51
|
Opgenorth PH, Korman TP, Bowie JU. A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat Commun 2014; 5:4113. [PMID: 24936528 DOI: 10.1038/ncomms5113] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/14/2014] [Indexed: 12/19/2022] Open
Abstract
The greatest potential environmental benefit of metabolic engineering would be the production of high-volume commodity chemicals, such as biofuels. Yet, the high yields required for the economic viability of low-value chemicals is particularly hard to achieve in microbes owing to the myriad competing biochemical pathways. An alternative approach, which we call synthetic biochemistry, is to eliminate the organism by constructing biochemical pathways in vitro. Viable synthetic biochemistry, however, will require simple methods to replace the cellular circuitry that maintains cofactor balance. Here we design a simple purge valve module for maintaining NADP(+)/NADPH balance. We test the purge valve in the production of polyhydroxybutyryl bioplastic and isoprene--pathways where cofactor generation and utilization are unbalanced. We find that the regulatory system is highly robust to variations in cofactor levels and readily transportable. The molecular purge valve provides a step towards developing continuously operating, sustainable synthetic biochemistry systems.
Collapse
Affiliation(s)
- Paul H Opgenorth
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - James U Bowie
- 1] Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA [2] Boyer Hall, UCLA, 611 Charles E Young Drive East, Los Angeles, California 90095-1570, USA
| |
Collapse
|
52
|
Greschner W, Lanzerath C, Reß T, Tenbrink K, Borchert S, Mix A, Hummel W, Gröger H. Artificial cofactor regeneration with an iron(III)porphyrin as NADH-oxidase mimic in the enzymatic oxidation of l-glutamate to α-ketoglutarate. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
53
|
Tetianec L, Chaleckaja A, Vidziunaite R, Kulys J, Bachmatova I, Marcinkeviciene L, Meskys R. Development of a laccase/syringaldazine system for NAD(P)H oxidation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
|
55
|
Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J Biosci Bioeng 2014; 118:188-94. [PMID: 24525111 DOI: 10.1016/j.jbiosc.2014.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Chemical synthesis of 1,3-propanediol (1,3-PD) is environmentally unfriendly and hence its microbial production is preferred, especially for biomedical, cosmetic and textile applications. In this work, production of 1,3-PD by co-fermentation of glucose and glycerol by Lactobacillus reuteri was investigated under different cultivation conditions such as aeration, acetate concentration and different molar ratios of glucose/glycerol. The final concentration of 1,3-PD and yield attained under unaerated conditions was close to that obtained under anaerobic conditions. Addition of acetate in the initial medium at 5 g/l increased the productivity of 1,3-PD but above this concentration it was found to be inhibitory. Batch reactor experiments showed that the molar ratio of glucose and glycerol in the medium affected the fermentation pattern. The effect of molar ratios was further investigated in fed-batch fermentation and the optimum ratio was found to be 1.5. In repeated fed-batch fermentation with co-feeding of glucose and glycerol in the molar ratio of 1.5, 1,3-PD concentration reached up to 65.3 g/l, which is the highest 1,3-PD concentration reported so far for this strain. The yield (0.97 mol/mol) based on glycerol utilized also approached the theoretical value (1 mol/mol).
