51
|
Li Z, Lu W, Yin F, Huang A. YBX1 as a prognostic biomarker and potential therapeutic target in hepatocellular carcinoma: A comprehensive investigation through bioinformatics analysis and in vitro study. Transl Oncol 2024; 45:101965. [PMID: 38688048 PMCID: PMC11070759 DOI: 10.1016/j.tranon.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUNDS Y-box binding protein 1 (YBX1) is a DNA/RNA binding protein known to contribute to the progression of various malignancies, however, a comprehensive pan-cancer analysis to investigate YBX1 across a broad spectrum of cancer types has not yet been conducted. METHODS We utilized the TIMER database for a comprehensive pan-cancer analysis and assessed YBX-1 expression via the TCGA and GEO databases. The relationship between YBX-1 expression and tumor-infiltrating cells was examined using TIMER and the R programming language. To evaluate the prognostic value of YBX1, we performed Kaplan-Meier plots and Cox regression analyses. Through LinkedOmics, we identified genes significantly correlated with YBX-1. The WEB-based Gene SeT AnaLysis Toolkit was used for KEGG pathway enrichment analysis. Additionally, using shRNA-mediated knockdown, we explored the potential role of YBX1 in tumor cell biology. RESULTS Our study identifies pronounced overexpression of YBX-1 across multiple cancer types, correlating with adverse outcomes, notably in liver hepatocellular carcinoma (LIHC). A distinct association between elevated YBX-1 expression and heightened immune cell infiltration suggests YBX-1's potential role in reshaping the tumor microenvironment. Intriguingly, our KEGG pathway analysis indicated a tight nexus between YBX-1 expression and lipid metabolism. Moreover, the suppression of YBX-1 via shRNA revealed diminished cellular proliferation and marked reductions in crucial molecules steering the fatty acid synthesis pathway, implicating YBX-1's potential regulatory role in lipid metabolism within LIHC. CONCLUSIONS YBX-1 serves as a favorable prognostic indicator in various cancers, particularly in liver hepatocellular carcinoma. Targeting YBX1 in HCC offers potential therapeutic strategies. This work paves the way for fresh insights into targeted therapeutic approaches for cancers, especially benefiting liver hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
52
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
53
|
Grabbe P, Borchers MS, Gschwendtner KM, Strobel S, Wild B, Kirchner M, Kälber K, Rendon A, Steininger J, Meier F, Hassel JC, Bieber C. An Online Decision Aid for Patients With Metastatic Melanoma—Results of the Randomized Controlled Trial “PEF-Immun”. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:385-392. [PMID: 38566437 PMCID: PMC11460262 DOI: 10.3238/arztebl.m2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Treatment decisions in metastatic melanoma (MM) are highly dependent on patient preferences and require the patients' involvement. The complexity of treatment options with their individual advantages and disadvantages is often overwhelming. We therefore developed an online patient decision aid (PtDA) to facilitate shared decision making (SDM). METHODS To evaluate the PtDA we conducted a two-armed, twocenter, prospective, open randomized controlled trial with MM patients who were facing a decision about first-line treatment. The patients were allotted randomly in a 1:1 ratio to an intervention group (IG) with access to the PtDA before discussion with a physician or to a control group (CG) without access to the PtDA. The primary endpoint was knowledge about the options for first-line treatment (multiple-choice test, 10 items, range 0-40 points). The secondary endpoints were the SDM (third-party ratings of audio recordings of the treatment discussions) and satisfaction with the decision at the follow-up visit. RESULTS Of the 128 randomized patients, 120 completed the baseline questionnaire and were analyzed (59% male, median age 66 years). The primary endpoint, i.e., the mean difference in knowledge after discussion with a physician, differed significantly between the IG and the CG (-3.22, 95% CI [-6.32; -0.12], p = 0.042). No differences were found for the secondary endpoints, SDM and satisfaction with the decision. The patients in the IG rated the PtDA as very useful. CONCLUSION The PtDA improved the knowledge of patients with MM about the options for treatment. Both groups were highly satisfied with their treatment decisions. However, additional physician training seems necessary to promote SDM.
Collapse
Affiliation(s)
- Pia Grabbe
- *Joint first authors
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Milena S. Borchers
- *Joint first authors
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Kathrin M. Gschwendtner
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Sophia Strobel
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Wild
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg
| | - Marietta Kirchner
- Institute of Medical Biometry, Heidelberg University Hospital, Heidelberg
| | - Katharina Kälber
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Adriana Rendon
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Jessica C. Hassel
- *Joint last authors
- Heidelberg University, Medical Faculty, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
54
|
Hennemann A, Puzenat E, Decreuse M, Vuillier F, Nardin C, Aubin F. Intracranial hemorrhage caused by dabrafenib and trametinib therapy for metastatic melanoma. Melanoma Res 2024; 34:280-282. [PMID: 38602773 DOI: 10.1097/cmr.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Although generally well tolerated compared with chemotherapy, molecular targeted therapy used in metastatic melanoma may be associated with life-threatening toxicity. We report the case of a patient with metastatic melanoma treated by dabrafenib plus trametinib who developed intracranial hemorrhage. Physicians should be aware of this rare but life-threatening adverse event of B-rapidly accelerated fibrosarcoma (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. However, they should be also careful about the bleeding origin, which can prove to be a new onset of melanoma metastasis or anticoagulation overdose, or even an uncontrolled arterial hypertension.
Collapse
Affiliation(s)
| | - Eve Puzenat
- Department of Dermatology, University Hospital, Inserm 1098
| | - Marion Decreuse
- Department of Neurology, University Hospital, Besançon, France
| | | | - Charlée Nardin
- Department of Dermatology, University Hospital, Inserm 1098
| | - François Aubin
- Department of Dermatology, University Hospital, Inserm 1098
| |
Collapse
|
55
|
Costa Svedman F, Liapi M, Månsson-Broberg A, Chatzidionysiou K, Egyhazi Brage S. Effect of glucocorticoids for the management of immune-related adverse events on outcome in melanoma patients treated with immunotherapy-a retrospective and biomarker study. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 22:100713. [PMID: 38952418 PMCID: PMC11215956 DOI: 10.1016/j.iotech.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Background Immune-related adverse events (IRAEs) during therapy with immune checkpoint inhibitors (ICIs) are common, and their management sometimes requires glucocorticoids (GCs). Predictors for development of IRAEs and data about the impact of GCs on clinical outcome are missing. We evaluated the impact of GCs to treat IRAEs on clinical outcome, and plasmatic inflammatory proteins as predictors for IRAEs. Patients and methods Patients with melanoma (n = 98) treated with ICIs at Karolinska University Hospital were included. Clinical information and data regarding prescription of systemic GCs were collected. Baseline plasma samples (n = 57) were analyzed for expression of 92 inflammatory proteins. Results Forty-four patients developed at least one IRAE requiring systemic GCs and the most common was hypocortisolemia (n = 11). A median overall survival of 72.8 months for patients developing IRAEs requiring GCs, 17.7 months for those who did not, and 1.4 months for individuals receiving GCs at baseline was observed in Kaplan-Meier curves (P = 0.001). In immortal time bias adjusted analysis, patients receiving steroids to treat IRAE survived slightly longer, even though this time trend was not statistically significant. The median overall survival was 29 months for those treated with GCs within 60 days after ICIs start and was not reached for patients receiving GCs later. The number of ICI cycles was higher in subjects receiving GCs after 60 days (P = 0.0053). Hypocortisolemia occurred mainly in males (10/11) and correlated with favorable outcome. Male patients with hypocortisolemia had lower expression of interleukin 8, transforming growth factor-α, and fibroblast growth factor 5 and higher expression of Delta/Notch-like epidermal growth factor-related receptor. Conclusions GCs may be used to treat IRAEs without major concern. GCs early during ICIs may, however, impact clinical outcome negatively. The prognostic value of hypocortisolemia and inflammation proteins as biomarkers should be further investigated.
Collapse
Affiliation(s)
- F. Costa Svedman
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - M. Liapi
- Department of Rheumatology, Theme Inflammation and Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - A. Månsson-Broberg
- Theme Heart and Vascular, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - K. Chatzidionysiou
- Department of Rheumatology, Theme Inflammation and Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - S. Egyhazi Brage
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
56
|
Rozendorn N, Shutan I, Feinmesser G, Grynberg S, Hodadov H, Alon E, Asher N. Real-World Outcomes of Inoperable and Metastatic Cutaneous Head and Neck Melanoma Patients. Laryngoscope 2024; 134:2762-2770. [PMID: 38230960 DOI: 10.1002/lary.31290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE This study aims to describe the overall survival (OS) and to identify associated prognostic factors in patients with inoperable and metastatic cutaneous melanoma of the head and neck (H&N) region, undergoing modern systemic treatments. METHODS This is a retrospective single institutional study. Data on all consecutive H&N melanoma patients treated with systemic oncologic treatments between 2015 and 2022 were collected from electronic medical files. Kaplan-Meier curves were used to describe survival and Cox regression analysis was used to identify patient and tumor factors associated with prognosis. RESULTS A total of 144 patients were included. Median OS was 45 months (95% confidence interval [CI] 28-65 m). On univariable analysis for OS, the primary disease site, specifically the nape and neck (hazard ratio [HR] 3.3, 95% CI 1.4-7.7, p = 0.007), high Eastern Cooperative Oncology Group Performance Status ([ECOG-PS], HR 2.5, 95% CI = 1.9-3.3, p < 0.001), high lactate dehydrogenase (LDH) levels (HR 2.8, 95% CI = 1.7-4.6, p < 0.001), and treatment with targeted therapy (TT) as compared with immunotherapy (HR 2.6, 95% CI = 1.06-6.3, p = 0.03) were all associated with shorter OS. High-grade adverse events (AEs) were associated with a longer OS (HR 0.41, 95% CI = 0.25-0.68, p = 0.001). On multivariable analysis for OS, the ECOG-PS, LDH levels, site of disease, and the development of moderate-severe AEs remained significant. CONCLUSIONS In the era of modern oncologic treatments, the prognosis of inoperable and metastatic cutaneous H&N melanoma aligns with other cutaneous melanomas. Primary tumor site of the nape and neck region emerges as a significant prognostic factor. LEVEL OF EVIDENCE 3 Laryngoscope, 134:2762-2770, 2024.
