian Y, Hyman C, Berryman DE. Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 2021; 22:17-29. [PMID: 33037595 PMCID: PMC7979446 DOI: 10.1007/s11154-020-09600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) induces pleiotropic effects on growth and metabolism via binding and subsequent activation of the growth hormone receptor (GHR) and its downstream signaling pathways. Growth hormone insensitivity (GHI) describes a group of disorders in which there is resistance to the action of GH and resultant insulin-like growth factor I (IGF-I) deficiency. GHI is commonly due to genetic disorders of the GH receptor causing GH receptor deficiency (e.g. Laron Syndrome (LS)), decreased activation of GHR, or defects in post-receptor signaling molecules. Genetically altered mouse lines have been invaluable to better understand the physiological impact of GHI due to the ability to do invasive and longitudinal measures of metabolism, growth, and health on a whole animal or in individual tissues/cells. In the current review, the phenotype of mouse lines with GHI will be reviewed. Mouse lines to be discussed include: 1) GHR-/- mice with a gene disruption in the GHR that results in no functional GHR throughout life, also referred to as the Laron mouse, 2) mice with temporal loss of GHR (aGHRKO) starting at 6 weeks of age, 3) mice transgenic for a GHR antagonist (GHA mice), 4) mice with GHI in select tissues or cells generated via Cre-lox or related technology, and 5) assorted mice with defects in post-receptor signaling molecules. Collectively, these mouse lines have revealed an intriguing role of GH action in health, disease, and aging.
Collapse
Affiliation(s)
- Jonathan Young
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Stephen Bell
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Caroline Hyman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA.
| |
Collapse
|
74
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
75
|
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C, Srivastava S. Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 2021; 21:204. [PMID: 33574943 PMCID: PMC7816297 DOI: 10.3892/ol.2021.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (JAK2), Calreticulin (CALR) and MPL (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase TET2, polycomb group protein ASXL1 and histone-lysine N-methyltransferase EZH2 genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray-based transcriptomic profile analysis of bone marrow-derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein-protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in JAK2V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty-seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of NANOG and E2F4 transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone-lysine N-methyltransferase SUV39H1, SWI/SNF complex subunit SMARCC2, SMARCE2, chromatin remodeling complex subunit SS18, tubulin β (TUBB) and cyclin dependent kinase CDK1. Among the upregulated epigenetic markers, there was a ~10-fold increase in MYB expression in JAK2V617F negative samples. A significant increase in total CD34 counts in JAK2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in JAK2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.
Collapse
Affiliation(s)
- Mugdha Sharma
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Chandra Bhavani
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka 560034, India
| | - Srinag Bangalore Suresh
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - John Paul
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Lokendra Yadav
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Cecil Ross
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Sweta Srivastava
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| |
Collapse
|
76
|
Ou-Yang H, Wu SC, Sung LY, Yang SH, Yang SH, Chong KY, Chen CM. STAT3 Is an Upstream Regulator of Granzyme G in the Maternal-To-Zygotic Transition of Mouse Embryos. Int J Mol Sci 2021; 22:ijms22010460. [PMID: 33466434 PMCID: PMC7796490 DOI: 10.3390/ijms22010460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (−1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (−1369~+28 nt), Δ2-pGzmg (−939~+28 nt), Δ3-pGzmg (−711~+28 nt) and Δ4-pGzmg (−417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the −417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.
Collapse
Affiliation(s)
- Huan Ou-Yang
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan;
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan;
| | - Shiao-Hsuan Yang
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.)
- Reproductive Medicine Center, Department of Gynecology, Changhua Christian Hospital, Changhua 515, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.)
- The iEGG and Animal Biotechnology Center, and Rong-Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22856309
| |
Collapse
|
77
|
The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:1-20. [PMID: 34453729 DOI: 10.1007/978-3-030-77779-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.