Collapse
|
56
|
Paul CE, Lavandera I, Gotor-Fernández V, Kroutil W, Gotor V. Escherichia coli/ADH-A: An All-Inclusive Catalyst for the Selective Biooxidation and Deracemisation of Secondary Alcohols. ChemCatChem 2013. [DOI: 10.1002/cctc.201300409] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
57
|
Könst P, Kara S, Kochius S, Holtmann D, Arends IWCE, Ludwig R, Hollmann F. Expanding the Scope of Laccase-Mediator Systems. ChemCatChem 2013. [DOI: 10.1002/cctc.201300205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
58
|
Beigi M, Waltzer S, Fries A, Eggeling L, Sprenger GA, Müller M. TCA Cycle Involved Enzymes SucA and Kgd, as well as MenD: Efficient Biocatalysts for Asymmetric C–C Bond Formation. Org Lett 2013; 15:452-5. [DOI: 10.1021/ol3031186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maryam Beigi
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Simon Waltzer
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Fries
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lothar Eggeling
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Georg A. Sprenger
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany, Institute of Bio- and Geoscience, IBG-1: Biotechnology, Research Centre Jülich, 52425 Jülich, Germany, and Institute of Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
59
|
Beigi M, Loschonsky S, Lehwald P, Brecht V, Andrade SLA, Leeper FJ, Hummel W, Müller M. α-Hydroxy-β-keto acid rearrangement–decarboxylation: impact on thiamine diphosphate-dependent enzymatic transformations. Org Biomol Chem 2013; 11:252-6. [DOI: 10.1039/c2ob26981c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
|
61
|
Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. BIORESOURCE TECHNOLOGY 2012; 119:94-98. [PMID: 22728188 DOI: 10.1016/j.biortech.2012.05.108] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Abstract
Cofactor engineering was employed to enhance production of acetoin by Serratia marcescens H32. 2,3-Butanediol was a major byproduct of acetoin fermentation by S. marcescens H32. In order to decrease 2,3-butanediol formation and achieve a high efficiency of acetoin production, nox gene encoding a water-forming NADH oxidase from Lactobacillus brevis was expressed. Batch fermentations suggested the expression of the NADH oxidase could increase the intracellular NAD(+) concentration (1.5-fold) and NAD(+)/NADH ratio (2.9-fold). Meanwhile, 2,3-butanediol was significantly decreased (52%), and the accumulation of acetoin was enhanced (33%) accordingly. By fed-batch culture of the engineered strain, the final acetoin titer up to 75.2g/l with the productivity of 1.88 g/(lh) was obtained. To the best of our knowledge, these results were new records on acetoin fermentation ever reported.
Collapse
Affiliation(s)
- Jian-An Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
62
|
Coenzyme regeneration in hexanol oxidation catalyzed by alcohol dehydrogenase. Appl Biochem Biotechnol 2012; 167:595-611. [PMID: 22581078 DOI: 10.1007/s12010-012-9712-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
The enzymatic ways of coenzyme regeneration include the addition of a second enzyme to the system or the addition of the co-substrate. In the present study, both methods of enzymatic coenzyme (NAD(+)) regeneration were studied and compared in the reaction of hexanol oxidation catalyzed by alcohol dehydrogenase (ADH). As a source of ADH, commercial isolated enzyme and the whole baker's yeast cells were used. First, coenzyme regeneration was employed in the reaction of acetaldehyde reduction catalyzed by the same enzyme that catalyzed the main reaction, and then NAD(+) regeneration was applied in the reaction of pyruvate reduction catalyzed by L-lactate dehydrogenase (L-LDH). Hexanal was obtained as the product of hexanol oxidation catalyzed by isolated ADH while hexaonic acid was detected as a product of the same reaction catalyzed by baker's yeast cells. All of the used biocatalysts were kinetically characterized. The mass reactions were described by the mathematical models. All models were validated in the batch reactor. One hundred percent hexanol conversion was obtained using permeabilized yeast cells using both methods of cofactor regeneration. By using isolated enzyme ADH, the higher conversion was achieved in a system with cofactor regeneration catalyzed by L-LDH.
Collapse
|
63
|
Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres. Enzyme Microb Technol 2012; 50:331-6. [DOI: 10.1016/j.enzmictec.2012.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/24/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022]
|
64
|
Kochius S, Magnusson AO, Hollmann F, Schrader J, Holtmann D. Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol 2012; 93:2251-64. [PMID: 22327354 DOI: 10.1007/s00253-012-3900-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
The applicability of dissolved redox mediators for NAD(P)(+) regeneration has been demonstrated several times. Nevertheless, the use of mediators in solutions for sensor applications is not a very convenient strategy since the analysis is not reagentless and long stabilization times occur. The most important drawbacks of dissolved mediators in biocatalytic applications are interferences during product purification, limited reusability of the mediators, and their cost-intensive elimination from wastewater. Therefore, the use of immobilized mediators has both economic and ecological advantages. This work critically reviews the current state-of-art of immobilized redox mediators for electrochemical NAD(P)(+) regeneration. Various surface modification techniques, such as adsorption polymerization and covalent linkage, as well as the corresponding NAD(P)(+) regeneration rates and the operational stability of the immobilized mediator films, will be discussed. By comparison with other existing regeneration systems, the technical potential and future perspectives of biocatalytic redox reactions based on electrochemically fed immobilized mediators will be assessed.