Collapse
Affiliation(s)
- Noa Rozendorn
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Itay Shutan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Feinmesser
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Shirly Grynberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Hodadov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Alon
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nethanel Asher
- Skin Cancer and Melanoma Center, Davidoff Center, Beilinson Medical Center, Petah Tikva, Israel
| |
Collapse
|
57
|
Mistry K, Zhao S, Strohbehn I, Wang Q, Hanna P, Strohbehn S, Katz-Agranov N, Sullivan RJ, Sise ME. Acute and chronic kidney function decline in patients receiving BRAF/MEK inhibitors for melanoma. Nephrol Dial Transplant 2024; 39:1040-1043. [PMID: 38389257 DOI: 10.1093/ndt/gfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Kavita Mistry
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ian Strohbehn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Qiyu Wang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul Hanna
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samuel Strohbehn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Nurit Katz-Agranov
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Meghan E Sise
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
58
|
Shalata W, Attal ZG, Solomon A, Shalata S, Abu Saleh O, Tourkey L, Abu Salamah F, Alatawneh I, Yakobson A. Melanoma Management: Exploring Staging, Prognosis, and Treatment Innovations. Int J Mol Sci 2024; 25:5794. [PMID: 38891988 PMCID: PMC11171767 DOI: 10.3390/ijms25115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma, a malignant neoplasm originating from melanocytes, stands as one of the most prevalent cancers globally, ranking fifth in terms of estimated new cases in recent years. Its aggressive nature and propensity for metastasis pose significant challenges in oncology. Recent advancements have led to a notable shift towards targeted therapies, driven by a deeper understanding of cutaneous tumor pathogenesis. Immunotherapy and tyrosine kinase inhibitors have emerged as promising strategies, demonstrating the potential to improve clinical outcomes across all disease stages, including neoadjuvant, adjuvant, and metastatic settings. Notably, there has been a groundbreaking development in the treatment of brain metastasis, historically associated with poor prognosis in oncology but showcasing impressive results in melanoma patients. This review article provides a comprehensive synthesis of the most recent knowledge on staging and prognostic factors while highlighting emerging therapeutic modalities, with a particular focus on neoadjuvant and adjuvant strategies, notably immunotherapy and targeted therapies, including the ongoing trials.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zoe Gabrielle Attal
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Adam Solomon
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Fahed Abu Salamah
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Ibrahim Alatawneh
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
59
|
Schreck KC, Strowd RE, Nabors LB, Ellingson BM, Chang M, Tan SK, Abdullaev Z, Turakulov R, Aldape K, Danda N, Desideri S, Fisher J, Iacoboni M, Surakus T, Rudek MA, Bettegowda C, Grossman SA, Ye X. Response Rate and Molecular Correlates to Encorafenib and Binimetinib in BRAF-V600E Mutant High-Grade Glioma. Clin Cancer Res 2024; 30:2048-2056. [PMID: 38446982 PMCID: PMC11096001 DOI: 10.1158/1078-0432.ccr-23-3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Although fewer than 5% of high-grade gliomas (HGG) are BRAF-V600E mutated, these tumors are notable as BRAF-targeted therapy shows efficacy for some populations. The purpose of this study was to evaluate response to the combination of encorafenib with binimetinib in adults with recurrent BRAF-V600-mutated HGG. PATIENTS AND METHODS In this phase 2, open-label, Adult Brain Tumor Consortium (ABTC) trial (NCT03973918), encorafenib and binimetinib were administered at their FDA-approved doses continuously in 28-day cycles. Eligible patients were required to have HGG or glioblastoma with a BRAF-V600E alteration that was recurrent following at least one line of therapy, including radiotherapy. RESULTS Five patients enrolled between January 2020 and administrative termination in November 2021 (due to closure of the ABTC). Enrolled patients received treatment for 2 to 40 months; currently one patient remains on treatment. Centrally determined radiographic response rate was 60%, with one complete response and two partial responses. Methylation profiling revealed that all tumors cluster most closely with anaplastic pleomorphic xanthoastrocytoma (PXA). Transcriptional profile for MAPK-response signature was similar across all tumors at baseline and did not correlate with response in this small population. Circulating tumor DNA measured in plasma samples before treatment, during response, and upon progression showed feasibility of detection for the BRAF-V600E alteration. No new safety signal was detected. CONCLUSIONS Encorafenib and binimetinib exhibit positive tumor responses in patients with recurrent BRAF-V600E mutant HGG in this small series, warranting therapeutic consideration. Although toxicity remains a concern for BRAF-targeted therapies, no new safety signal was observed in these patients.
Collapse
Affiliation(s)
- Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Roy E Strowd
- Department of Neurology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Louis B Nabors
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Alabama
| | - Benjamin M Ellingson
- Department of Radiological Sciences, UCLA Brain Tumor Imaging Laboratory, University of California Los Angeles, Los Angeles, California
| | - Michael Chang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sze K Tan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rust Turakulov
- Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neeraja Danda
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Serena Desideri
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Joy Fisher
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | | - Trisha Surakus
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
60
|
Reger De Moura C, Louveau B, Jouenne F, Vilquin P, Battistella M, Bellahsen-Harrar Y, Sadoux A, Menashi S, Dumaz N, Lebbé C, Mourah S. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1. Oncogene 2024; 43:1620-1630. [PMID: 38570692 DOI: 10.1038/s41388-024-03014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with β1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/β1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.
Collapse
Affiliation(s)
- Coralie Reger De Moura
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Baptiste Louveau
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Paul Vilquin
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Yaelle Bellahsen-Harrar
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Suzanne Menashi
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Nicolas Dumaz
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Céleste Lebbé
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
- Department of Dermatology and CIC, Hôpital Saint Louis, Cancer Institute, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France.
| |
Collapse
|
61
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
62
|
Adamopoulos C, Papavassiliou KA, Poulikakos PI, Papavassiliou AG. RAF and MEK Inhibitors in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:4633. [PMID: 38731852 PMCID: PMC11083651 DOI: 10.3390/ijms25094633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
63
|
Fischer RA, Ryan I, De La Torre K, Barnett C, Sehgal VS, Levy JB, Luke JJ, Poklepovic AS, Hurlbert MS. US physician perspective on the use of biomarker and ctDNA testing in patients with melanoma. Crit Rev Oncol Hematol 2024; 196:104289. [PMID: 38341119 DOI: 10.1016/j.critrevonc.2024.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
New treatments have increased survival of patients with melanoma, and methods to monitor patients throughout the disease process are needed. Circulating tumor DNA (ctDNA) is a predictive and prognostic biomarker that may allow routine, real-time monitoring of disease status. We surveyed 44 US physicians to understand their preferences and practice patterns for biomarker and ctDNA testing in their patients with melanoma. Tumor biomarker testing was often ordered in stage IIIA-IV patients. Barriers to biomarker testing include insufficient tissue (60%) and lack of insurance coverage (54%). ctDNA testing was ordered by 16-18% of physicians for stages II-IV. Reasons for not using ctDNA testing included lack of prospective data (41%), ctDNA testing used for research only (18%), and others. Physicians (≥74%) believed that ctDNA assays could help with monitoring and treatment selection throughout the disease process. Physicians consider ctDNA testing potentially valuable for clinical decision-making but cited concerns that should be addressed.
Collapse
Affiliation(s)
- Rachel A Fischer
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Isabel Ryan
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | | | - Cody Barnett
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Viren S Sehgal
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Joan B Levy
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Andrew S Poklepovic
- Virginia Commonwealth University Health System Massey Cancer Center, 401 College Street, Richmond, VA 23298-0037, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA.
| |
Collapse
|
64
|
Richtig E, Nguyen VA, Koelblinger P, Wolf I, Kehrer H, Saxinger W, Ressler JM, Weinlich G, Meyersburg D, Hafner C, Jecel-Grill E, Kofler J, Lange-Asschenfeldt B, Weihsengruber F, Rappersberger K, Svastics N, Gasser K, Seeber A, Kratochvill F, Nagler S, Mraz B, Hoeller C. Dabrafenib plus trametinib in unselected advanced BRAF V600-mut melanoma: a non-interventional, multicenter, prospective trial. Melanoma Res 2024; 34:142-151. [PMID: 38092013 PMCID: PMC10906199 DOI: 10.1097/cmr.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The efficacy of combined BRAF and MEK inhibition for BRAF V600-mutant melanoma in a broad patient population, including subgroups excluded from phase 3 trials, remains unanswered. This noninterventional study (DATUM-NIS) assessed the real-world efficacy, safety and tolerability of dabrafenib plus trametinib in Austrian patients with unresectable/metastatic melanoma. METHODS This multicenter, open-label, non-interventional, post-approval, observational study investigated the effectiveness of dabrafenib plus trametinib prescribed in day-to-day clinical practice to patients ( N = 79) with BRAF V600-mutant unresectable/metastatic melanoma with M1c disease (American Joint Committee on Cancer staging manual version 7), ECOG > 1, and elevated serum lactate dehydrogenase (LDH). The primary endpoint was 6-, 12- and 18-month progression-free survival (PFS) rates. Secondary endpoints were median PFS, disease control rate and overall survival (OS). RESULTS The 6-, 12- and 18-month PFS rates were 76%, 30.6% and 16.2%, respectively. Subgroup analysis showed a significant PFS benefit in the absence of lung metastasis. The median PFS and OS were 9.1 (95% CI, 7.1-10.3) months and 17.9 (95% CI, 12.7-27.8) months, respectively. The 12- and 24-month OS rates were 62.7% and 26.8%, respectively. Subgroup analyses showed significant OS benefits in the absence of bone or lung metastasis and the presence of other metastases (excluding bone, lung, brain, liver and lymph nodes). Furthermore, S100 and Eastern Cooperative Oncology Group performance status (ECOG PS) showed a significant impact on survival. No new safety signals were observed. CONCLUSION Despite an unselected population of melanoma patients with higher M1c disease, ECOG PS > 1 and elevated LDH, this real-world study demonstrated comparable efficacy and safety with the pivotal phase 3 clinical trials for dabrafenib-trametinib.
