51
|
Antiangiogenic Herbal Composition Ob-X Reduces Abdominal Visceral Fat in Humans: A Randomized, Double-Blind, Placebo-Controlled Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4381205. [PMID: 29997675 PMCID: PMC5994586 DOI: 10.1155/2018/4381205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 12/28/2022]
Abstract
Adipose tissue growth is angiogenesis-dependent, and angiogenesis inhibitors can regulate adipose tissue mass by cutting off the blood supply. We examined whether antiangiogenic herbal composition Ob-X can reduce fast-growing abdominal fat, especially visceral fat in humans by inhibiting angiogenesis. Eighty abdominally obese subjects (body mass index: 25-29.9 kg/m2, waist circumference: exceeding 90 cm for males and 85 cm for females) participated in a 12-week randomized, double-blind, placebo-controlled human study to evaluate the efficacy and safety of Ob-X. 690 mg of Ob-X was administered orally twice a day. The Ob-X group showed a noticeable reduction in visceral fat of 20.5% after the 12-week treatment as compared to baseline measured by computed tomography. The change in visceral fat in the Ob-X group was statistically significant as compared to the placebo group (p = 0.0495) and 1.9 times higher than in the placebo group. Therefore, angiogenesis inhibitor Ob-X has the potential to improve obesity-related metabolic syndrome by reducing dangerous visceral fat.
Collapse
|
52
|
Keane TJ, Horejs CM, Stevens MM. Scarring vs. functional healing: Matrix-based strategies to regulate tissue repair. Adv Drug Deliv Rev 2018; 129:407-419. [PMID: 29425770 DOI: 10.1016/j.addr.2018.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/23/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
All vertebrates possess mechanisms to restore damaged tissues with outcomes ranging from regeneration to scarring. Unfortunately, the mammalian response to tissue injury most often culminates in scar formation. Accounting for nearly 45% of deaths in the developed world, fibrosis is a process that stands diametrically opposed to functional tissue regeneration. Strategies to improve wound healing outcomes therefore require methods to limit fibrosis. Wound healing is guided by precise spatiotemporal deposition and remodelling of the extracellular matrix (ECM). The ECM, comprising the non-cellular component of tissues, is a signalling depot that is differentially regulated in scarring and regenerative healing. This Review focuses on the importance of the native matrix components during mammalian wound healing alongside a comparison to scar-free healing and then presents an overview of matrix-based strategies that attempt to exploit the role of the ECM to improve wound healing outcomes.
Collapse
|
53
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
54
|
The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Res Ther 2018; 9:35. [PMID: 29433579 PMCID: PMC5809876 DOI: 10.1186/s13287-017-0764-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/22/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Background Co-cultures of endothelial cells with mesenchymal stem cells currently represent one of the most promising approaches in providing oxygen and nutrient supply for microvascular tissue engineering. Still, to translate this model into clinics several in vitro parameters including growth medium and scaffold degradation need to be fine-tuned. Methods We recently described the co-culture of adipose-derived stem cells with endothelial cells in fibrin, resulting in capillary formation in vitro as well as their perfusion in vivo. Here, we aimed to further characterise microvascular tube formation in fibrin by determining the role of scaffold degradation, thrombin concentration and culture conditions on vascularisation. Results We observed that inhibition of cell-mediated fibrin degradation by the commonly used inhibitor aprotinin resulted in impaired vascular network formation. Aprotinin had no effect on laminin and collagen type IV deposition or formation of tube-like structures in scaffold-free co-culture, indicating that poor vascularisation of fibrin clots is primarily caused by inhibition of plasminogen-driven fibrinolysis. Co-culture in plasminogen- and factor XIII-depleted fibrin did not result in different vascular network density compared to controls. Furthermore, we demonstrate that thrombin negatively affects vascular network density at high concentrations. However, only transient activation of incorporated endothelial cells by thrombin could be observed, thus excluding a long-term inflammatory response in tissue-engineered micro-capillaries. Finally, we show that vascularisation of fibrin scaffolds in basal medium is undermined because of increased fibrinolytic activity leading to scaffold destabilisation without aprotinin. Conclusions Taken together, our data reveal a critical role of fibrinolysis inhibition in in vitro cell-mediated vascularisation of fibrin scaffolds. Electronic supplementary material The online version of this article (10.1186/s13287-017-0764-2) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
Bezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep 2018; 8:2671. [PMID: 29422650 PMCID: PMC5805762 DOI: 10.1038/s41598-018-20966-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/29/2018] [Indexed: 01/11/2023] Open
Abstract
A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.
Collapse
Affiliation(s)
- Jonathan R Bezenah
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Andrew J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
56
|
Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett 2017; 14:3545-3551. [PMID: 28927111 PMCID: PMC5588063 DOI: 10.3892/ol.2017.6643] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a common dietary flavonoid, which has been demonstrated to exert anticancer effects in multiple cancer models. However, the detailed mechanisms underlying the inhibitory effect of luteolin on glioblastoma cell metastasis remain poorly understood. The present study assessed the effects of luteolin in the U251MG and U87MG human glioblastoma cell lines. Luteolin treatment significantly inhibited glioblastoma cell migration, and this effect was associated with downregulated matrix metalloproteinase (MMP)-2, MMP-9 and upregulated tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. In addition, luteolin also inhibited the epithelial-mesenchymal transition-associated phenotype. Furthermore, the phosphorylated insulin-like growth factor-1 receptor/phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (p-IGF-1R/PI3K/AKT/mTOR) signaling pathway was demonstrated to participate in these processes. The results of the present study demonstrated that the flavonoid luteolin reduced the migration of glioblastoma cells by altering p-IGF-1R/PI3K/AKT/mTOR activation, and may have potential applications for chemoprevention in a clinical setting.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Jia
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hui Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
57
|
Pattni V, Vasilevskaya T, Thiel W, Heyden M. Distinct Protein Hydration Water Species Defined by Spatially Resolved Spectra of Intermolecular Vibrations. J Phys Chem B 2017. [PMID: 28636363 PMCID: PMC5607456 DOI: 10.1021/acs.jpcb.7b03966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
In
this molecular dynamics simulation study, we analyze intermolecular
vibrations in the hydration shell of a solvated enyzme, the membrane
type 1–matrix metalloproteinase, with high spatial resolution.