Collapse
|
65
|
Wang L, Chong H, Jiang R. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Appl Microbiol Biotechnol 2012; 96:1265-73. [PMID: 22311647 DOI: 10.1007/s00253-012-3919-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Bacillus cereus (B. cereus) is an ubiquitous facultative anaerobic bacterium, and its growth in aerobic environment correlates to the functions of its oxygen defense system. Water-forming NADH oxidase (nox-2) can catalyze the conversion of oxygen to water with concomitant NADH oxidation in anaerobic microorganisms. Here, we report the cloning and characterization of two annotated nox-2 s (nox-2(444) and nox-2(554)) from B. cereus ATCC 14579 and their comparison with another oxidative stress defense system alkyl hydroperoxide reductase (AhpR) from this microbe, which composed of two enzymes-hydrogen peroxide-forming NADH oxidase (nox-1) and peroxidase. Both nox-2 and AhpR catalyze the same reaction in the presence of oxygen. With the stimulation of exogenously added FAD, the maximum activity of nox-1, nox-2(444), and nox-2(554) could reach 27.7 U/mg, 22.9 U/mg, and 2.4 U/mg, respectively, at pH 7.0, 30 °C. Different from nox-1, both nox-2 s were thermotolerant enzymes and could maintain above 87% of their optimum activity at 80 °C, which was not found in other nox-2 s. As for operational stability, all are turnover-limited. Exogenously added reductive reagent dithiothreitol could dramatically increase the total turnover number of nox-2(444) and nox-2(554) by twofold and threefold, respectively, but had no effect on AhpR or nox-1.
Collapse
Affiliation(s)
- Liang Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | | | | |
Collapse
|
66
|
Zhang YW, Tiwari MK, Gao H, Dhiman SS, Jeya M, Lee JK. Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Enzyme Microb Technol 2012; 50:255-62. [PMID: 22418266 DOI: 10.1016/j.enzmictec.2012.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/13/2012] [Accepted: 01/28/2012] [Indexed: 11/30/2022]
Abstract
NADH oxidase (Nox) catalyzes the conversion of NADH to NAD(+). A previously uncharacterized Nox gene (LrNox) was cloned from Lactobacillus rhamnosus and overexpressed in Escherichia coli BL21(DE3). Sequence analysis revealed an open reading frame of 1359 bp, capable of encoding a polypeptide of 453 amino acid residues. The molecular mass of the purified LrNox enzyme was estimated to be ~50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 100 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had optimal activity at pH 5.6 and temperature 65 °C, and k(cat)/K(m) of 3.77×10(7) s(-1) M(-1), the highest ever reported. Heat inactivation studies revealed that LrNox had high thermostability, with a half-life of 120 min at 80 °C. Molecular dynamics simulation studies shed light on the factors contributing to the high activity of LrNox. Although the properties of Nox from several microorganisms have been reported, this is the first report on the characterization of a recombinant H(2)O-forming Nox with high activity and thermostability. The characteristics of the LrNox enzyme could prove to be of interest in industrial applications such as NAD(+) regeneration.