Collapse
Affiliation(s)
- Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz
| | - Van A. Nguyen
- Department of Dermatology, Medical University of Innsbruck, Innsbruck
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg
| | - Ingrid Wolf
- Department of Dermatology, Medical University of Graz, Graz
| | - Helmut Kehrer
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz
| | | | | | - Georg Weinlich
- Department of Dermatology, Medical University of Innsbruck, Innsbruck
| | - Damian Meyersburg
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St Pölten
| | - Elisabeth Jecel-Grill
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St Pölten
| | - Julian Kofler
- Department of Dermatology, Klinikum Klagenfurt am Wörthersee, Klagenfurt
| | | | | | | | - Nina Svastics
- Dermatologische Ambulanz, Landesklinikum Wiener Neustadt, Wiener Neustadt
| | - Klaus Gasser
- Department of Oncology and Hematology, LKH Feldkirch, Rankweil
| | | | | | | | | | | |
Collapse
|
65
|
Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, Arecco L, Tanda ET, Spagnolo F. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol 2024; 196:104276. [PMID: 38295889 DOI: 10.1016/j.critrevonc.2024.104276] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
In recent years, advances in melanoma treatment have renewed patient hope. This comprehensive review emphasizes the evolving treatment landscape, particularly highlighting first-line strategies and the interplay between immune-checkpoint inhibitors (ICIs) and targeted therapies. Ipilimumab plus nivolumab has achieved the best median overall survival, exceeding 70 months. However, the introduction of new ICIs, like relatlimab, has added complexity to first-line therapy decisions. Our aim is to guide clinicians in making personalized treatment decisions. Various features, including brain metastases, PD-L1 expression, BRAF mutation, performance status, and prior adjuvant therapy, significantly impact the direction of advanced melanoma treatment. We also provide the latest insights into the treatment of rare melanoma subtypes, such as uveal melanoma, where tebentafusp has shown promising improvements in overall survival for metastatic uveal melanoma patients. This review provides invaluable insights for clinicians, enabling informed treatment choices and deepening our understanding of the multifaceted challenges associated with advanced melanoma management.
Collapse
Affiliation(s)
- Andrea Boutros
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy.
| | - Elena Croce
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ferrari
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Riccardo Gili
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giulia Massaro
- Unit of Medical Oncology, Careggi University-Hospital, 50134 Florence, Italy
| | - Riccardo Marconcini
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrica Teresa Tanda
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery Division, University of Genova, Genova, Italy
| |
Collapse
|
66
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
67
|
Bafaloukos D, Kouzis P, Gouveris P, Boukovinas I, Kalbakis K, Baka S, Kyriakakis G, Moschou D, Molfeta A, Demiri S, Mavroudis D, Spanoudi F, Dimitriadis I, Gogas H. Real-world management practices and characteristics of patients with advanced melanoma initiated on immuno-oncology or targeted therapy in the first-line setting during the period 2015-2018 in Greece. The 'SUMMER' study: a retrospective multicenter chart review project. Melanoma Res 2024; 34:152-165. [PMID: 38092014 PMCID: PMC10906211 DOI: 10.1097/cmr.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 02/02/2024]
Abstract
This study primarily aimed to generate real-world evidence (RWE) on the profile and first-line treatment (1LT) patterns of patients with advanced (unresectable Stage III/metastatic) cutaneous melanoma initiated on immuno-oncology (IO)- or targeted therapy (TT)-based 1LT between 1 January 2015 and 1 January 2018 (index period), in routine settings of Greece. This was a multicenter, retrospective chart review study. Eligible consented (unless deceased, for whom consent was waived by the hospital) patients were consecutively included by six oncology clinics. The look-back period extended from informed consent or death to initial melanoma diagnosis. Between 9 Junuary 2021 and 9 February 2022, 225 eligible patients (all Caucasians; 60.4% male; 35.6% diagnosed with de novo advanced melanoma) were included. At 1LT initiation, median age was 62.6 years; 2.7/6.7/90.7% of the patients had Stage IIIB/IIIC/IV disease and 9.3% were unresected. Most frequent metastatic sites were the lung (46.7%), non-regional nodes (33.8%), and liver (20.9%). Among patients, 98.2% had single primary melanoma, 45.6% had disease localized on the trunk, and 63.6% were BRAF-mutant. Of the patients, 45.3% initiated 1LT with an IO-based, 53.3% with a TT-based regimen, and three patients (1.3%) received TT-based followed by IO-based or vice versa. Most common 1LT patterns (frequency ≥10%) were BRAFi/MEKi combination (31.6%), anti-PD-1 monotherapy (25.3%), BRAFi monotherapy (21.8%), and anti-CTLA-4 monotherapy (17.8%). Most frequent regimens were Dabrafenib+Trametinib in 25.3%, and monotherapies with Pembrolizumab/Ipilimumab/Vemurafenib/Dabrafenib in 23.6/17.8/11.1/10.7% of patients, respectively. SUMMER provides RWE on 1LT strategies and profile of patients initiated 1L IO- or TT-based therapy in Greece during the 3-year index period.
Collapse
Affiliation(s)
| | - Panagiotis Kouzis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | | | | | - Sofia Baka
- Oncology Department, Interbalkan European Medical Center, Thessaloniki
| | - Georgios Kyriakakis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | - Despoina Moschou
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | - Stamatia Demiri
- Second Department of Medical Oncology, Agios Savvas Hospital, Athens
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion
| | - Filio Spanoudi
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Ioannis Dimitriadis
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| |
Collapse
|
68
|
Fountzilas E, Tsimberidou AM, Hiep Vo H, Kurzrock R. Tumor-agnostic baskets to N-of-1 platform trials and real-world data: Transforming precision oncology clinical trial design. Cancer Treat Rev 2024; 125:102703. [PMID: 38484408 DOI: 10.1016/j.ctrv.2024.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Choosing the right drug(s) for the right patient via advanced genomic sequencing and multi-omic interrogation is the sine qua non of precision cancer medicine. Traditional cancer clinical trial designs follow well-defined protocols to evaluate the efficacy of new therapies in patient groups, usually identified by their histology/tissue of origin of their malignancy. In contrast, precision medicine seeks to optimize benefit in individual patients, i.e., to define who benefits rather than determine whether the overall group benefits. Since cancer is a disease driven by molecular alterations, innovative trial designs, including biomarker-defined tumor-agnostic basket trials, are driving ground-breaking regulatory approvals and deployment of gene- and immune-targeted drugs. Molecular interrogation further reveals the disruptive reality that advanced cancers are extraordinarily complex and individually distinct. Therefore, optimized treatment often requires drug combinations and N-of-1 customization, addressed by a new generation of N-of-1 trials. Real-world data and structured master registry trials are also providing massive datasets that are further fueling a transformation in oncology. Finally, machine learning is facilitating rapid discovery, and it is plausible that high-throughput computing, in silico modeling, and 3-dimensional printing may be exploitable in the near future to discover and design customized drugs in real time.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St Luke's Clinic, Thessaloniki, Greece; European University Cyprus, German Oncology Center, Nicosia, Cyprus
| | - Apostolia-Maria Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA.
| | - Henry Hiep Vo
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA
| | - Razelle Kurzrock
- WIN Consortium for Precision Medicine, France; Medical College of Wisconsin, USA
| |
Collapse
|
69
|
Whitman ED, Totev TI, Jiang S, da Costa WL, Grebennik D, Wang H, Boca AE, Ayyagari R. Assessing the use of anti-PD1 monotherapy as adjuvant therapy and determinants of treatment choice in stage III cutaneous melanoma in the US. BMC Cancer 2024; 24:389. [PMID: 38539148 PMCID: PMC10967219 DOI: 10.1186/s12885-024-12178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 11/11/2024] Open
Abstract
BACKGROUND The objective of this study was to describe real-world adjuvant therapy (AT) use by disease substage and assess determinants of treatment choice among patients with stage III melanoma. METHODS This non-interventional retrospective study included survey responses and data from patient records provided by US medical oncologists. Survey responses, patient demographic/clinical characteristics, treatment utilization, and reasons for treatment were reported descriptively. The association between patient and disease characteristics and AT selection was assessed using logistic and multinomial regression models, overall and stratified by AJCC8 substage (IIIA vs. IIIB/C/D) and type of AT received (anti-PD1 monotherapy, BRAF/MEK, no AT), respectively. RESULTS In total 152 medical oncologists completed the survey and reviewed the charts of 507 patients (168 stage IIIA; 339 stages IIIB/IIIC/IIID); 405 (79.9%) patients received AT (360/405 (88.9%) received anti-PD1 therapy; 45/405 (11.1%) received BRAF/MEK therapy). Physicians reported clinical guidelines (61.2%), treatment efficacy (37.5%), and ECOG performance status (31.6%) as drivers of AT prescription. Patient-level data confirmed that improving patient outcomes (79%) was the main reason for anti-PD1 prescription; expected limited treatment benefit (37%), patient refusal (36%), and toxicity concerns (30%) were reasons for not prescribing AT. In multivariable analyses stage IIIB/IIIC/IIID disease significantly increased the probability of receiving AT (odds ratio [OR] 1.74) and anti-PD1 therapy (OR 1.82); ECOG 2/3 and Medicaid/no insurance decreased the probability of AT receipt (OR 0.37 and 0.42, respectively) and anti-PD1 therapy (OR 0.41 and 0.42, respectively) among all patients and patients with stage IIIA disease. CONCLUSION Most patients were given AT with a vast majority treated with an anti-PD1 therapy. Physician- and patient-level evidence confirmed the impact of disease substage on AT use, with stage IIIA patients, patients without adequate insurance coverage, and worse ECOG status having a lower probability of receiving AT.