Our approach allows us to characterize vibrational signatures of the
local hydrogen bond network, the translational mobility of water molecules,
as well as the molecular entropy, in specific local environments.
Our study demonstrates the heterogeneity of water properties within
the hydration shell of a complex biomolecule. We define a classification
scheme based on the vibrational density of states that allows us to
distinguish separate classes of hydration water species and facilitates
the description of hydration water properties at distinct hydration
sites. The results demonstrate that no single characteristic of the
protein surface is sufficient to determine the properties of nearby
water. The protein surface geometry, quantified here by the number
of protein atoms in the vicinity of a hydration water molecule, as
well as the chemical nature of a solvated protein functional group,
influences dynamic and thermodynamic properties of solvating water
molecules.
Collapse
Affiliation(s)
- Viren Pattni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, DE-45470 Mülheim an der Ruhr, Germany
| | - Tatiana Vasilevskaya
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, DE-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, DE-45470 Mülheim an der Ruhr, Germany
| | - Matthias Heyden
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, DE-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
58
|
Han KY, Chang JH, Lee H, Azar DT. Proangiogenic Interactions of Vascular Endothelial MMP14 With VEGF Receptor 1 in VEGFA-Mediated Corneal Angiogenesis. Invest Ophthalmol Vis Sci 2017; 57:3313-22. [PMID: 27327585 PMCID: PMC5993529 DOI: 10.1167/iovs.16-19420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Matrix metalloproteinase 14 (MMP14) has been shown to be required for corneal angiogenesis. We hypothesized that the proangiogenic activity of MMP14 may be based on its selective binding to, and cleaving of, vascular endothelial growth factor receptor 1 (VEGFR1), but not VEGFR2 or VEGFR3. Methods Recombinant human (rh)VEGFR1, R2, and R3 were incubated with human MMP14, and the reaction mixtures were analyzed by SDS-PAGE and Coomassie blue staining. Surface plasmon resonance was used to determine the equilibrium constants (KD) for binding between MMP14 and VEGFA versus rhVEGFR1, R2, and R3. Extracellular signal-regulated kinase (ERK) phosphorylation was assayed in vascular endothelial cells after incubation with VEGF and various concentrations of MMP14. Ex vivo aortic ring tube formation assays and VEGFA micropocket corneal neovascularization assays were performed using Flk1Cre/Flk1mCherry/MMP14lox and Flk1mCherry/MMP14lox control mice. Results Maxtrix metalloproteinase 14 increased VEGFA-induced ERK phosphorylation in a time- and concentration-dependent manner in vascular endothelial cells. Aortic ring assays showed diminished vessel sprouting in vitro in response to VEGFA, but not to basic fibroblast growth factor, in mice with conditional deletion of vascular MMP14 (Flk1creMMP14lox) compared with that in MMP14lox control mice. In addition, diminished VEGFA-induced corneal angiogenesis was seen in flk1creMMP14lox mice compared with MMP14lox mice in vivo. Conclusions Our findings indicate that VEGFR1 interaction with MMP14 and the enzymatic activity of MMP14 are necessary for VEGFA-induced angiogenesis. Additionally, selective cleavage of VEGFR1 by MMP14 may play an important role in VEGFA-induced corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
59
|
Solovyeva NI, Gureeva TA, Timoshenko OS, Moskvitina TA, Kugaevskaya EV. Furin as proprotein convertase and its role in normal and pathological biological processes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
|
61
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
62
|
Antalis TM, Conway GD, Peroutka RJ, Buzza MS. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol 2016; 23:243-52. [PMID: 26906027 DOI: 10.1097/moh.0000000000000238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. RECENT FINDINGS Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. SUMMARY A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
63
|
Clinicopathologic and Prognostic Significance of Gelatinase A in Tunisian Colorectal Cancer: A Case-Control Study. Appl Immunohistochem Mol Morphol 2016; 25:64-70. [PMID: 27922483 DOI: 10.1097/pai.0000000000000263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Matrix metalloproteinase-2 (gelatinase A) is a well-known mediator of cancer metastasis, but it is also thought to be involved in several aspects of cancer development, including cell growth and inflammation. In the present study, we investigate whether MMP-2 SNP, MMP-2 mRNAs, and MMP-2 protein are associated with the susceptibility to colorectal cancer in the Tunisian population. The TaqMan allele discrimination assay and DNA sequencing techniques were used for genotyping; MMP-2 expression of each genotype was analyzed by semiquantitative RT-PCR, and MMP-2 protein expression was analyzed by immunohistochemistry staining. Our result showed that the levels of MMP-2 mRNA expression in patients containing the CC genotype were much higher compared with cells with the CT genotype. The frequency of the MMP-2 CC genotype was significantly higher in colorectal cancer patients when compared with controls (OR=1.94; 95% CI, 1.117-3.680). A higher intensity of staining of MMP-2 was observed in regions of invasion of the muscularis mucosa compared with superficial portions of the tumor. In addition, we found a significant progressive increase in total MMP-2 plasma levels with progression from adenomatous polyps through advancing Dukes stages (P=0.0001). Our data suggest that MMP-2 may be associated with colorectal cancer development and invasion in the Tunisian population; moreover, SNP and levels of MMP-2 could be a predictive value for colorectal cancer prevention and invasiveness.