Collapse
Affiliation(s)
- Ye-Wang Zhang
- Department of Chemical Engineering, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
67
|
The human ubiquitin C promoter drives selective expression in principal neurons in the brain of a transgenic mouse line. Neurochem Int 2011; 59:976-80. [DOI: 10.1016/j.neuint.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/13/2011] [Indexed: 01/26/2023]
|
68
|
Park JT, Hirano JI, Thangavel V, Riebel BR, Bommarius AS. NAD(P)H oxidase V from Lactobacillus plantarum (NoxV) displays enhanced operational stability even in absence of reducing agents. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, Fukui T. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺. Biotechnol Bioeng 2011; 109:53-62. [PMID: 21830202 DOI: 10.1002/bit.23294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/07/2022]
Abstract
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.
Collapse
Affiliation(s)
- Xi Wu
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
Hall M, Bommarius AS. Enantioenriched Compounds via Enzyme-Catalyzed Redox Reactions. Chem Rev 2011; 111:4088-110. [DOI: 10.1021/cr200013n] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélanie Hall
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
71
|
|
72
|
Monti D, Ottolina G, Carrea G, Riva S. Redox Reactions Catalyzed by Isolated Enzymes. Chem Rev 2011; 111:4111-40. [DOI: 10.1021/cr100334x] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Giacomo Carrea
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
73
|
Maid H, Böhm P, Huber SM, Bauer W, Hummel W, Jux N, Gröger H. Eisenkatalyse zur In-situ-Regenerierung oxidierter Cofaktoren durch Aktivierung und Reduktion von O2: ein synthetisches Metalloporphyrin als biomimetische NAD(P)H-Oxidase. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
74
|
Maid H, Böhm P, Huber SM, Bauer W, Hummel W, Jux N, Gröger H. Iron Catalysis for In Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen: A Synthetic Metalloporphyrin as a Biomimetic NAD(P)H Oxidase. Angew Chem Int Ed Engl 2011; 50:2397-400. [DOI: 10.1002/anie.201004101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/01/2010] [Indexed: 11/06/2022]
|
75
|
Richter N, Zienert A, Hummel W. A single-point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
76
|
Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol Bioeng 2010; 106:541-52. [PMID: 20198657 DOI: 10.1002/bit.22714] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A whole-cell catalyst using Escherichia coli BL21(DE3) as a host, co-expressing glycerol dehydrogenase (GlyDH) from Gluconobacter oxydans and glucose dehydrogenase (GDH) from Bacillus subtilis for cofactor regeneration, has been successfully constructed and used for the reduction of aliphatic aldehydes, such as hexanal or glyceraldehyde to the corresponding alcohols. This catalyst was characterized in terms of growth conditions, temperature and pH dependency, and regarding the influence of external cofactor and permeabilization. In the case of external cofactor addition we found a 4.6-fold increase in reaction rate caused by the addition of 1 mM NADP(+). Due to the fact that pH and temperature are also factors which may affect the reaction rate, their effect on the whole-cell catalyst was studied as well. Comparative studies between the whole-cell catalyst and the cell-free system were investigated. Furthermore, the successful application of the whole-cell catalyst in repetitive batch conversions could be demonstrated in the present study. Since the GlyDH was recently characterized and successfully applied in the kinetic resolution of racemic glyceraldehyde, we were now able to transfer and establish the process to a whole-cell system, which facilitated the access to L-glyceraldehyde in high enantioselectivity at 54% conversion. All in all, the whole-cell catalyst shows several advantages over the cell-free system like a higher thermal, a similar operational stability and the ability to recycle the catalyst without any loss-of-activity. The results obtained making the described whole-cell catalyst an improved catalyst for a more efficient production of enantiopure L-glyceraldehyde.