Collapse
Affiliation(s)
- Eric D Whitman
- Atlantic Health System Cancer Care, Morristown, NJ, USA
- Atlantic Melanoma Center, Morristown, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Li C, Wang Z, Yao L, Lin X, Jian Y, Li Y, Zhang J, Shao J, Tran PD, Hagman JR, Cao M, Cong Y, Li HY, Goding CR, Xu ZX, Liao X, Miao X, Cui R. Mi-2β promotes immune evasion in melanoma by activating EZH2 methylation. Nat Commun 2024; 15:2163. [PMID: 38461299 PMCID: PMC10924921 DOI: 10.1038/s41467-024-46422-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2β as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response. Studies in genetically engineered mouse melanoma models indicate that loss of Mi-2β rescues the immune response to immunotherapy in vivo. Mechanistically, ATAC-seq analysis shows that Mi-2β controls the accessibility of IFN-γ-stimulated genes (ISGs). Mi-2β binds to EZH2 and promotes K510 methylation of EZH2, subsequently activating the trimethylation of H3K27 to inhibit the transcription of ISGs. Finally, we develop an Mi-2β-targeted inhibitor, Z36-MP5, which reduces Mi-2β ATPase activity and reactivates ISG transcription. Consequently, Z36-MP5 induces a response to immune checkpoint inhibitors in otherwise resistant melanoma models. Our work provides a potential therapeutic strategy to convert immunotherapy resistant melanomas to sensitive ones.
Collapse
Affiliation(s)
- Cang Li
- Skin Disease Research Institute, The 2nd Hospital and School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - Licheng Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Xingyu Lin
- Zhuhai Yu Fan Biotechnologies Co. Ltd, Zhuhai, Guangdong, 51900, China
| | - Yongping Jian
- School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Yujia Li
- School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Jie Zhang
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
| | - Jingwei Shao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Phuc D Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, 310058, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA.
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, 475000, China.
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, 100084, China.
| | - Xiao Miao
- Department of Dermatology, Shuguang Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital and School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
71
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
72
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
73
|
Namikawa K, Nakano E, Ogata D, Yamazaki N. Long-term survival with systemic therapy in the last decade: Can melanoma be cured? J Dermatol 2024; 51:343-352. [PMID: 38358050 PMCID: PMC11484129 DOI: 10.1111/1346-8138.17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Immune checkpoint inhibitors have been shown to prolong survival of patients with several types of cancer, and the finding was first established in melanoma. Previously, systemic therapy for advanced melanoma aimed only at tumor control and palliation of symptoms. However, in recent years, some patients who received systemic therapy have achieved a complete response and survived without continuous treatment for more than several years. This review discusses the long-term survival rates achieved with currently used systemic therapies and their future perspectives. Long-term survival is currently most likely to be achieved with the use of the standard-dose combination of nivolumab plus ipilimumab, however, this regimen is associated with a high frequency of serious or persistent immune-related adverse events. Several new anti-PD-1-based combination therapies with a better risk-benefit balance are currently under development. Although the acral and mucosal subtypes tend to be less responsive to immune checkpoint inhibitors, anti-PD-1-based combination therapy should continue to be investigated for these subtypes owing to its potential for better long-term survival. With the development of efficacious immunotherapy and targeted therapy, it is important to determine the optimal duration of systemic therapy to avoid unnecessary health and financial burdens as well as to improve efforts to support long-term cancer survivors. As the goal of systemic therapy shifts from tumor control to long-term survival, in future clinical trials, long-term clinical outcomes should be evaluated to assess the benefits of novel agents.
Collapse
Affiliation(s)
- Kenjiro Namikawa
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Eiji Nakano
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Dai Ogata
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Naoya Yamazaki
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
74
|
Miceli M, Boatwright C, Mehnert JM. Metastatic Melanoma Treatment in Special Populations. Cancer J 2024; 30:71-78. [PMID: 38527259 DOI: 10.1097/ppo.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT This review outlines the most up-to-date metastatic melanoma treatment recommendations and relevant risks for patients with solid organ transplants, patients with renal dysfunction, and patients with preexisting autoimmune conditions. These specific treatment populations were excluded from the original clinical trials, which studied immune checkpoint inhibitors and BRAF/MEK inhibitors in the advanced melanoma setting. We have synthesized the current body of literature, mainly case series and retrospective analyses, to reflect the evidence for the treatment of these special patient populations at present.
Collapse
Affiliation(s)
| | - Christina Boatwright
- Hematology and Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, New York University Grossman School of Medicine, New York, NY
| | - Janice M Mehnert
- Hematology and Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
75
|
Fortuna A, Amaral T. Multidisciplinary approach and treatment of acral and mucosal melanoma. Front Oncol 2024; 14:1340408. [PMID: 38469235 PMCID: PMC10926023 DOI: 10.3389/fonc.2024.1340408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Acral and mucosal melanoma are uncommon variants of melanoma. Acral melanoma has an age-adjusted incidence of approximately 1.8 cases per million individuals per year, accounting for about 2% to 3% of all melanoma cases. On the other hand, mucosal melanoma, with an incidence of 2.2 cases per million per year, makes up around 1.3% of all melanoma cases. These melanomas, in addition to being biologically and clinically distinct from cutaneous melanoma, share certain clinical and pathologic characteristics. These include a more aggressive nature and a less favorable prognosis. Furthermore, they exhibit a different mutational pattern, with KIT mutations being more prevalent in acral and mucosal melanomas. This divergence in mutational patterns may partially account for the relatively poorer prognosis, particularly to immune checkpoint inhibitors. This review explores various aspects of acral and mucosal melanoma, including their clinical presentation, pathologic features, mutational profiles, current therapeutic approaches, outcomes associated with systemic therapy, and potential strategies to address resistance to existing treatments.
Collapse
Affiliation(s)
- Ana Fortuna
- Oncology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Tübingen, Germany
| |
Collapse
|
76
|
Staeger R, Martínez-Gómez JM, Turko P, Ramelyte E, Kraehenbuehl L, Del Prete V, Hasan Ali O, Levesque MP, Dummer R, Nägeli MC, Mangana J. Real-World Data on Clinical Outcomes and Treatment Management of Advanced Melanoma Patients: Single-Center Study of a Tertiary Cancer Center in Switzerland. Cancers (Basel) 2024; 16:854. [PMID: 38473216 DOI: 10.3390/cancers16050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) and BRAF/MEK inhibitors (BRAF/MEKi) have drastically changed the outcomes of advanced melanoma patients in both the resectable/adjuvant and unresectable/metastatic setting. In this follow-up analysis of real-world data, we aimed to investigate the clinical management and outcomes of advanced melanoma patients in a tertiary referral center in Switzerland approximately a decade after the introduction of ICIs and BRAF/MEKi into clinical use. Moreover, we aimed to compare the results with seminal phase 3 trials and to identify areas of high unmet clinical need. METHODS This single-center retrospective cohort study analyzed the melanoma registry of the University Hospital Zurich, a tertiary cancer center in Switzerland, and included patients treated in the resectable/adjuvant (n = 331) or unresectable/metastatic setting (n = 375). RESULTS In the resectable setting, adjuvant anti-PD1 or BRAF/MEKi showed a 3-year relapse-free survival (RFS) of 53% and 67.6%, respectively, and the overall median RFS was 50 months. Patients with lymph node plus in-transit metastases or with distant metastases prior to commencing adjuvant treatment had a significantly reduced overall survival (OS). In 10.9% of patients, the treatment was stopped due to toxicity, which did not affect RFS/OS, unless the duration of the treatment was <3 months. Following a relapse of the disease during the first adjuvant treatment, the median progression-free survival (PFS2) was only 6.6 months; outcomes were particularly poor for relapses that were unresectable (median PFS2 3.9 months) or occurred within the first 2 months (median PFS2 2.7 months). A second adjuvant treatment for patients with resectable relapses still showed efficacy (median RFS2 43.7 months). Elevated LDH levels in patients with an unresectable relapse was correlated with a strong reduction in OS2 (HR 9.84, p = 0.018). In the unresectable setting, first-line anti-PD1, anti-CTLA4/PD1 combination, or BRAF/MEKi showed a 5-year OS of 46.5%, 52.4%, and 49.2%, respectively. In a multivariate analysis, elevated LDH levels or the presence of brain metastases substantially shortened OS (HR > 1.78, p < 0.035). There was a non-significant trend for the improved survival of patients treated with anti-CTLA4/PD1 compared to anti-PD1 (HR 0.64, p = 0.15). After a progression on first-line therapy, the median OS2 was reduced to below two years. Elevated LDH (HR 4.65, p < 0.001) levels and widespread disease with at least three metastatic sites, particularly bone metastases (HR 2.62, p = 0.026), affected OS2. CONCLUSION Our study offers real-world insights into the clinical management, treatment patterns, and outcomes of advanced melanoma patients in both the adjuvant and unresectable setting. Early relapses in patients undergoing adjuvant treatment pose a particular challenge but these patients are generally excluded from first-line trials. The approved first-line metastatic treatments are highly effective in the real-world setting with 5-year OS rates around 50%. However, outcomes remain poor for patients with brain metastases or who fail first-line treatment.