Collapse
|
78
|
Catlin NR, Stethem C, Bowman CJ, Campion SN, Nowland WS, Cappon GD. Knockout mouse models are predictive of malformations or embryo-fetal death in drug safety evaluations. Reprod Toxicol 2021; 99:138-143. [PMID: 33065206 DOI: 10.1016/j.reprotox.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traditionally, understanding potential developmental toxicity from pharmaceutical exposures has been based on the results of ICH guideline studies in two species. However, support is growing for the use of weight of evidence approaches when communicating the risk of developmental toxicity, where the intended pharmacologic mode of action affects fundamental pathways in developmental biology or phenotypic data from genetically modified animals may increasingly be included in the overall assessment. Since some concern surrounds the use of data from knockout (KO) mice to accurately predict the risk for pharmaceutical modulation of a target, a deeper understanding of the relevance and predictivity of adverse developmental effects in KO mice for pharmacological target modulation is needed. To this end, we compared the results of embryo-fetal development (EFD) studies for 86 drugs approved by the FDA from 2017 to 2019 that also had KO mouse data available in the public domain. These comparisons demonstrate that data from KO mouse models are overall highly predictive of malformations or embryo-fetal lethality (MEFL) from EFD studies, but less so of a negative outcome in EFD studies. This information supports the use of embryo-fetal toxicity data in KO models as part of weight of evidence approaches in the communication of developmental toxicity risk of pharmaceutical compounds.
Collapse
|
79
|
Brkic S, Meyer SC. Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. Hemasphere 2021; 5:e516. [PMID: 33403355 PMCID: PMC7773330 DOI: 10.1097/hs9.0000000000000516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders with dysregulated myeloid blood cell production and propensity for transformation to acute myeloid leukemia, thrombosis, and bleeding. Acquired mutations in JAK2, MPL, and CALR converge on hyperactivation of Janus kinase 2 (JAK2) signaling as a central feature of MPN. Accordingly, JAK2 inhibitors have held promise for therapeutic targeting. After the JAK1/2 inhibitor ruxolitinib, similar JAK2 inhibitors as fedratinib are entering clinical use. While patients benefit with reduced splenomegaly and symptoms, disease-modifying effects on MPN clone size and clonal evolution are modest. Importantly, response to ruxolitinib may be lost upon treatment suggesting the MPN clone acquires resistance. Resistance mutations, as seen with other tyrosine kinase inhibitors, have not been described in MPN patients suggesting that functional processes reactivate JAK2 signaling. Compensatory signaling, which bypasses JAK2 inhibition, and other processes contribute to intrinsic resistance of MPN cells restricting efficacy of JAK2 inhibition overall. Combinations of JAK2 inhibition with pegylated interferon-α, a well-established therapy of MPN, B-cell lymphoma 2 inhibition, and others are in clinical development with the potential to enhance therapeutic efficacy. Novel single-agent approaches targeting other molecules than JAK2 are being investigated clinically. Special focus should be placed on myelofibrosis patients with anemia and thrombocytopenia, a delicate patient population at high need for options. The extending range of new treatment approaches will increase the therapeutic options for MPN patients. This calls for concomitant improvement of our insight into MPN biology to inform tailored therapeutic strategies for individual MPN patients.