Collapse
|
64
|
Hogrebe NJ, Reinhardt JW, Gooch KJ. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A 2016; 105:640-661. [DOI: 10.1002/jbm.a.35914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/17/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Nathaniel J. Hogrebe
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
| | - James W. Reinhardt
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
| | - Keith J. Gooch
- Department of Biomedical EngineeringThe Ohio State University270 Bevis Hall 1080 Carmack RdColumbus Ohio43210
- The Ohio State University, Davis Heart Lung Research Institute473 W 12th AveColumbus Ohio43210
| |
Collapse
|
65
|
Nakamichi M, Akishima-Fukasawa Y, Fujisawa C, Mikami T, Onishi K, Akasaka Y. Basic Fibroblast Growth Factor Induces Angiogenic Properties of Fibrocytes to Stimulate Vascular Formation during Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3203-3216. [PMID: 27773739 DOI: 10.1016/j.ajpath.2016.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
Abstract
The role of fibrocytes in wound angiogenesis remains unclear. We therefore demonstrated the specific changes in fibrocyte accumulation for angiogesis in basic fibroblast growth factor (bFGF)-treated wounds. bFGF-treated wounds exhibited marked formation of arterioles and inhibition of podoplanin+ lymph vessels that were lacking in vascular endothelial growth factor-A-treated wounds. Real-time PCR in bFGF-treated wounds manifested enhanced expression of CD34, CD31, and bFGF mRNA and reduced expression of podoplanin and collagen type I, III, and IV mRNA. Double immunofluorescence staining focusing on fibrocyte detection in bFGF-treated wounds showed increased formation of capillary-like structures composed of CD34+/procollagen I+ fibrocytes, with a lack of capillary-like structures formed by CD45+/procollagen I+ or CD11b+/procollagen I+ fibrocytes. However, vascular endothelial growth factor-A-treated wounds lacked capillary-like structures composed of CD34+/procollagen I+ fibrocytes, with increased numbers of CD34+/fetal liver kinase-1+ endothelial progenitor cells. Furthermore, fibroblast growth factor receptor 1 siRNA injection into wounds, followed by bFGF, inhibited the formation of capillary-like structures composed of CD34+/procollagen I+ fibrocytes, together with inhibited mRNA expression of CD34 and CD31 and enhanced mRNA expression of collagen type I, indicating the requirements of bFGF/fibroblast growth factor receptor 1 system for capillary structure formation. This study highlights the angiogenic properties of CD34+/procollagen I+ fibrocytes specifically induced by bFGF, providing new insight into the active contribution of fibrocytes for vascular formation during wound healing.
Collapse
Affiliation(s)
- Miho Nakamichi
- Department of Plastic and Reconstructive Surgery, Toho University Omori Medical Center, Tokyo, Japan
| | | | - Chie Fujisawa
- Division of Research Promotion and Development, Advanced Research Center, Toho University, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, School of Medicine, Toho University, Tokyo, Japan
| | - Kiyoshi Onishi
- Department of Plastic and Reconstructive Surgery, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, Tokyo, Japan; Regenerative Disease Research Unit, Advanced Research Center, Toho University, Tokyo, Japan.
| |
Collapse
|
66
|
Thakur V, Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol Res 2016; 111:17-22. [DOI: 10.1016/j.phrs.2016.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
|
67
|
HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells. PLoS One 2016; 11:e0160700. [PMID: 27490118 PMCID: PMC4973926 DOI: 10.1371/journal.pone.0160700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
Background During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. Objectives We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Methods and Results Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Conclusion Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.
Collapse
|
68
|
Abstract
Prevention and therapeutic intervention by phytochemicals are newer dimensions in the arena of cancer management. In this regard, the cancer chemopreventive role of silymarin (Silybum marianum) has been extensively studied and has shown anticancer efficacy against various cancer sites, especially skin and prostate. In skin cancer, silymarin treatment inhibits ultraviolet B radiation or chemically initiated or promoted carcinogenesis. These effects of silymarin against skin carcinogenesis have been attributed to its strong antioxidant and anti-inflammatory action as well as its inhibitory effect on mitogenic signaling. Similarly, silymarin treatment inhibits 3, 2-dimethyl-4-aminobiphenyl—induced prostate carcinogenesis and retards the growth of advanced prostate tumor xenograft in athymic nude mice. In prostate cancer, silymarin treatment down-regulates androgen receptor—, epidermal growth factor receptor—, and nuclear factor-κB— mediated signaling and induces cell cycle arrest. Extensive preclinical findings have supported the anticancer potential of silymarin, and now its efficacy is being evaluated in cancer patients.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, CO 80262, USA
| | | |
Collapse
|
69
|
Butler GS, Connor AR, Sounni NE, Eckhard U, Morrison CJ, Noël A, Overall CM. Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2). Matrix Biol 2016; 59:23-38. [PMID: 27471094 DOI: 10.1016/j.matbio.2016.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. SUMMARY We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues.
Collapse
Affiliation(s)
- Georgina S Butler
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Andrea R Connor
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Nor Eddine Sounni
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ulrich Eckhard
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Charlotte J Morrison
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Agnès Noël
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
70
|
Duran CL, Lee DW, Jung JU, Ravi S, Pogue CB, Toussaint LG, Bayless KJ, Sitcheran R. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway. Oncogenesis 2016; 5:e231. [PMID: 27270613 PMCID: PMC4945740 DOI: 10.1038/oncsis.2016.39] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors.
Collapse
Affiliation(s)
- C L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - D W Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - J-U Jung
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - S Ravi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - C B Pogue
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - L G Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| | - K J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - R Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| |
Collapse
|
71
|
MT1-MMP Inhibits the Activity of Bst-2 via Their Cytoplasmic Domains Dependent Interaction. Int J Mol Sci 2016; 17:ijms17060818. [PMID: 27240342 PMCID: PMC4926352 DOI: 10.3390/ijms17060818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/30/2023] Open
Abstract
Bst-2 (bone marrow stromal cell antigen 2) is a type II membrane protein, and it acts as a tetherin to inhibit virion releasing from infectious cells. Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease. It plays a pivotal role in cellular growth and migration by activating proMMP-2 into active MMP2. Our results here elaborate that MT1-MMP inhibits the tetherin activity of Bst-2 by interacting with Bst-2, and the cytoplasmic domains of both Bst-2 and MT1-MMP play critical roles within this interaction. Based on our experimental data, the assays for virion release and co-immunoprecipitation have clearly demonstrated that the activity of Bst-2 is markedly inhibited by MT1-MMP via their interaction; and both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are important in the interaction. Immunostaining and Confocal Microscopy assay shows that MT1-MMP interacts with Bst-2 to form granular particles trafficking into cytoplasm from membrane and, finally, results in Bst-2 and MT1-MMP both being inhibited. In addition, mutant experiments elucidate that the N-terminal domain of Bst-2 is not only important in relating to the activity of Bst-2 itself, but is important for inhibiting the MT1-MMP/proMMP2/MMP2 pathway. These findings suggest that MT1-MMP is a novel inhibitor of Bst-2 in MT1-MMP expressed cell lines and also indicate that both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are crucial in down-regulation.