Collapse
Affiliation(s)
- Ramon Staeger
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Patrick Turko
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Egle Ramelyte
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lukas Kraehenbuehl
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Del Prete
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Omar Hasan Ali
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mitchell P Levesque
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mirjam C Nägeli
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Joanna Mangana
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
77
|
Liu S, Wang Y, Wang T, Shi K, Fan S, Li C, Chen R, Wang J, Jiang W, Zhang Y, Chen Y, Xu X, Yu Y, Li C, Li X. CircPCNXL2 promotes tumor growth and metastasis by interacting with STRAP to regulate ERK signaling in intrahepatic cholangiocarcinoma. Mol Cancer 2024; 23:35. [PMID: 38365721 PMCID: PMC10873941 DOI: 10.1186/s12943-024-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND circular RNAs (circRNAs) have been reported to exert important effects in the progression of numerous cancers. However, the functions of circRNAs in intrahepatic cholangiocarcinoma (ICC) are still unclear. METHODS circPCNXL2 (has_circ_0016956) were identified in paired ICC by circRNA microarray. Then, we assessed the biological functions of circPCNXL2 by CCK8, EdU, clone formation, transwell, wound healing assays, and xenograft models. RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) were applied to explore the interaction between cirrcPCNXL2 and serine-threonine kinase receptor-associated protein (STRAP). RNA pull-down, RIP and luciferase reporter assays were used to investigate the sponge functions of circPCNXL2. In the end, we explore the effects of circPCNXL2 and trametinib (a MEK1/2 inhibitor) in vivo. RESULTS circPCNXL2 was upregulated in ICC tissues and cell lines, which promoted the proliferation and metastasis of ICC in vitro and in vivo. In terms of the mechanisms, circPCNXL2 could directly bind to STRAP and induce the interaction between STRAP and MEK1/2, resulting in the tumor promotion in ICC by activation of ERK/MAPK pathways. Besides, circPCNXL2 could regulate the expression of SRSF1 by sponging miR-766-3p and subsequently facilitated the growth of ICC. Finally, circPCNXL2 could partially inhibit the anti-tumor activity of trametinib in vivo. CONCLUSION circPCNXL2 played a crucial role in the progression of ICC by interacting with STRAP to activate the ERK signaling pathway, as well as by modulating the miR-766-3p/SRSF1 axis. These findings suggest that circPCNXL2 may be a promising biomarker and therapeutic target for ICC.
Collapse
Affiliation(s)
- Shuochen Liu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Tianlin Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Kuangheng Shi
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Shilong Fan
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Chang Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yue Yu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
78
|
Yang Y, Li J, Wei C, Wang L, Gao Z, Shen K, Li Y, Ren M, Zhu Y, Ding Y, Wei C, Zhang T, Zheng S, Lu N, Gu J. Circular RNA circFCHO2(hsa_circ_0002490) promotes the proliferation of melanoma by directly binding to DND1. Cell Biol Toxicol 2024; 40:9. [PMID: 38311675 PMCID: PMC10838848 DOI: 10.1007/s10565-024-09851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Circular RNAs (circRNAs) have been documented to play crucial roles in the biology of various cancers. However, their investigation in melanoma is still at an early stage, particularly as a broader mechanism beyond acting as miRNA sponges needs to be explored. We report here that circFCHO2(hsa_circ_0002490), a circRNA encompassing exons 19 and 20 of the FCHO2 gene, exhibited a consistent overexpression in melanoma tissues. Furthermore, elevated circFCHO2 levels demonstrated a positive correlation with the malignant phenotype and poor prognosis among the 158 melanoma patients studied. Besides, we observed that heightened levels of circFCHO2 promoted melanoma cell proliferation, migration, and invasion in vitro, along with contributing to tumor growth in vivo. Furthermore, we found differences in the secondary structure of circFCHO2 compared to most other circular RNA structures. It has fewer miRNA binding sites, while it has more RNA binding protein binding sites. We therefore speculate that circFCHO2 may have a function of interacting with RNA binding proteins. Mechanistically, it was confirmed by fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), and western blotting assays that circFCHO2 interacts with dead end protein homolog 1 (DND1) and reverses the inhibition of the PI3K/AKT signaling pathway by binding to DND1. Our findings reveal that circFCHO2 drives melanoma progression by regulating the PI3K/AKT signaling pathway through direct binding to DND1 and may serve as a potential diagnostic biomarker and therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Yang Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Jianrui Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yinlam Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Ming Ren
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yu Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yiteng Ding
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Chenlu Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Nanhang Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
79
|
van der Hiel B, Aalbersberg EA, van den Eertwegh AJM, de Wit-van der Veen LJ, Stokkel MPM, Lopez-Yurda M, Boellaard R, Kapiteijn EW, Hospers GAP, Aarts MJB, de Vos FYFL, Boers-Sonderen MJ, van der Veldt AAM, de Groot JWB, Haanen JBAG. The Predictive Value of FDG PET/CT for Determining Progression-Free Survival in Advanced Stage III-IV BRAF -Mutated Melanoma Patients Treated With Targeted Therapy-What Can Be Learned From Progression? Clin Nucl Med 2024; 49:138-145. [PMID: 38113329 DOI: 10.1097/rlu.0000000000004988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
PURPOSE The aims of this study were to investigate whether (early) PERCIST response monitoring with 18 F-FDG PET/CT is predictive for progression-free survival (PFS) in unresectable stage III or IV melanoma patients treated with BRAF/MEK inhibitor (MEKi) and to define dissemination patterns at progression with a lesion-based evaluation in direct comparison to baseline to improve our understanding of 18 F-FDG PET/CT during BRAF/MEKi. PATIENTS AND METHODS This prospective multicenter single-arm study included 70 patients with unresectable stage III/IV BRAF -mutated melanoma who underwent contrast-enhanced CT and 18 F-FDG PET/CT at baseline and 2 and 7 weeks during treatment with vemurafenib plus cobimetinib and at progression if possible. Tumor response assessment was done with RECIST1.1 and PERCIST. Follow-up PET/CT scans were visually compared with baseline to assess dissemination patterns. RESULTS Using RECIST1.1, PFS was not significantly different between the response groups ( P = 0.26). At 2 weeks, PERCIST median PFS was 15.7 months for patients with complete metabolic response (CMR) versus 8.3 months for non-CMR ( P = 0.035). The hazards ratio (HR) for progression/death in non-CMR versus CMR was 1.99 (95% confidence interval [CI], 1.03-3.84; P = 0.040) and 1.77 (95% CI, 0.91-3.43; P = 0.0935) when adjusting for lactate dehydrogenase (LDH). At 7 weeks, median PFS for PERCIST CMR was 16.7 months versus 8.5 months for non-CMR ( P = 0.0003). The HR for progression/death in the non-CMR group was significantly increased (HR, 2.94; 95% CI, 1.60-5.40; P = 0.0005), even when adjusting for LDH (HR, 2.65; 95% CI, 1.43-4.91; P = 0.0020). At week 7, 18 F-FDG PET/CT was false-positive in all 4 (6%) patients with new FDG-avid lesions but CMR of known metastases. When 18 F-FDG PET/CT was performed at progressive disease, 18/22 (82%) patients had progression of known metastases with or without new 18 F-FDG-avid lesions. CONCLUSIONS This study shows that PERCIST response assessment at week 7 is predictive for PFS, regardless of LDH. At 2 weeks, patients with CMR have longer PFS than patients with non-CMR, but different PET parameters should be investigated to further evaluate the added value of early 18 F-FDG PET/CT. Disease progression on PET/CT is predominated by progression of known metastases, and new 18 F-FDG-avid lesions during BRAF/MEKi are not automatically a sign of recurrent disease.
Collapse
Affiliation(s)
- Bernies van der Hiel
- From the Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek
| | - Else A Aalbersberg
- From the Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek
| | | | | | - Marcel P M Stokkel
- From the Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute-Antoni van Leeuwenhoek
| | - Ronald Boellaard
- Department of Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam
| | - Ellen W Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht
| | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht
| | | | | | | | | |
Collapse
|
80
|
Xue J, Lyu Q. Challenges and opportunities in rare cancer research in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:274-285. [PMID: 38036799 DOI: 10.1007/s11427-023-2422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of the major public health challenges in China. Rare cancers collectively account for a considerable proportion of all malignancies. The lack of awareness of rare cancers among healthcare professionals and the general public, the typically complex and delayed diagnosis, and limited access to clinical trials are key challenges. Recent years have witnessed an increase in funding for research related to rare cancers in China. In this review, we provide a comprehensive overview of rare cancers and summarize the status of research on rare cancers in China and overseas, including the trends of funding and publications. We also highlight the challenges and perspectives regarding rare cancers in China.
Collapse
Affiliation(s)
- Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Qunyan Lyu
- National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
81
|
Farah C, Mignion L, Jordan BF. Metabolic Profiling to Assess Response to Targeted and Immune Therapy in Melanoma. Int J Mol Sci 2024; 25:1725. [PMID: 38339003 PMCID: PMC10855758 DOI: 10.3390/ijms25031725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
There is currently no consensus to determine which advanced melanoma patients will benefit from targeted therapy, immunotherapy, or a combination of both, highlighting the critical need to identify early-response biomarkers to advanced melanoma therapy. The goal of this review is to provide scientific rationale to highlight the potential role of metabolic imaging to assess response to targeted and/or immune therapy in melanoma cancer. For that purpose, a brief overview of current melanoma treatments is provided. Then, current knowledge with respect to melanoma metabolism is described with an emphasis on major crosstalks between melanoma cell metabolism and signaling pathways involved in BRAF-targeted therapy as well as in immune checkpoint inhibition therapies. Finally, preclinical and clinical studies using metabolic imaging and/or profiling to assess response to melanoma treatment are summarized with a particular focus on PET (Positron Emission Tomography) imaging and 13C-MRS (Magnetic Resonance Spectroscopy) methods.