Collapse
Affiliation(s)
- Nina Richter
- Evocatal GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
78
|
Hollmann F, Schmid A. Electrochemical Regeneration of Oxidoreductases for Cell-free Biocatalytic Redox Reactions. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420410001692778] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
79
|
Aksu S, Arends IW, Hollmann F. A New Regeneration System for Oxidized Nicotinamide Cofactors. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900033] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Presečki AV, Vasić-Rački Đ. Mathematical modelling of the dehydrogenase catalyzed hexanol oxidation with coenzyme regeneration by NADH oxidase. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Pival S, Klimacek M, Nidetzky B. Novel Chemo-Enzymatic Mimic of Hydrogen Peroxide-Forming NAD(P)H Oxidase for Efficient Regeneration of NAD+and NADP+. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200800357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Hirano JI, Miyamoto K, Ohta H. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl Microbiol Biotechnol 2008; 80:71-8. [DOI: 10.1007/s00253-008-1535-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022]
|
83
|
Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W. One-Way Biohydrogen Transfer for Oxidation of sec-Alcohols. Org Lett 2008; 10:2155-8. [DOI: 10.1021/ol800549f] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iván Lavandera
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Alexander Kern
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Verena Resch
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Bianca Ferreira-Silva
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Anton Glieder
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Walter M. F. Fabian
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Stefaan de Wildeman
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| | - Wolfgang Kroutil
- Research Centre Applied Biocatalysis c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, Research Centre Applied Biocatalysis c/o Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria, Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and DSM Pharmaceutical Products, P.O. Box 18, 6160, MD Geleen, The Netherlands
| |
Collapse
|
84
|
Findrik Z, Šimunović I, Vasić-Rački Đ. Coenzyme regeneration catalyzed by NADH oxidase from Lactobacillus brevis in the reaction of l-amino acid oxidation. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Hirano JI, Miyamoto K, Ohta H. The green and effective oxidation of alcohols to carboxylic acids with molecular oxygen via biocatalytic reaction. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.12.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
86
|
Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production. J Ind Microbiol Biotechnol 2008; 35:579-86. [PMID: 18231816 DOI: 10.1007/s10295-008-0319-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/13/2008] [Indexed: 10/22/2022]
Abstract
Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.
Collapse
|
87
|
Findrik Z, Vrsalović Presecki A, Vasić-Racki D. Mathematical modelling of NADH oxidation catalyzed by new NADH oxidase from Lactobacillus brevis in continuously operated enzyme membrane reactor. J Biosci Bioeng 2007; 104:275-80. [PMID: 18023799 DOI: 10.1263/jbb.104.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/10/2007] [Indexed: 11/17/2022]
Abstract
NADH oxidase from Lactobacillus brevis was kinetically characterized in two different buffers: Tris-HCl and glycine-sodium pyrophosphate (pH 9.0). Reaction kinetics was described using the Michaelis-Menten model with product (NAD(+)) inhibition. It was found that this type of inhibition is uncompetitive. Experiments in the continuously operated enzyme membrane reactor revealed a strong enzyme deactivation at two different residence times: 12 and 60 min. A stronger deactivation was observed at the lower residence time in the glycine-sodium pyrophosphate buffer. Enzyme deactivation was assumed to be of the first order. The developed mathematical model for the continuously operated enzyme membrane reactor described these experiments very well. The mathematical model simulations revealed that a high enzyme concentration (up to 30 g cm(-3)) is necessary to obtain and maintain the stationary NADH conversion near 100% for a longer period of time.
Collapse
Affiliation(s)
- Zvjezdana Findrik
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10 000 Zagreb, Croatia
| | | | | |
Collapse
|
88
|
Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 2007; 73:3850-8. [PMID: 17449687 PMCID: PMC1932728 DOI: 10.1128/aem.00243-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23.