Collapse
|
72
|
Proteolytic Enzymes Clustered in Specialized Plasma-Membrane Domains Drive Endothelial Cells' Migration. PLoS One 2016; 11:e0154709. [PMID: 27152413 PMCID: PMC4859482 DOI: 10.1371/journal.pone.0154709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a “resting” phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process.
Collapse
|
73
|
Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials 2016; 81:135-156. [DOI: 10.1016/j.biomaterials.2015.12.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022]
|
74
|
Soares TS, Oliveira F, Torquato RJ, Sasaki SD, Araujo MS, Paschoalin T, Tanaka AS. BmTI-A, a Kunitz type inhibitor from Rhipicephalus microplus able to interfere in vessel formation. Vet Parasitol 2016; 219:44-52. [DOI: 10.1016/j.vetpar.2016.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
|
75
|
No outgrowth of chondrocytes from non-digested particulated articular cartilage embedded in commercially available fibrin matrix: an in vitro study. J Orthop Surg Res 2016; 11:23. [PMID: 26879178 PMCID: PMC4754815 DOI: 10.1186/s13018-016-0355-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022] Open
Abstract
Background Commercially available fibrin is routinely being used as both a matrix in certain cartilage repair techniques and a method for scaffold fixation. Chondrocytes from non-digested particulated cartilage fragments are proposed as a possible source for new cartilage tissue formation in some operative techniques. The goal of this study was to test that chondrocytes from particulated articular cartilage embedded in fibrin have an active role in the process of cartilage repair, as well as if commercially available fibrin should be used as a suitable matrix. Methods Articular cartilage was obtained from patients undergoing total knee replacement surgery. The biopsies were particulated in small, 1–2-mm3 pieces and embedded in fibrin. Two groups were compared in our study, particulated articular cartilage with and without collagenase treatment. The specimens were analyzed by optical microscopy after 2–5 weeks of cultivation in a special construct embedded in a cell culture medium containing particulated cartilage embedded in fibrin in the upper phase and cancellous bone in the lower phase under the perforated nylon membrane. Results None of the biopsies taken from four different patients showed the outgrowth of chondrocytes or bone marrow-originated cells into the fibrin matrix in our experimental model. Conclusions It has been shown in our experimental model in vitro little to support the theory that articular chondrocytes from particulated articular cartilage embedded in fibrin have an active role in cartilage repair in its early stage.
Collapse
|
76
|
Buitinga M, Janeczek Portalska K, Cornelissen DJ, Plass J, Hanegraaf M, Carlotti F, de Koning E, Engelse M, van Blitterswijk C, Karperien M, van Apeldoorn A, de Boer J. Coculturing Human Islets with Proangiogenic Support Cells to Improve Islet Revascularization at the Subcutaneous Transplantation Site. Tissue Eng Part A 2016; 22:375-85. [PMID: 26871862 DOI: 10.1089/ten.tea.2015.0317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While subcutaneous tissue has been proposed as a clinically relevant site for pancreatic islet transplantation, a major issue of concern remains, which is its poor vascular state. In an effort to overcome this limitation, we present an efficient and reproducible method to form human composite islets (CIs) with proangiogenic cell types in a controlled manner using nonadherent agarose microwell templates. In this study, we assessed the three-dimensional structure, function, and angiogenic potential of human CIs with human mesenchymal stromal cells (hMSCs), with or without human umbilical vein endothelial cells (HUVECs), and preconditioned hMSCs (PC-hMSCs) in EGM-2 under shear stress. Distinct cellular rearrangements could be observed in CIs, but islet functionality was maintained. In vitro angiogenesis assays found significantly enhanced sprout formation in case of CIs. In particular, the number of sprouts emanating from CIs with PC-hMSCs was significantly increased compared to other conditions. Subsequent in vivo assessment confirmed the proangiogenic potential of CIs. However, in contrast to our in vitro angiogenesis assays, CIs with hMSCs and HUVECs exhibited a higher in vivo angiogenic potential compared to control islets or islets combined with hMSCs or PC-hMSCs. These findings highlight the importance and necessity of verifying in vitro studies with in vivo models to reliably predict, in this case, revascularization outcomes. Regardless, we demonstrate here the therapeutic potential of CIs with proangiogenic support cells to enhance islet revascularization at a clinically relevant, although poorly vascularized, transplantation site.
Collapse
Affiliation(s)
- Mijke Buitinga
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Karolina Janeczek Portalska
- 2 Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Dirk-Jan Cornelissen
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Jacqueline Plass
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Maaike Hanegraaf
- 3 Department of Nephrology, Leiden University Medical Center , Leiden, The Netherlands
| | - Françoise Carlotti
- 3 Department of Nephrology, Leiden University Medical Center , Leiden, The Netherlands
| | - Eelco de Koning
- 3 Department of Nephrology, Leiden University Medical Center , Leiden, The Netherlands .,4 Department of Endocrinology, Leiden University Medical Center , Leiden, The Netherlands .,5 Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marten Engelse
- 3 Department of Nephrology, Leiden University Medical Center , Leiden, The Netherlands
| | - Clemens van Blitterswijk
- 6 Department of Complex Tissue Regeneration, Institute for Technology Inspired Regenerative Medicine (MERLN), Maastricht University , Maastricht, The Netherlands
| | - Marcel Karperien
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Aart van Apeldoorn
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Jan de Boer
- 7 Laboratory for Cell Biology-Inspired Tissue Engineering, Institute for Technology Inspired Regenerative Medicine (MERLN) , Maastricht, The Netherlands
| |
Collapse
|
77
|
Sharma MC, Tuszynski GP, Blackman MR, Sharma M. Long-term efficacy and downstream mechanism of anti-annexinA2 monoclonal antibody (anti-ANX A2 mAb) in a pre-clinical model of aggressive human breast cancer. Cancer Lett 2016; 373:27-35. [PMID: 26797420 DOI: 10.1016/j.canlet.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
Abstract
There is considerable direct evidence that calcium binding protein ANX A2 is a potential target for treating aggressive breast cancer. The most compelling data are based on the finding of ANX A2 overexpression in aggressive triple negative human breast cancer (TNBC) cell lines and in human breast cancer tissues. Previously, we and others reported a unique role of ANX A2 in cancer invasion, including breast cancer. Moreover, we demonstrated that anti-ANX A2 mAb-mediated immunoneutralization of ANX A2 inhibited invasive human breast cancer growth in a xenograft model. We further evaluated the long-term effects of multiple treatments with anti-ANX A2 mAb and its mechanism of inhibition on human breast tumor growth. We now demonstrate that three treatments with anti-ANX A2 mAb led to significant inhibition of breast tumor growth in immunodeficient mice, and that the anti-tumor response was demonstrable from day 94. After treatment, we followed tumor growth for 172 days and demonstrated 67% inhibition of tumor growth without detectable adverse effects. Biochemical analysis demonstrated that anti-ANX A2 mAb treatment caused significant inhibition of conversion of tissue plasminogen activator (tPA) in the tumor microenvironment. This led to disruption of plasmin generation that consequently inhibited activation of MMP-9 and MMP-2. These results suggest that ANX A2 plays an important role in aggressive breast tumor growth by regulating proteolytic pathways in the tumor microenvironment. ANX A2 may represent a new target for the development of therapeutics for treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA.