Collapse
Affiliation(s)
- Chantale Farah
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium;
| |
Collapse
|
82
|
Zhao Y, Liu Y, Liu Z, Ren K, Jiao D, Ren J, Wu P, Li X, Wang Z, Han X. In Situ Nanofiber Patch Boosts Postoperative Hepatocellular Carcinoma Immune Activation by Trimodal Combination Therapy. ACS NANO 2024; 18:245-263. [PMID: 38117780 PMCID: PMC10786167 DOI: 10.1021/acsnano.3c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.
Collapse
Affiliation(s)
- Yanan Zhao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yiming Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Zaoqu Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Kewei Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Dechao Jiao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Jianzhuang Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Ping Wu
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouguang Wang
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinwei Han
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
83
|
Basilicata M, Terrano V, D’Aurelio A, Bruno G, Troiani T, Bollero P, Napolitano S. Oral Adverse Events Associated with BRAF and MEK Inhibitors in Melanoma Treatment: A Narrative Literature Review. Healthcare (Basel) 2024; 12:105. [PMID: 38201012 PMCID: PMC10778825 DOI: 10.3390/healthcare12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Melanoma cancer represents the most lethal type of skin cancer originating from the malignant transformation of melanocyte cells. Almost 50% of melanomas show the activation of BRAF mutations. The identification and characterization of BRAF mutations led to the development of specific drugs that radically changed the therapeutic approach to melanoma. METHODS We conducted a narrative review of the literature according to a written protocol before conducting the study. This article is based on previously conducted studies. We identified articles by searching electronic databases (Medline, Google Scholar and PubMed). We used a combination of "melanoma", "Braf-Mek inhibitors", " targeted therapy" and "oral side effects". RESULTS Eighteen studies were reported in this article showing the relationship between the use of targeted therapy in melanoma cancer and the development of oral side effects, such as mucositis, hyperkeratosis and cellular proliferation. CONCLUSION Targeted therapy plays an important role in the treatment of melanoma cancer, showing a notable increase in response rate, prolonged progression-free survival and overall survival in BRAF-mutated melanoma patients. Oral side effects represent a common finding over the course of treatment. However, these adverse effects can be easily managed in a multidisciplinary approach involving collaboration between medical oncologists and dental doctors.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
- UniCamillus-Saint Camillus, International University of Health Sciences, 00131 Rome, Italy
| | - Vincenzo Terrano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| | - Alessandro D’Aurelio
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
| | - Giovanni Bruno
- Department of Neuroscience, University of Padua, 35121 Padova, Italy
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
| | - Teresa Troiani
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| |
Collapse
|
84
|
Boby A, Dugan MM, Ghali H, Aflatooni S, DePalo DK, Fan W, Zager JS. Isolated Limb Infusion as First, Second, or Third or Later-Line Therapy for Metastatic In-Transit Melanoma. Cancer Control 2024; 31:10732748241297326. [PMID: 39500581 PMCID: PMC11539175 DOI: 10.1177/10732748241297326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Ten percent of patients with melanoma develop in-transit metastases (ITM). Isolated limb infusion (ILI) is a well-established therapy for unresectable ITM on the extremities, but the ideal sequencing/line of therapy of ILI has not been defined. This study evaluates ILI as first-line, second-line, or third or later-line therapy. METHODS A retrospective review included all patients with unresectable ITM who underwent ILI from 2006-2023. RESULTS A total of 130 patients were identified, 61% female, median age of 71 (31-89) years. Median follow-up was 37.5 months. ILI was first-line therapy in 80% (n = 104), second-line in 15% (n = 19), and third or later-line in 5.4% (n = 7). Overall response rate (ORR) and complete response (CR) rates for ILI as any line of therapy were 74% and 41%, respectively. ORR for ILI as first, second, or third or later-line therapy were 78%, 63%, and 57%, respectively. CR rates for ILI as first, second, or third or later-line therapy were 42%, 37%, and 43%, respectively. There were no significant differences in ORR, progression-free survival (PFS), overall survival, or disease-free survival between therapy lines. Median PFS for ILI as first, second, or third or later-line therapy were 6.9, 5.4, and 18 months, respectively. CONCLUSION Patients responded well to ILI, whether or not they received previous therapies for unresectable ITM. First-line ILI appears to have a better ORR than later lines of ILI. Although sample size limited statistical significance, there was a 21% improvement in ORR when ILI was used as first-line vs third-line therapy, which is clinically meaningful. ILI is effective for unresectable melanoma ITM and can be used as salvage therapy.
Collapse
Affiliation(s)
- Aleena Boby
- University of South Florida Tampa, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michelle M. Dugan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Helana Ghali
- University of South Florida Tampa, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaliz Aflatooni
- University of South Florida Tampa, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Danielle K. DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of General Surgery, University of Massachusetts Chan Medical School, Boston, MA, USA
| | - Wenyi Fan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S. Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
85
|
Kozyra P, Pitucha M. Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma. Curr Med Chem 2024; 31:2003-2020. [PMID: 37855341 DOI: 10.2174/0109298673258495231011065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL, 20093, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL-20093, Poland
| |
Collapse
|
86
|
Zhang P, Kuil LE, Buil LCM, Freriks S, Beijnen JH, van Tellingen O, de Gooijer MC. Acquired and intrinsic resistance to vemurafenib in BRAF V600E -driven melanoma brain metastases. FEBS Open Bio 2024; 14:96-111. [PMID: 37953496 PMCID: PMC10761933 DOI: 10.1002/2211-5463.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BRAFV600 -mutated melanoma brain metastases (MBMs) are responsive to BRAF inhibitors, but responses are generally less durable than those of extracranial metastases. We tested the hypothesis that the drug efflux transporters P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2) expressed at the blood-brain barrier (BBB) offer MBMs protection from therapy. We intracranially implanted A375 melanoma cells in wild-type (WT) and Abcb1a/b;Abcg2-/- mice, characterized the tumor BBB, analyzed drug levels in plasma and brain lesions after oral vemurafenib administration, and determined the efficacy against brain metastases and subcutaneous lesions. Although contrast-enhanced MRI demonstrated that the integrity of the BBB is disrupted in A375 MBMs, vemurafenib achieved greater antitumor efficacy against MBMs in Abcb1a/b;Abcg2-/- mice compared with WT mice. Concordantly, P-gp and BCRP are expressed in MBM-associated brain endothelium both in patients and in A375 xenografts and expression of these transporters limited vemurafenib penetration into A375 MBMs. Although initially responsive, A375 MBMs rapidly developed therapy resistance, even in Abcb1a/b;Abcg2-/- mice, and this was unrelated to pharmacokinetic or target inhibition issues. Taken together, we demonstrate that both intrinsic and acquired resistance can play a role in MBMs.
Collapse
Affiliation(s)
- Ping Zhang
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityChina
- Shandong Provincial Key Laboratory of Brain Function Remodeling, Qilu HospitalShandong UniversityChina
| | - Laura Esmee Kuil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Psychosocial Sciences and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Levi Conrad Maria Buil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stephan Freriks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Hendrik Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/MC Slotervaart HospitalAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityThe Netherlands
| | - Olaf van Tellingen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Cornelis de Gooijer
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| |
Collapse
|
87
|
Zhang S, Xie R, Zhong A, Chen J. Targeted therapeutic strategies for melanoma. Chin Med J (Engl) 2023; 136:2923-2930. [PMID: 37144745 PMCID: PMC10752476 DOI: 10.1097/cm9.0000000000002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
ABSTRACT Melanoma accounts for a small proportion of skin cancers diagnosed each year, but it has a high degree of malignancy and rapid progression, resulting in a short survival period for patients. The incidence of melanoma continues to rise, and now melanoma accounts for 1.7% of cancer diagnoses worldwide and is the fifth most common cancer in the United States. With the development of high-throughput sequencing technologies, the understanding of the pathophysiology of melanoma had also been improved. The most common activating mutations in melanoma cells are BRAF , NRAS , and KIT mutations, which disrupt cell signaling pathways related to tumor proliferation. The progress has led to the emergence of molecularly targeted drugs, which extends the survival of patients with advanced melanoma. A large number of clinical trials have been conducted to confirm that targeted therapy for patients with advanced melanoma can improve progression-free survival and overall survival, and for stage III patients after radical tumor resection targeted therapy can reduce the recurrence of melanoma. Patients who were originally stage III or IV inoperable have the opportunity to achieve tumor radical resection after targeted therapy. This article reviewed the clinical trial data and summarized the clinical benefits and limitations of these therapies.
Collapse
Affiliation(s)
| | | | | | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
88
|
Alvarez J, Smith JJ. Anorectal mucosal melanoma. SEMINARS IN COLON AND RECTAL SURGERY 2023; 34:100990. [PMID: 38746826 PMCID: PMC11090490 DOI: 10.1016/j.scrs.2023.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Anorectal mucosal melanoma accounts for less than 1 % of all anorectal malignant tumors and a tendency for delayed diagnosis leads to advanced disease at presentation.1,2 Due to the rarity of the disease, there are limited prospective trials exploring the optimal treatment strategies. Generally, tumors are surgically excised, with a preference for conservative management with wide local excision. In the past decade, there have been advances with immunotherapy and other targeted therapies. Multiple clinical trials continue exploring neoadjuvant/adjuvant combination treatments in the setting of advanced or unresectable disease.