Collapse
Affiliation(s)
- Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Division of Hematology, University Hospital Basel, Switzerland
| |
Collapse
|
80
|
Gadina M, Chisolm DA, Philips RL, McInness IB, Changelian PS, O'Shea JJ. Translating JAKs to Jakinibs. THE JOURNAL OF IMMUNOLOGY 2020; 204:2011-2020. [PMID: 32253269 DOI: 10.4049/jimmunol.1901477] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
The discovery of JAKs and STATs and their roles in cytokine and IFN action represented a significant basic advance and a new paradigm in cell signaling. This was quickly followed by discoveries pointing to their essential functions, including identification of JAK3 mutations as a cause of SCID. This and other findings predicted the use of therapeutically targeting JAKs as a new strategy for treating immune and inflammatory diseases. This now is a reality with seven approved jakinibs being used to treat multiple forms of arthritis, inflammatory bowel disease and myeloproliferative neoplasms, and numerous ongoing clinical trials in other settings. This story provides interesting insights into the process of translating basic discoveries and also reveals the need to return to basic work to fill gaps that now become apparent.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle A Chisolm
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rachael L Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Iain B McInness
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; and
| | | | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
81
|
Moliterno AR, Kaizer H. Applied genomics in MPN presentation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:434-439. [PMID: 33275725 PMCID: PMC7727573 DOI: 10.1182/hematology.2020000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polycythemia vera, essential thrombocytosis (ET), and primary myelofibrosis (PMF) are grouped together as myeloproliferative neoplasms (MPNs) because of shared clinical, pathologic, and molecular features. The 2005 discovery of the driver mutation JAK2V617F, found in more than 70% of individuals with MPNs and 98% of those with PV, has transformed the diagnosis and management of MPNs. Although PV is the most common phenotype associated with JAK2V617F, roughly 60% of individuals with ET or PMF also have the mutation, and JAK2V617F is now recognized as a common lesion in clonal hematopoiesis (CH). JAK2V617F+ CH and MPN are indolent disorders that evolve over time, with transitions to different disease phases, transformation to bone marrow failure or leukemia, and high thrombosis rates. Genomic assessment has taken center stage as an important tool to define disease phenotype, disease burden, prognosis, and even thrombosis risk of MPNs. Genomics has also unveiled the causes and factors that modify the risk of acquiring and expanding CH and MPNs and points to new pathways for targeted therapies to treat and ultimately prevent them. Genomic assessment of patients with MPNs, like other cancers, enables the clinician to capitalize on large population data sets to inform the individual patient of risk, identify treatment, and improve outcomes.
Collapse
Affiliation(s)
| | - Hannah Kaizer
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
82
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
83
|
Kim M, Keam B, Ock C, Kim SH, Kim YJ, Lim SM, Kim J, Kim TM, Hong S, Ahn MS, Shin SH, Kang EJ, Kim D, Im S, Kim J, Lee JS, Kim J, Heo DS. Phase II study of durvalumab and tremelimumab in pulmonary sarcomatoid carcinoma: KCSG-LU16-07. Thorac Cancer 2020; 11:3482-3489. [PMID: 33026712 PMCID: PMC7705626 DOI: 10.1111/1759-7714.13684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary sarcomatoid carcinoma (PSC) is rare with a poor outcome and is resistant to conventional cytotoxic chemotherapy. The efficacy and safety of durvalumab and tremelimumab for treating recurrent or metastatic PSCs were assessed by a nonrandomized, open-label, phase II study. METHODS A total of 18 patients with recurrent or metastatic PSC received 1500 mg of durvalumab and 75 mg of tremelimumab every four weeks, followed by 750 mg of durvalumab every two weeks until the disease progressed, or an unacceptable toxicity level was reached. The primary endpoint was the objective response rate (ORR). The secondary endpoints were progression-free survival (PFS), overall survival (OS), and toxicity. Genomic profiling of PSC by next-generation sequencing (NGS) and determination of peripheral blood lymphocyte subsets using flow cytometry were performed for exploratory analysis. RESULTS A total of 15 out of 18 patients were evaluated for the analysis of the primary endpoint. At the data cutoff point, the ORR of 26.7% (95% confidence interval [CI]: 7.8-55.1) was achieved with the median follow-up duration of 12.0 months (range, 8.4-16.1). Median PFS and OS were 5.9 months (95% CI: 1.1-11.9) and 15.4 months (95% CI: 11.1-not reached), respectively. Treatment-related adverse events (AEs) of any grade were reported in 16 patients; the most common AEs were pruritus (n = 5), pneumonitis (n = 4), and rash (n = 4). Treatment was discontinued in two patients due to AEs of grade ≥ 3. CONCLUSIONS Durvalumab and tremelimumab demonstrated clinical benefit with a prolonged survival and manageable toxicity profile in patients with recurrent or metastatic PSC.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Chan‐Young Ock
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeoul National University College of MedicineSeongnamRepublic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeoul National University College of MedicineSeongnamRepublic of Korea
| | - Sun Min Lim
- Department of Internal Medicine, CHA Bundang Medical CenterSeongnamRepublic of Korea
| | - Jin‐Soo Kim
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Sook‐Hee Hong