| | - George P Tuszynski
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Marc R Blackman
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA; Department of Medicine, George Washington University, Washington, DC, USA
| | - Meena Sharma
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
78
|
Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA, Bayless KJ. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci 2016; 129:743-56. [PMID: 26769900 DOI: 10.1242/jcs.170571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Heewon Seo
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
79
|
Solovyeva N, Gureeva T, Timoshenko O, Moskvitina T, Kugaevskaya E. Furin as proprotein convertase and its role in normal and pathological biological processes. ACTA ACUST UNITED AC 2016; 62:609-621. [DOI: 10.18097/pbmc20166206609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Furin belongs to serine intracellular Ca2+-dependent endopeptidases of the subtilisin family, also known as proprotein convertase (PC). Human furin is synthesized as zymogen with a molecular weight of 104 kDa, which is then activated by autocatalytic in two stages. This process can occur when zymogen migrates from the endoplasmic reticulum to the Golgi apparatus, where a large part of furin is accumulated. The molecular weigh t of the active furin is 98 kDa. Furin relates to enzymes with a narrow substrate specificity: it hydrolyzes peptide bonds at the site of paired basic amino acids and furin activity exhibits in a wide pH range 5-8. Its main biological function is activation of the functionally important protein precursors. It is accompanied by the launch of a cascade of reactions, which lead to appearance of biologically active molecules involved in realization of specific biological functions both in normal and in some patologicheskih processes. Furin substrates are biologically important proteins such as enzymes, hormones, growth factors and differentiation, receptors, adhesion proteins, proteins of blood plasma. Furin plays an important role in the development of processes such as proliferation, invasion, cell migration, survival, maintenance of homeostasis, embryogenesis, as well as the development of a number of pathologies, including cardiovascular, oncologic and neurodegenerative diseases. Furin and furin-like proprotein convertases participate as key factors in the realization of the regulatory functions of proteolytic enzymes, the value of which is currently being evaluated as most important in comparison with the degradative function of proteases.
Collapse
Affiliation(s)
| | - T.A. Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
80
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
81
|
Amniotic Mesenchymal Stem Cells Can Enhance Angiogenic Capacity via MMPs In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324014. [PMID: 26491665 PMCID: PMC4600487 DOI: 10.1155/2015/324014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the angiogenic capacity and proteolytic mechanism of coculture using human amniotic mesenchymal stem cells (hAMSCs) with human umbilical vein endothelial cells (HUVECs) in vivo and in vitro by comparing to those of coculture using bone marrow mesenchymal stem cells with HUVEC. For the in vivo experiment, cells (HUVEC-monoculture, HUVEC-hAMSC coculture, and HUVEC-BMMSC coculture) were seeded in fibrin gels and injected subcutaneously in nude mice. The samples were collected on days 7 and 14 and histologically analyzed by H&E and CD31 staining. CD31-positive staining percentage and vessel-like structure (VLS) density were evaluated as quantitative parameters for angiogenesis. The increases of CD31-positive staining area and VLS density in both HUVEC-hAMSC group and HUVEC-BMMSC group were found between two time points, while obvious decline of those was observed in HUVEC-only group. For the in vitro experiment, we utilized the same 3D culture model to investigate the proteolytic mechanism related to capillary formation. Intensive vascular networks formed by HUVECs were associated with hAMSCs or BMMSCs and related to MMP2 and MMP9. In conclusion, hAMSCs shared similar capacity and proteolytic mechanism with BMMSCs on neovascularization.
Collapse
|
82
|
Hadjipanayi E, Kuhn PH, Moog P, Bauer AT, Kuekrek H, Mirzoyan L, Hummel A, Kirchhoff K, Salgin B, Isenburg S, Dornseifer U, Ninkovic M, Machens HG, Schilling AF. The Fibrin Matrix Regulates Angiogenic Responses within the Hemostatic Microenvironment through Biochemical Control. PLoS One 2015; 10:e0135618. [PMID: 26317771 PMCID: PMC4552838 DOI: 10.1371/journal.pone.0135618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot’s matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.
Collapse
Affiliation(s)
- Ektoras Hadjipanayi
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp Moog
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Anna-Theresa Bauer
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Haydar Kuekrek
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Lilit Mirzoyan
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Anja Hummel
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Katharina Kirchhoff
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Burak Salgin
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children‘s Hospital Düsseldorf, 40225, Düsseldorf, Germany
- Cambridge University Department of Paediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sarah Isenburg
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Ulf Dornseifer
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Milomir Ninkovic
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Bogenhausen Hospital, 81925, Munich, Germany
| | - Hans-Günther Machens
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
| | - Arndt F. Schilling
- Department of Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, D-81675, Munich, Germany
- Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter), Munich, Germany
- * E-mail:
| |
Collapse
|
83
|
Madsen DH, Bugge TH. The source of matrix-degrading enzymes in human cancer: Problems of research reproducibility and possible solutions. ACTA ACUST UNITED AC 2015; 209:195-8. [PMID: 25918222 PMCID: PMC4411277 DOI: 10.1083/jcb.201501034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Matrix degradation is central to tumor pathogenesis. Enzymes that degrade extracellular matrix are abundant in tumors. But which out of the complex mixture of cells that form a tumor produces them? Surprisingly, several hundred studies devoted to this question have provided confusion rather than clarity. Our analysis of these studies identifies likely reasons as to why this may be the case, which has implications for the broader issue of research reproducibility.