Collapse
Affiliation(s)
- Janet Alvarez
- Research Scholar, Memorial Sloan Kettering Cancer Center, Department of Surgery, 1275 York Avenue | SR-201, New York, NY 10065, USA
| | - J. Joshua Smith
- Associate Member, Associate Attending Surgeon, Memorial Sloan Kettering Cancer Center, Colorectal Service, Department of Surgery, 1275 York Avenue, SR-201, New York, NY 10065, USA
| |
Collapse
|
89
|
Sherman WJ, Romiti E, Michaelides L, Moniz-Garcia D, Chaichana KL, Quiñones-Hinojosa A, Porter AB. Systemic Therapy for Melanoma Brain and Leptomeningeal Metastases. Curr Treat Options Oncol 2023; 24:1962-1977. [PMID: 38158477 DOI: 10.1007/s11864-023-01155-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
OPINION STATEMENT Melanoma has a high propensity to metastasize to the brain which portends a poorer prognosis. With advanced radiation techniques and targeted therapies, outcomes however are improving. Melanoma brain metastases are best managed in a multi-disciplinary approach, including medical oncologists, neuro-oncologists, radiation oncologists, and neurosurgeons. The sequence of therapies is dependent on the number and size of brain metastases, status of systemic disease control, prior therapies, performance status, and neurological symptoms. The goal of treatment is to minimize neurologic morbidity and prolong both progression free and overall survival while maximizing quality of life. Surgery should be considered for solitary metastases, or large and/or symptomatic metastases with edema. Stereotactic radiosurgery offers a benefit over whole-brain radiation attributed to the relative radioresistance of melanoma and reduction in neurotoxicity. Thus far, data supports a more durable response with systemic therapy using combination immunotherapy of ipilimumab and nivolumab, though targeting the presence of BRAF mutations can also be utilized. BRAF inhibitor therapy is often used after immunotherapy failure, unless a more rapid initial response is needed and then can be done prior to initiating immunotherapy. Further trials are needed, particularly for leptomeningeal metastases which currently require the multi-disciplinary approach to determine best treatment plan.
Collapse
Affiliation(s)
- Wendy J Sherman
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| | - Edoardo Romiti
- Vita e Salute San Raffaele University in Milan, Via Olgettina, 58, 20132, Milan, MI, Italy
| | - Loizos Michaelides
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | - Alyx B Porter
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
90
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
91
|
Xie J, Mo T, Li R, Zhang H, Liang G, Ma T, Chen J, Xie H, Wen X, Hu T, Xian Z, Pan W. The m 7G Reader NCBP2 Promotes Pancreatic Cancer Progression by Upregulating MAPK/ERK Signaling. Cancers (Basel) 2023; 15:5454. [PMID: 38001714 PMCID: PMC10670634 DOI: 10.3390/cancers15225454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
PDAC is one of the most common malignant tumors worldwide. The difficulty of early diagnosis and lack of effective treatment are the main reasons for its poor prognosis. Therefore, it is urgent to identify novel diagnostic and therapeutic targets for PDAC patients. The m7G methylation is a common type of RNA modification that plays a pivotal role in regulating tumor development. However, the correlation between m7G regulatory genes and PDAC progression remains unclear. By integrating gene expression and related clinical information of PDAC patients from TCGA and GEO cohorts, m7G binding protein NCBP2 was found to be highly expressed in PDAC patients. More importantly, PDAC patients with high NCBP2 expression had a worse prognosis. Stable NCBP2-knockdown and overexpression PDAC cell lines were constructed to further perform in-vitro and in-vivo experiments. NCBP2-knockdown significantly inhibited PDAC cell proliferation, while overexpression of NCBP2 dramatically promoted PDAC cell growth. Mechanistically, NCBP2 enhanced the translation of c-JUN, which in turn activated MEK/ERK signaling to promote PDAC progression. In conclusion, our study reveals that m7G reader NCBP2 promotes PDAC progression by activating MEK/ERK pathway, which could serve as a novel therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Jiancong Xie
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Taiwei Mo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hao Zhang
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tao Ma
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Jing Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hanlin Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaofeng Wen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhenyu Xian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weidong Pan
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| |
Collapse
|
92
|
Lasala R, Santoleri F, Romagnoli A, Abrate P, Musicco F, Costantini A. Medication adherence reporting in pivotal clinical trials: overview of oral oncological drugs. Eur J Hosp Pharm 2023; 30:328-332. [PMID: 35058307 PMCID: PMC10647863 DOI: 10.1136/ejhpharm-2021-002998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To assess how and to what extent adherence to medication is reported in pivotal clinical trials of oral cancer drugs. METHODS All drugs authorised by the European Medicines Agency from 1 January 2014 to 31 December 2019 were considered for analysis. For each pivotal trial we extracted the journal of publication, phase of the study, posology, mention of adherence within the main text of the published article or additional material and the terms in which the adherence was reported. RESULTS Thirty drugs were included in the analysis from 56 clinical trials. Eleven articles (19.6%) contained a mention of medication adherence in the main document, 26 (46.4%) in the supplementary material and 19 (33.9%) did not contain any reference to adherence. Seven studies reported medication adherence between the results, expressed as number of patients discontinuing treatment for non-compliance and mean or median percentage. CONCLUSIONS Medication adherence in pivotal clinical trials of oral oncological drugs is poorly represented. There should be a greater level of reporting in the results and it should be included among the minimum set of recommendations in reporting health research.
Collapse
|
93
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
94
|
Seth R, Agarwala SS, Messersmith H, Alluri KC, Ascierto PA, Atkins MB, Bollin K, Chacon M, Davis N, Faries MB, Funchain P, Gold JS, Guild S, Gyorki DE, Kaur V, Khushalani NI, Kirkwood JM, McQuade JL, Meyers MO, Provenzano A, Robert C, Santinami M, Sehdev A, Sondak VK, Spurrier G, Swami U, Truong TG, Tsai KK, van Akkooi A, Weber J. Systemic Therapy for Melanoma: ASCO Guideline Update. J Clin Oncol 2023; 41:4794-4820. [PMID: 37579248 DOI: 10.1200/jco.23.01136] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE To provide guidance to clinicians regarding the use of systemic therapy for melanoma. METHODS American Society of Clinical Oncology convened an Expert Panel and conducted an updated systematic review of the literature. RESULTS The updated review identified 21 additional randomized trials. UPDATED RECOMMENDATIONS Neoadjuvant pembrolizumab was newly recommended for patients with resectable stage IIIB to IV cutaneous melanoma. For patients with resected cutaneous melanoma, adjuvant nivolumab or pembrolizumab was newly recommended for stage IIB-C disease and adjuvant nivolumab plus ipilimumab was added as a potential option for stage IV disease. For patients with unresectable or metastatic cutaneous melanoma, nivolumab plus relatlimab was added as a potential option regardless of BRAF mutation status and nivolumab plus ipilimumab followed by nivolumab was preferred over BRAF/MEK inhibitor therapy. Talimogene laherparepvec is no longer recommended as an option for patients with BRAF wild-type disease who have progressed on anti-PD-1 therapy. Ipilimumab- and ipilimumab-containing regimens are no longer recommended for patients with BRAF-mutated disease after progression on other therapies.This full update incorporates the new recommendations for uveal melanoma published in the 2022 Rapid Recommendation Update.Additional information is available at www.asco.org/melanoma-guidelines.
Collapse
Affiliation(s)
- Rahul Seth
- SUNY Upstate Medical University, Syracuse, NY
| | - Sanjiv S Agarwala
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | - Matias Chacon
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Nancy Davis
- Vanderbilt University Medical Center, Nashville, TN
| | - Mark B Faries
- The Angeles Clinic and Research Institute and Cedars Sinai Medical Center, Los Angeles, CA
| | | | | | | | | | | | | | - John M Kirkwood
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Institute, Pittsburgh, PA
| | | | - Michael O Meyers
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Caroline Robert
- Gustave Roussy Cancer Centre and Paris-Saclay University, Villejuif, France
| | - Mario Santinami
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Vernon K Sondak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Umang Swami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Katy K Tsai
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Alexander van Akkooi
- Melanoma Institute Australia, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| |
Collapse
|
95
|
Peisen F, Gerken A, Hering A, Dahm I, Nikolaou K, Gatidis S, Eigentler TK, Amaral T, Moltz JH, Othman AE. Can Whole-Body Baseline CT Radiomics Add Information to the Prediction of Best Response, Progression-Free Survival, and Overall Survival of Stage IV Melanoma Patients Receiving First-Line Targeted Therapy: A Retrospective Register Study. Diagnostics (Basel) 2023; 13:3210. [PMID: 37892030 PMCID: PMC10605712 DOI: 10.3390/diagnostics13203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as well as overall survival after six and twelve months in patients with stage IV malignant melanoma undergoing first-line targeted therapy. METHODS A baseline machine-learning model using clinical variables (demographic parameters and tumor markers) was compared with an extended model using clinical variables and radiomic features of the whole tumor burden, utilizing repeated five-fold cross-validation. Baseline CTs of 91 stage IV malignant melanoma patients, all treated in the same university hospital, were identified in the Central Malignant Melanoma Registry and all metastases were volumetrically segmented (n = 4727). RESULTS Compared with the baseline model, the extended radiomics model did not add significantly more information to the best-response prediction (AUC [95% CI] 0.548 (0.188, 0.808) vs. 0.487 (0.139, 0.743)), the prediction of PFS after six months (AUC [95% CI] 0.699 (0.436, 0.958) vs. 0.604 (0.373, 0.867)), or the overall survival prediction after six and twelve months (AUC [95% CI] 0.685 (0.188, 0.967) vs. 0.766 (0.433, 1.000) and AUC [95% CI] 0.554 (0.163, 0.781) vs. 0.616 (0.271, 1.000), respectively). CONCLUSIONS The results showed no additional value of baseline whole-body CT radiomics for best-response prediction, progression-free survival prediction for six months, or six-month and twelve-month overall survival prediction for stage IV melanoma patients receiving first-line targeted therapy. These results need to be validated in a larger cohort.