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Mi Sun Ahn
- Department of Hematology‐OncologyAjou University School of MedicineSuwonRepublic of Korea
| | - Seong Hoon Shin
- Department of Internal MedicineKosin University Gospel HospitalBusanRepublic of Korea
| | - Eun Joo Kang
- Department of Internal Medicine, Korea University Medical CenterKorea University College of MedicineSeoulRepublic of Korea
| | - Dong‐Wan Kim
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Sun‐Wha Im
- Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Jong‐Il Kim
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Biomedical ScienceSeoul National University Graduate SchoolSeoulRepublic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeoul National University College of MedicineSeongnamRepublic of Korea
| | - Joo‐Hang Kim
- Department of Internal Medicine, CHA Bundang Medical CenterSeongnamRepublic of Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
84
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
85
|
Damerau A, Gaber T, Ohrndorf S, Hoff P. JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration. Int J Mol Sci 2020; 21:E9004. [PMID: 33256266 PMCID: PMC7729940 DOI: 10.3390/ijms21239004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah Ohrndorf
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
| | - Paula Hoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Endokrinologikum Berlin am Gendarmenmarkt, 10117 Berlin, Germany
| |
Collapse
|
86
|
Damsky W, Peterson D, Ramseier J, Al-Bawardy B, Chun H, Proctor D, Strand V, Flavell RA, King B. The emerging role of Janus kinase inhibitors in the treatment of autoimmune and inflammatory diseases. J Allergy Clin Immunol 2020; 147:814-826. [PMID: 33129886 DOI: 10.1016/j.jaci.2020.10.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases are common and diverse, and they can affect nearly any organ system. Much of the pathogenesis of these diseases is related to dysregulated cytokine activity. Historically, autoimmune and inflammatory diseases have been treated with medications that nonspecifically suppress the immune system. mAbs that block the action of pathogenic cytokines emerged 2 decades ago and have become widely useful. More recently, agents that simultaneously block multiple pathogenic cytokines via inhibition of the downstream Janus kinase (JAK)-signal transducer and activator of transcription pathway have emerged and are becoming increasingly important. These small-molecule inhibitors, collectively termed JAK inhibitors, are US Food and Drug Administration-approved in a few autoimmune/inflammatory disorders and are being evaluated in many others. Here, we review the biology of the JAK-signal transducer and activator of transcription pathway and the use of JAK inhibitors to treat autoimmune and inflammatory diseases across medical subspecialties.
Collapse
Affiliation(s)
- William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| | - Danielle Peterson
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Julie Ramseier
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Badr Al-Bawardy
- Division of Digestive Diseases, Yale University School of Medicine, New Haven, Conn
| | - Hyung Chun
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn
| | - Deborah Proctor
- Division of Digestive Diseases, Yale University School of Medicine, New Haven, Conn
| | - Vibeke Strand
- Division of Immunology/Rheumatology, Stanford University School of Medicine, Palo Alto, Calif
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Conn
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
87
|
Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep 2020; 47:9087-9096. [PMID: 33099760 PMCID: PMC7674338 DOI: 10.1007/s11033-020-05910-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
JAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism underlying these bone process.
Collapse
Affiliation(s)
- Eliana Rita Sanpaolo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy.
| | - Cinzia Rotondo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Ada Corrado
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
88
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
89
|
Carnero Contentti E, Correale J. Bruton's tyrosine kinase inhibitors: a promising emerging treatment option for multiple sclerosis. Expert Opin Emerg Drugs 2020; 25:377-381. [PMID: 32910702 DOI: 10.1080/14728214.2020.1822817] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jorge Correale
- Department of Neurology, Fleni , Buenos Aires, Argentina
| |
Collapse
|
90
|
Tang Y, Liu W, Wang W, Fidler T, Woods B, Levine RL, Tall AR, Wang N. Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoe -/- Mice. Cardiovasc Drugs Ther 2020; 34:145-152. [PMID: 32086626 PMCID: PMC7125070 DOI: 10.1007/s10557-020-06943-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis. METHODS A selective JAK2 inhibitor TG101348 (fedratinib) or vehicle was given to high-fat high-cholesterol Western diet (WD)-fed wild-type (WT) or Apoe-/- mice. Hematopoietic cell profiles, cell proliferation, and atherosclerosis in WT or Apoe-/- mice were assessed. RESULTS TG101348 selectively reversed neutrophilia, monocytosis, HSPC, and granulocyte-macrophage progenitor (GMP) expansion in Apoe-/- mice with decreased cellular phosphorylated STAT5 and ERK1/2 and reduced cell cycling and BrdU incorporation in HSPCs, indicating inhibition of JAK/STAT signaling and cell proliferation. Ten-week WD feeding allowed the development of marked aortic atherosclerosis in Apoe-/- mice which was substantially reduced by TG101348. CONCLUSIONS Selective JAK2 inhibition reduces atherogenesis by suppressing excessive myelopoiesis in hypercholesterolemic Apoe-/- mice. These findings suggest selective JAK2 inhibition as a potential therapeutic approach to decrease ACD risk in patients with increased myelopoiesis and leukocytosis.