Collapse
Affiliation(s)
- Daniel H Madsen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Thomas H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
84
|
Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, Castagnoli C, Cambieri I, Stravalaci M, Pasqualini F, Laface I, Valentino S, Tartari S, Ponzetta A, Maina V, Barbieri SS, Tremoli E, Catapano AL, Norata GD, Bottazzi B, Garlanda C, Mantovani A. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. ACTA ACUST UNITED AC 2015; 212:905-25. [PMID: 25964372 PMCID: PMC4451130 DOI: 10.1084/jem.20141268] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Doni et al. use four tissue damage models in mice and find that the fluid phase pattern recognition molecule pentraxin 3 (PTX3) plays a role in tissue remodeling and repair. PTX3 binds fibrinogen/fibrin and plasminogen at an acidic pH within tissues. Mice deficient in PTX3 present defects in fibrin deposition, clot formation, collagen deposition, and macrophage-mediated fibrinolysis. Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity.
Collapse
Affiliation(s)
- Andrea Doni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Tiziana Musso
- Department of Public Health and Microbiology, University of Turin, 10124 Turin, Italy
| | - Diego Morone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Antonio Bastone
- Department of Molecular Biochemistry and Pharmachology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Vanessa Zambelli
- Department of Health Science, University of Milano-Bicocca, 20126 Monza, Italy
| | - Marina Sironi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Carlotta Castagnoli
- Department of Plastic Surgery, Burn Unit and Skin Bank, Centro Traumatologico Ortopedico (CTO) Hospital, 10126 Turin, Italy
| | - Irene Cambieri
- Department of Plastic Surgery, Burn Unit and Skin Bank, Centro Traumatologico Ortopedico (CTO) Hospital, 10126 Turin, Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmachology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Fabio Pasqualini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Ilaria Laface
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Sonia Valentino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Silvia Tartari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Andrea Ponzetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Virginia Maina
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | | | - Elena Tremoli
- IRCCS - Centro Cardiologico Monzino, 20138 Milan, Italy Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy IRCCS - Multimedica, 20099 Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy Società Italiana per lo Studio della Arteriosclerosi (SISA) Center for the Study of Atherosclerosis, Bassini Hospital, 20154 Milan, Italy
| | - Barbara Bottazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, 20089 Milan, Italy Humanitas University, 20089 Milan, Italy
| |
Collapse
|
85
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
86
|
Usman A, Ribatti D, Sadat U, Gillard JH. From Lipid Retention to Immune-Mediate Inflammation and Associated Angiogenesis in the Pathogenesis of Atherosclerosis. J Atheroscler Thromb 2015; 22:739-49. [DOI: 10.5551/jat.30460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ammara Usman
- University Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, National Cancer Institute “Giovanni Paolo II”
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust
| | - Jonathan H Gillard
- University Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| |
Collapse
|
87
|
Abstract
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.
Collapse
Affiliation(s)
- Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| |
Collapse
|
88
|
Abstract
Peri-adipocyte extracellular matrix (ECM) remodeling is a key biological process observed during adipose tissue development and expansion. The genetic loss of a pericellular collagenase, MMP14 (also known as MT1-MMP), renders mice lipodystrophic with the accumulation of undigested collagen fibers in adipose tissues. MMP14 is not necessary for adipocyte differentiation (adipogenesis) per se under a conventional two-dimensional (2-D) culture condition; however, MMP14 plays a critical role in adipogenesis in vivo. The role of MMP14 in adipogenesis and adipocyte gene expression was uncovered in vitro only when tested within a three-dimensional (3-D) collagen gel, which recapitulated the in vivo ECM-rich environment. Studying adipogenesis in 3-D may serve as an effective experimental approach to bridge gaps in our understanding of in vivo adipocyte biology. Moreover, by assessing the content of collagen family members and their rate of degradation in adipose tissues, we should be able to better define the role of dynamic ECM remodeling in the pathogenesis of obesity and diabetes.
Collapse
Affiliation(s)
- Tae-Hwa Chun
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Biointerfaces Institute, the University of Michigan, Ann Arbor, Michigan, USA.
| | - Mayumi Inoue
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Biointerfaces Institute, the University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
89
|
Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R, Sammarco G, De Sarro G, Russo E, Ranieri G. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:154702. [PMID: 25295247 PMCID: PMC4177740 DOI: 10.1155/2014/154702] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs) role has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular endothelial growth factor) and nonclassical proangiogenic mediators granule-associated (mainly tryptase). In fact, in several animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist of the proteinase-activated receptor-2 (PAR-2), represents one of the most powerful angiogenic mediators released by human MCs after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity. Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast) in order to consider their prospective role in cancer therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Christian Leporini
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giovanni Scognamillo
- Radiotherapy Unit, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Rosario Sacco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
90
|
Das A, Chai JC, Jung KH, Das ND, Kang SC, Lee YS, Seo H, Chai YG. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells. Exp Cell Res 2014; 328:361-78. [PMID: 25193078 DOI: 10.1016/j.yexcr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/21/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Nando Dulal Das
- Clinical Research Centre, Inha University School of Medicine, Incheon 400-711, Republic of Korea.