Collapse
Affiliation(s)
- Felix Peisen
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Annika Gerken
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Alessa Hering
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
- Diagnostic Image Analysis Group, Radboud University Medical Center (Radboudumc), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Isabel Dahm
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Image-Guided and Functionally Instructed Tumor Therapies (iFIT), The Cluster of Excellence (EXC 2180), 72076 Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tuebingen, Germany
| | - Thomas K. Eigentler
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humbolt-Universität zu Berlin, Luisenstraße 2, 10117 Berlin, Germany
| | - Teresa Amaral
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
| | - Jan H. Moltz
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Institute of Neuroradiology, Johannes Gutenberg University Hospital Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
96
|
Ascierto PA, Dummer R, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion-Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Robert C, Flaherty KT. Contribution of MEK Inhibition to BRAF/MEK Inhibitor Combination Treatment of BRAF-Mutant Melanoma: Part 2 of the Randomized, Open-Label, Phase III COLUMBUS Trial. J Clin Oncol 2023; 41:4621-4631. [PMID: 37506329 PMCID: PMC10564308 DOI: 10.1200/jco.22.02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In COLUMBUS part 1, patients with advanced BRAFV600-mutant melanoma were randomly assigned 1:1:1 to encorafenib 450 mg once daily plus binimetinib 45 mg twice a day (COMBO450), vemurafenib 960 mg twice a day, or encorafenib 300 mg once daily (ENCO300). As previously reported, COMBO450 improved progression-free survival (PFS) versus vemurafenib (part 1 primary end point) and ENCO300 (part 1 key secondary end point; not statistically significant). Part 2, requested by the US Food and Drug Administration, evaluated the contribution of binimetinib by maintaining the same encorafenib dosage in the combination (encorafenib 300 mg once daily plus binimetinib 45 mg twice daily [COMBO300]) and ENCO300 arms. METHODS In part 2, patients were randomly assigned 3:1 to COMBO300 or ENCO300. ENCO300 (parts 1 and 2) data were combined, per protocol, for PFS analysis (key secondary end point) by a blinded independent review committee (BIRC). Other analyses included overall response rate (ORR), overall survival, and safety. RESULTS Two hundred fifty-eight patients received COMBO300, and 86 received ENCO300. Per protocol, ENCO300 arms (parts 1 and 2 combined) were also evaluated (n = 280). The median follow-up for ENCO300 was 40.8 months (part 1) and 57.1 months (part 2). The median PFS (95% CI) was 12.9 months (10.9 to 14.9) for COMBO300 versus 9.2 months (7.4 to 11.1) for ENCO300 (parts 1 and 2) and 7.4 months (5.6 to 9.2) for ENCO300 (part 2). The hazard ratio (95% CI) for COMBO300 was 0.74 (0.60 to 0.92; two-sided P = .003) versus ENCO300 (parts 1 and 2). The ORR by BIRC (95% CI) was 68% (62 to 74) and 51% (45 to 57) for COMBO300 and ENCO300 (parts 1 and 2), respectively. COMBO300 had greater relative dose intensity and fewer grade 3/4 adverse events than ENCO300. CONCLUSION COMBO300 improved PFS, ORR, and tolerability compared with ENCO300, confirming the contribution of binimetinib to efficacy and safety.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Melanoma Unit, Cancer Immunotherapy and Innovative Therapies, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich Skin Cancer Center, Zürich, Switzerland
| | - Helen J. Gogas
- Department of Internal Medicine, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Ana Arance
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mario Mandala
- Santa Maria Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriella Liszkay
- Department of Dermatology, National Institute of Oncology, Budapest, Hungary
| | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Ivana Krajsova
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Minden, Mühlenkreiskliniken, Ruhr University Bochum, Minden, Germany
| | | | - Caroline Dutriaux
- Department of Oncologic Dermatology, Bordeaux University Hospital Center, Bordeaux Cédex, France
| | | | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheitnord gGmbH, Bremen, Germany
| | - Caroline Robert
- Department of Medicine, Service of Dermatology, Paris-Saclay University, Cedex, France
| | | |
Collapse
|
97
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
98
|
Pelizzari G, Bertoli E, Buriolla S, Vitale MG, Basile D, Palmero L, Zara D, Iacono D, Andrea F, Pascoletti G, Bolzonello S, Garutti M, Fasola G, Puglisi F, Minisini AM. Estimating survival in patients with melanoma brain metastases: prognostic value of lactate dehydrogenase. Melanoma Res 2023; 33:398-405. [PMID: 37402350 DOI: 10.1097/cmr.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Patients with melanoma brain metastases (MBM) have poor prognosis, albeit advances in locoregional and systemic treatments. The melanoma-specific Graded Prognostic Assessment (GPA) effectively stratifies survival for patients with MBM. Nevertheless, lactate dehydrogenase (LDH), a well known prognostic factor for patients with melanoma, is not represented in the GPA scores and might add prognostic information for patients with MBM. In this study, 150 consecutive patients with MBM were retrospectively analyzed with the aim of evaluating independent prognostic factors for MBM patients, including LDH. Furthermore, we implemented a disease-specific prognostic score and estimated survival according to treatment modalities. On the basis of multivariable Cox regression analyses, six prognostic factors (age, BRAF status, number of MBM, number of extracranial metastatic sites, performance status, and LDH level) resulted statistically significant in terms of survival and were combined in a prognostic score to stratify patients in distinct prognostic groups ( P < 0.0001). Among treatment modalities, a multimodal approach with stereotactic radiosurgery or neurosurgery associated with systemic therapy showed the best outcome (median overall survival: 12.32 months, 95% confidence interval, 7.92-25.30). This is the first study to demonstrate that LDH has independent prognostic value for patients with MBM and might be used to improve prognostic stratification, albeit external validation is mandatory. Survival of patients with MBM is affected by both disease-specific risk factors and treatment modalities, with locoregional treatments associated with better outcomes.
Collapse
Affiliation(s)
- Giacomo Pelizzari
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC)
| | - Elisa Bertoli
- Department of Medicine (DAME), University of Udine, Udine
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Silvia Buriolla
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC)
- Department of Medicine (DAME), University of Udine, Udine
| | - Maria Grazia Vitale
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli
| | - Debora Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - Lorenza Palmero
- Department of Medicine (DAME), University of Udine, Udine
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Diego Zara
- Department of Medicine (DAME), University of Udine, Udine
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Donatella Iacono
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC)
| | - Freschi Andrea
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Gaetano Pascoletti
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC)
| | - Silvia Bolzonello
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Mattia Garutti
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | - Gianpiero Fasola
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC)
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Udine
- Department of Medical Oncology, CRO Aviano National Cancer Institute IRCSS, Aviano
| | | |
Collapse
|
99
|
Karras F, Bonsack M, Seifert S, Friedrich L, Kunz M. MEK inhibition induces expression of differentiation marker Keratin 10 in human keratinocytes. Pathol Res Pract 2023; 250:154788. [PMID: 37729782 DOI: 10.1016/j.prp.2023.154788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BRAF mutant metastatic melanoma was regularly treated in the past with a BRAF inhibitor (BRAFi) alone or in combination with inhibitors of the mitogen-activated protein kinase kinase (MEKi), which is still a common treatment. This combination therapy strongly reduced the occurrence of keratoacanthomas and squamous cell carcinoma, which was frequently seen when BRAFi was used as monotherapy. Here we addressed the question whether MEK inhibition counteracts squamous cell carcinoma development in part by promoting keratinocyte differentiation. Exposure of human immortalized keratinocytes to different concentrations of MEKi revealed a significant increase in the expression of differentiation-associated keratins K10 and K1 as determined by qRT-PCR and immunofluorescence staining. Taken together, the present study suggests that in a combined treatment of melanoma with BRAFi/MEKi, MEKi reduces the incidence of squamous cell carcinomas by promoting keratinocyte differentiation under combined BRAFi/MEKi treatment in melanoma. This might open further treatment perspectives for skin cancer treatment.
Collapse
Affiliation(s)
- F Karras
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany; Institute of Pathology, University Hospital Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - M Bonsack
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - S Seifert
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - L Friedrich
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - M Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
100
|
Augustyn K, Joseph J, Patel AB, Razmandi A, Ali AN, Tawbi HA. Treatment experience with encorafenib plus binimetinib for BRAF V600-mutant metastatic melanoma: management insights for clinical practice. Melanoma Res 2023; 33:406-416. [PMID: 37534686 PMCID: PMC10470431 DOI: 10.1097/cmr.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/24/2023] [Indexed: 08/04/2023]
Abstract
For patients with locally advanced or metastatic melanoma who have BRAF V600 activating mutations, combination therapy with BRAF and MEK inhibitors is now the standard of care. The combination of encorafenib, a highly selective adenosine triphosphate-competitive BRAF inhibitor, plus binimetinib, a potent, selective, allosteric, non-adenosine triphosphate-competitive MEK1/2 inhibitor, was approved by the US Food and Drug Administration for unresectable or metastatic melanoma with BRAF V600E or V600K mutations based on data from the phase III COLUMBUS study (NCT01909453). Clinical data evaluating BRAF and MEK inhibitor combinations in advanced melanoma indicate a specific profile of adverse events that includes serious retinopathy, skin disorders, and cardiovascular toxicities. Here we provide an overview of the rationale for combining BRAF and MEK inhibitors for the treatment of melanoma, long-term safety results from COLUMBUS, and guidance on managing the most common adverse events associated with this combination based on clinical experience. Proactive and appropriate management of adverse events can allow for longer treatment durations and may result in better treatment outcomes.
Collapse
Affiliation(s)
- Kourtney Augustyn
- Department of Melanoma Medical Oncology, Division of Cancer Medicine
| | | | | | - Azadeh Razmandi
- Department of Head and Neck Surgery, Division of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amatul Noor Ali
- Department of Head and Neck Surgery, Division of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, Division of Cancer Medicine
| |
Collapse
|