Collapse
Affiliation(s)
- Yang Tang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.,Department of Hematology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Wei Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Trevor Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Britany Woods
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
91
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
92
|
Pery N, Rizvi NB, Shafiq MI. Development of piperidinyl dipyrrrolopyridine-based dual inhibitors of Janus kinase and Bruton’s tyrosine kinase: a potential therapeutic probability to deal with rheumatoid arthritis. J Mol Model 2020; 26:235. [DOI: 10.1007/s00894-020-04512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
93
|
Papa V, Marracino L, Fortini F, Rizzo P, Campo G, Vaccarezza M, Vieceli Dalla Sega F. Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review. J Clin Med 2020; 9:jcm9082480. [PMID: 32748835 PMCID: PMC7465104 DOI: 10.3390/jcm9082480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Some random mutations can confer a selective advantage to a hematopoietic stem cell. As a result, mutated hematopoietic stem cells can give rise to a significant proportion of mutated clones of blood cells. This event is known as "clonal hematopoiesis." Clonal hematopoiesis is closely associated with age, and carriers show an increased risk of developing blood cancers. Clonal hematopoiesis of indeterminate potential is defined by the presence of clones carrying a mutation associated with a blood neoplasm without obvious hematological malignancies. Unexpectedly, in recent years, it has emerged that clonal hematopoiesis of indeterminate potential carriers also have an increased risk of developing cardiovascular disease. Mechanisms linking clonal hematopoiesis of indeterminate potential to cardiovascular disease are only partially known. Findings in animal models indicate that clonal hematopoiesis of indeterminate potential-related mutations amplify inflammatory responses. Consistently, clinical studies have revealed that clonal hematopoiesis of indeterminate potential carriers display increased levels of inflammatory markers. In this review, we describe progress in our understanding of clonal hematopoiesis in the context of cancer, and we discuss the most recent findings linking clonal hematopoiesis of indeterminate potential and cardiovascular diseases.
Collapse
Affiliation(s)
- Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli “Parthenope,” 80133 Napoli, Italy;
- FAPAB Research Center, 96012 Avola (SR), Italy
| | - Luisa Marracino
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy;
| | - Francesca Fortini
- Translational Research Center, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (F.F.); (G.C.); (F.V.D.S.)
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy;
- Translational Research Center, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (F.F.); (G.C.); (F.V.D.S.)
- Correspondence: (P.R.); (M.V.)
| | - Gianluca Campo
- Translational Research Center, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (F.F.); (G.C.); (F.V.D.S.)
- Department of Medical Sciences, Cardiovascular Institute, Azienda Ospedaliero-Universitaria of Ferrara, University of Ferrara, 44124 Cona, Italy
| | - Mauro Vaccarezza
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 64/B, 44121 Ferrara, Italy;
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Curtin Perth Campus, Bentley, Perth, WA 6102, Australia
- Correspondence: (P.R.); (M.V.)
| | - Francesco Vieceli Dalla Sega
- Translational Research Center, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (F.F.); (G.C.); (F.V.D.S.)