| | - Sung Chul Kang
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Hyemyung Seo
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
91
|
Ulasov I, Yi R, Guo D, Sarvaiya P, Cobbs C. The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta Rev Cancer 2014; 1846:113-20. [DOI: 10.1016/j.bbcan.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023]
|
92
|
Kinoshita S, Noda K, Tagawa Y, Inafuku S, Dong Y, Fukuhara J, Dong Z, Ando R, Kanda A, Ishida S. Genistein attenuates choroidal neovascularization. J Nutr Biochem 2014; 25:1177-1182. [PMID: 25113565 DOI: 10.1016/j.jnutbio.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/18/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
Genistein is a dietary-derived flavonoid abundantly present in soybeans and known to possess various biological effects including anti-inflammation and anti-angiogenic activity. To investigate the effects of genistein on intraocular neovascularization, we used an animal model of laser-induced choroidal neovascularization (CNV). Male C57BL/6J mice were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. CNV was induced by laser photocoagulation. The animals were fed a mixture diet containing 0.5% genistein or a control diet ad libitum for 7 days before laser photocoagulation and the treatment was continued until the end of the study. Seven days after laser injury, the size of CNV lesions was quantified. Retinal pigment epithelium (RPE)-choroid complex was also harvested 1 or 3 days after laser injury and the level of monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1, and matrix metalloproteinase (MMP)-9 were measured by enzyme-linked immunosorbent assay. Expression levels of Ets-1 and F4/80 were examined by real-time PCR. A significant decrease in CNV size was observed in animals treated with genistein (15441.9±1511.8 μm(2)) compared to control mice (21074.0±1940.7μm(2), P<.05). Genistein significantly reduced the protein level of MCP-1, ICAM-1, and MMP-9 in the RPE-choroid complex (P<.05). In addition, genistein suppressed the expression levels of Ets-1 and F4/80 (P<.05). The current data indicate the anti-angiogenic property of genistein during CNV formation.
Collapse
Affiliation(s)
- Satoshi Kinoshita
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Yoshiaki Tagawa
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Inafuku
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoko Dong
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Fukuhara
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Zhenyu Dong
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryo Ando
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
93
|
Differential cavitation, angiogenesis and wound-healing responses in injured mouse and rat spinal cords. Neuroscience 2014; 275:62-80. [PMID: 24929066 DOI: 10.1016/j.neuroscience.2014.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/21/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
The vascular disruption, blood vessel loss and cavitation that occur at spinal cord injury (SCI) epicenters in mice and rats are different, but few studies have compared the acute SCI response in the two species. This is of interest since key elements of the rat SCI response are shared with humans. In this study, we investigated acute SCI responses and characterized changes in pro- and anti-angiogenic factors and matrix deposition in both species. Cavitation was absent in mouse but the area of the lesion site was 21- and 27-fold larger at 8 and 15 days post-lesion (dpl), respectively, in the rat compared to intact control. The absence of wound cavitation in the mouse was correlated with increased levels of immunoreactive pro-angiogenic, pro-matrix and pro-wound-healing factors, e.g. laminin, matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor-A (VEGF-A) within the wound, which were 6.0-, 2.9-, and 2.8-fold, respectively, higher in the mouse compared to rats at 8 dpl. Increased axonal sparing was observed after dorsal column (DC) injury, detected by higher levels of neurofilament 200 (NF200) immunoreactivity in the dorsal column of mice compared to rats at both T7 and T9 spinal segments. Despite similar post SCI deficits in plantar heat tests at 2h after injury (1.4- and 1.6-fold lower than control mice and rats, respectively), by 7 days the magnitude of these responses were comparable to sham-treated controls in both species, while no post-SCI changes in Von Frey hair filament test response were observed in either species. We conclude that the more robust angiogenesis/wound-healing response in the mouse attenuates post-injury wound cavitation. Although the spinal cord functions that were monitored post-injury were similarly affected in both species, we suggest that the quality of the angiogenesis/wound-healing response together with the diminished lesion size seen after mouse SCI may protect against secondary axon damage and create an environment more conducive to axon sprouting/regeneration. These results suggest the potential therapeutic utility of manipulating the angiogenic response after human SCI.
Collapse
|
94
|
Ceccarelli J, Putnam AJ. Sculpting the blank slate: how fibrin's support of vascularization can inspire biomaterial design. Acta Biomater 2014; 10:1515-23. [PMID: 23933102 DOI: 10.1016/j.actbio.2013.07.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Fibrin is the primary extracellular constituent of blood clots, and plays an important role as a provisional matrix during wound healing and tissue remodeling. Fibrin-based biomaterials have proven their utility as hemostatic therapies, scaffolds for tissue engineering, vehicles for controlled release, and platforms for culturing and studying cells in three dimensions. Nevertheless, fibrin presents a complex milieu of signals to embedded cells, many of which are not well understood. Synthetic extracellular matrices (ECMs) provide a blank slate that can ostensibly be populated with specific bioactive cues, including growth factors, growth factor binding motifs, adhesive peptides and peptide crosslinks susceptible to proteases, thereby enabling a degree of customization for specific applications. However, the continued evolution and improvement of synthetic ECMs requires parallel efforts to deconstruct native ECMs and decipher the cues they provide to constituent cells. The objective of this review is to reintroduce fibrin, a protein with a well-characterized structure and biochemistry, and its ability to support angiogenesis specifically. Although fibrin's structure-function relationships have been studied for decades, opportunities to engineer new and improved synthetic hydrogels can be realized by further exploiting fibrin's inspiring design.
Collapse
Affiliation(s)
- Jacob Ceccarelli
- Department of Biomedical Engineering, University of Michigan, 2154 Lurie Biomedical Engineering Building, 1101 Beal Ave, Ann Arbor, MI 48109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, 2154 Lurie Biomedical Engineering Building, 1101 Beal Ave, Ann Arbor, MI 48109, USA.
| |
Collapse
|
95
|
Welch-Reardon KM, Ehsan SM, Wang K, Wu N, Newman AC, Romero-Lopez M, Fong AH, George SC, Edwards RA, Hughes CCW. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 2014; 127:2017-28. [PMID: 24554431 DOI: 10.1242/jcs.143420] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins that control processes requiring cell movement. Specifically, they regulate epithelial-to-mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, degrades basement membrane and becomes a migratory, mesenchymal-like cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells (EC) in vivo, suggesting that angiogenic sprouting may share common attributes with EMT. Here, we demonstrate that sprouting EC in vitro express both Slug and Snail, and that siRNA-mediated knockdown of either inhibits sprouting and migration in multiple in vitro angiogenesis assays. We find that expression of MT1-MMP, but not of VE-Cadherin, is regulated by Slug and that loss of sprouting as a consequence of reduced Slug expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity of MMP2 and MMP9 are also affected by Slug expression, likely through MT1-MMP. Importantly, we find enhanced expression of Slug in EC in human colorectal cancer samples compared with normal colon tissue, suggesting a role for Slug in pathological angiogenesis. In summary, these data implicate Slug as an important regulator of sprouting angiogenesis, particularly in pathological settings.
Collapse
Affiliation(s)
- Katrina M Welch-Reardon
- The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Weaver SA, Wolters B, Ito N, Woskowicz AM, Kaneko K, Shitomi Y, Seiki M, Itoh Y. Basal localization of MT1-MMP is essential for epithelial cell morphogenesis in 3D collagen matrix. J Cell Sci 2014; 127:1203-13. [PMID: 24463815 PMCID: PMC4117704 DOI: 10.1242/jcs.135236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored collagenase membrane type 1 matrix metalloprotease (MT1-MMP) has been shown to play an essential role during epithelial tubulogenesis in 3D collagen matrices; however, its regulation during tubulogenesis is not understood. Here, we report that degradation of collagen in polarized epithelial cells is post-translationally regulated by changing the localization of MT1-MMP from the apical to the basal surface. MT1-MMP predominantly localizes at the apical surface in inert polarized epithelial cells, whereas treatment with HGF induced basal localization of MT1-MMP followed by collagen degradation. The basal localization of MT1-MMP requires the ectodomains of the enzyme because deletion of the MT-loop region or the hemopexin domain inhibited basal localization of the enzyme. TGFβ is a well-known inhibitor of tubulogenesis and our data indicate that its mechanism of inhibition is, at least in part, due to inhibition of MT1-MMP localization to the basal surface. Interestingly, however, the effect of TGFβ was found to be bi-phasic: at high doses it effectively inhibited basal localization of MT1-MMP, whereas at lower doses tubulogenesis and basal localization of MT1-MMP was promoted. Taken together, these data indicate that basal localization of MT1-MMP is a key factor promoting the degradation of extracellular matrix by polarized epithelial cells, and that this is an essential part of epithelial morphogenesis in 3D collagen.
Collapse
Affiliation(s)
- Sarah A Weaver
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Ogden A, Rida PCG, Aneja R. Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev 2013; 32:269-87. [PMID: 23114845 DOI: 10.1007/s10555-012-9413-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complicity of centrosomes in carcinogenesis is unmistakable. Mounting evidence clearly implicates a robust correlation between centrosome amplification (CA) and malignant transformation in diverse tissue types. Furthermore, CA has been suggested as a marker of cancer aggressiveness, in particular the invasive phenotype, in breast and prostate cancers. One means by which CA promotes malignancy is through induction of transient spindle multipolarity during mitosis, which predisposes the cell to karyotypic changes arising from low-grade chromosome mis-segregation. It is well recognized that during cell migration in interphase, centrosome-mediated nucleation of a radial microtubule array is crucial for establishing a polarized Golgi apparatus, without which directionality is precluded. The question of how cancer cells maneuver their supernumerary centrosomes to achieve directionality during cell migration is virtually uncharted territory. Given that CA is a hallmark of cancers and has been correlated with cancer aggressiveness, malignant cells are presumably competent in managing their centrosome surfeit during directional migration, although the cellular logistics of this process remain unexplored. Another key angle worth pondering is whether an overabundance of centrosomes confers some advantage on cancer cells in terms of their migratory and invasive capabilities. Recent studies have uncovered a remarkable strategy that cancer cells employ to deal with the problem of excess centrosomes and ensure bipolar mitoses, viz., centrosome clustering. This review aims to change the narrative by exploring how an increased centrosome complement may, via aneuploidy-independent modulation of the microtubule cytoskeleton, enhance directional migration and invasion of malignant cells. We postulate that CA imbues cancer cells with cytoskeletal advantages that enhance cell polarization, Golgi-dependent vesicular trafficking, stromal invasion, and other aspects of metastatic progression. We also propose that centrosome declustering may represent a novel, cancer cell-specific antimetastatic strategy, as cancer cells may rely on centrosome clustering during migration as they do in mitosis. Elucidation of these details offers an exciting avenue for future research, as does investigating how CA may promote metastasis through enhanced directional migration.
Collapse
Affiliation(s)
- Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
98
|
Heger M, van Golen RF, Broekgaarden M, van den Bos RR, Neumann HAM, van Gulik TM, van Gemert MJC. Endovascular laser–tissue interactions and biological responses in relation to endovenous laser therapy. Lasers Med Sci 2013; 29:405-22. [DOI: 10.1007/s10103-013-1490-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/11/2023]
|
99
|
Carrion B, Kong YP, Kaigler D, Putnam AJ. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor. Exp Cell Res 2013; 319:2964-76. [PMID: 24056178 DOI: 10.1016/j.yexcr.2013.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 01/31/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis.
Collapse
Affiliation(s)
- Bita Carrion
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | | |
Collapse
|
100
|
El-Denshary ESM, Rashed LA, Elhussiny M. Mesenchymal stromal cells versus betamethasone can dampen disease activity in the collagen arthritis mouse model. Clin Exp Med 2013; 14:285-95. [PMID: 23990050 DOI: 10.1007/s10238-013-0248-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022]
Abstract
The objective of this study was to compare between the effects of mesenchymal stem cell (MSC) and betamethasone in the treatment of rheumatoid arthritis. Sixty male albino mice were divided equally into 2 models. They are MSC model, group 1: saline control group, group 2: collagen-induced arthritis (CIA), group 3: induced arthritis mice that received intravenous injection of MSCs. Betamethasone model, group 1: phosphate buffer saline, group 2: CIA, group 3: induced arthritis mice that received intraperitoneal injection of betamethasone. Mice arthritis models were assessed by clinical paw edema and X-rays, at the proper time of sacrefaction, tissues were collected and examined using real-time PCR, and synovial tissue was examined for interleukin-10, tumor necrosis factor α, cartilage oligomeric matrix protein and matrix metalloproteinase 3. While serum levels of rheumatoid factor and C-reactive protein were detected by enzyme-linked immunosorbent assay kits. Also blood erythrocyte sedimentation rate was detected. Histopathological, paw edema and PCR results showed improvement in the groups that received MSC compared with the diseased group and the groups which received betamethasone. MSC significantly enhanced the effect of collagen-induced arthritis treatment, which is superior to betamethasone treatment, likely through the modulation of the expression of various cytokines.
Collapse
|