| |
Collapse
|
94
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
95
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
96
|
Lin CM, Cooles FA, Isaacs JD. Basic Mechanisms of JAK Inhibition. Mediterr J Rheumatol 2020; 31:100-104. [PMID: 32676567 PMCID: PMC7361186 DOI: 10.31138/mjr.31.1.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chung Ma Lin
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Faye Ah Cooles
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
97
|
Catlin NR, Stethem CM, Bowman CJ, Campion SN, Nowland WS, Cappon GD. Knockout mouse models are predictive of malformations or embryo-fetal death in drug safety evaluations. Reprod Toxicol 2020; 96:11-16. [PMID: 32522587 DOI: 10.1016/j.reprotox.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Traditionally, understanding potential developmental toxicity from pharmaceutical exposures has been based on the results of ICH guideline studies in two species. However, support is growing for the use of weight of evidence approaches when communicating the risk of developmental toxicity, where the intended pharmacologic mode of action affects fundamental pathways in developmental biology or phenotypic data from genetically modified animals may increasingly be included in the overall assessment. Since some concern surrounds the use of data from knockout (KO) mice to accurately predict the risk for pharmaceutical modulation of a target, a deeper understanding of the relevance and predictivity of adverse developmental effects in KO mice for pharmacological target modulation is needed. To this end, we compared the results of embryo-fetal development (EFD) studies for 86 drugs approved by the FDA from 2017 to 2019 that also had KO mouse data available in the public domain. These comparisons demonstrate that data from KO mouse models are overall highly predictive of malformations or embryo-fetal lethality (MEFL) from EFD studies, but less so of a negative outcome in EFD studies. This information supports the use of embryo-fetal toxicity data in KO models as part of weight of evidence approaches in the communication of developmental toxicity risk of pharmaceutical compounds.
Collapse
|
98
|
|
99
|
Varagunam M, McCloskey DJ, Sinnott PJ, Raftery MJ, Yaqoob MM. Angiotensin-Converting Enzyme Gene Polymorphism and Erythropoietin Requirement. Perit Dial Int 2020. [DOI: 10.1177/089686080302300203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To study the effect of angiotensin-converting enzyme (ACE) polymorphisms II, ID, and DD on erythropoietin (EPO) requirement in patients on continuous ambulatory peritoneal dialysis (CAPD) therapy. Design Retrospective observational study. Setting CAPD Unit, Royal London/St. Bartholomews Hospital, London, UK. Patients 46 patients on the transplant waiting list (age 20 – 70 years), on CAPD therapy for an average of 28 months, seen consecutively over a period of 3 months in the outpatients department. Main Outcome Measures Primary end point: EPO dose requirement in different ACE genotypes. Secondary end points: C-reactive protein, ferritin, parathyroid hormone, Kt/V, duration of dialysis, folate, cause of renal failure, and whether or not patients were on ACE inhibitor therapy. Results There was a statistically significant difference ( p < 0.05) in EPO requirement in the II/ID group compared to the DD group. The mean ± standard error of EPO for the II/ID group was 144 ± 15 U/kg/week, and for the DD group, 87 ± 9 U/kg/ week. The difference in EPO requirement could not be explained by age, C-reactive protein, ferritin, parathyroid hormone, Kt/V, duration of dialysis, folate, cause of renal failure, or whether or not patients were on ACE inhibitor therapy. Conclusion In CAPD patients, ACE genotype has predictive value when determining the EPO dosage, as the II/ID genotype may be associated with a suboptimal response.
Collapse
Affiliation(s)
- Mira Varagunam
- Experimental Medicine and Nephrology, St. Bartholomews and the Royal London Medical School, United Kingdom
| | - Daniel J. McCloskey
- Tissue Typing Laboratory, Barts and the London NHS Trust, London, United Kingdom
| | - Paul J. Sinnott
- Tissue Typing Laboratory, Barts and the London NHS Trust, London, United Kingdom
| | - Martin J. Raftery
- Experimental Medicine and Nephrology, St. Bartholomews and the Royal London Medical School, United Kingdom
| | - Muhammed M. Yaqoob
- Experimental Medicine and Nephrology, St. Bartholomews and the Royal London Medical School, United Kingdom
| |
Collapse
|
100
|
Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol 2020; 111:182-191. [PMID: 31741139 DOI: 10.1007/s12185-019-02778-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|