Collapse
Affiliation(s)
- María Jesús Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
89
|
Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.03.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
90
|
Zhang J, Hao N, Chen GQ. Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Microbiol Biotechnol 2006; 71:222-7. [PMID: 16292535 DOI: 10.1007/s00253-005-0164-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 08/03/2005] [Accepted: 08/31/2005] [Indexed: 11/26/2022]
Abstract
Hyaluronic acid (HA) has been industrially produced using the gram-positive bacterium Streptococcus zooepidemicus. Large amount of lactic acid formation was one of the important factors that restricted cell growth and HA productivity and lowered the substrate to HA conversion efficiency in a fermentor. In this study, polyhydroxybutyrate (PHB) synthesis genes (phbCAB) of Ralstonia eutropha were cloned from the plasmid pBHR68 and were inserted into the plasmid pEU308, an expression vector for gram-positive bacteria. The plasmid was transformed into S. zooepidemicus by electroporation. beta-Ketothiolase (PhbA), acetoacetyl-CoA reductase (PhbB), and polyhydroxyalkanoate (PHA) synthase (PhbC) activity assays were carried out to demonstrate the expression of these genes. The PhbA and PhbB activities were 3.13 and 1.23 U mg(-1), respectively. No PhbC activities were detected. In shake flask studies, there was no obvious difference between the wild-type and recombinant S. zooepidemicus harboring phbCAB genes in terms of lactic acid and HA formation. However, in fermentor studies, the recombinant produced only 40 g L(-1) lactic acid and 7.5 g L(-1) HA, whereas the wild type produced 65 g L(-1) lactic acid and 5.5 g L(-1) HA. These results suggested that expression of phbCAB genes in S. zooepidemicus could help regulate HA production metabolism. Because the lactic acid formation in S. zooepidemicus was sensitive to cellular oxidation/reduction potential, it is proposed that the PHB synthesis pathway could act as a regulator to adjust the cellular oxidation/reduction potential. This is the first study demonstrating that PHA synthesis related to energy and carbon metabolism could be employed as a pathway to regulate other cellular metabolism and possibly to regulate the production of other metabolic products.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
91
|
|
92
|
Jiang R, Riebel B, Bommarius A. Comparison of Alkyl Hydroperoxide Reductase (AhpR) and Water-Forming NADH Oxidase fromLactococcus lactis ATCC 19435. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
93
|
Jiang R, Bommarius AS. Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.07.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Kroutil W, Mang H, Edegger K, Faber K. Recent advances in the biocatalytic reduction of ketones and oxidation of sec -alcohols. Curr Opin Chem Biol 2004; 8:120-6. [PMID: 15062771 DOI: 10.1016/j.cbpa.2004.02.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To improve the efficiency and applicability of biocatalytic redox-reactions for asymmetric ketone-reduction and enantioselective alcohol-oxidation catalyzed by nicotinamide-dependent dehydrogenases/reductases, several achievements for cofactor-recycling have been made during the last two years. First, the use of hydrogenases for NADPH recycling in a two enzyme system. Second, preparative transformations with alcohol dehydrogenases coupled with NADH oxidases for NAD+/NADP+ recycling. Third, an exceptional chemo-stable alcohol dehydrogenase can efficiently use i-propanol and acetone as cosubstrates for reduction and oxidation, respectively, in a single-enzyme system. Novel carbonyl reductases and dehydrogenases derived from plant cells are particularly suited for sterically demanding substrates.
Collapse
Affiliation(s)
- Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Austria
| | | | | | | |
Collapse
|
95
|
Hummel W, Kuzu M, Geueke B. An efficient and selective enzymatic oxidation system for the synthesis of enantiomerically pure D-tert-leucine. Org Lett 2004; 5:3649-50. [PMID: 14507195 DOI: 10.1021/ol035314g] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] d-tert-Leucine was prepared with an enantiomeric excess of >99% by an enzyme-catalyzed oxidative resolution of the racemic mixture of dl-tert-leucine with use of leucine dehydrogenase. The l-amino acid was oxidized completely due to coupling of the primary reaction with a highly efficient irreversible NAD(+)-regenerating step by NADH oxidase.
Collapse
Affiliation(s)
- Werner Hummel
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, im Forschungszentrum Jülich, 52426 Jülich, Germany.
| | | | | |
Collapse
|
96
|
Abstract
NAD(P)-dependent oxidoreductases are valuable tools for the synthesis of chiral compounds. Due to the high cost of the pyridine cofactors, in situ cofactor regeneration is required for preparative applications. In recent years, existing regeneration methodologies have been improved and new approaches have been devised. These include the use of newly discovered dehydrogenases that are stable in high contents of organic solvent and novel enzymes that can regenerate either the reduced or oxidized forms of the cofactor. The use of electrochemical methods has allowed cofactor regeneration for monooxygenases and natural or engineered whole-cell systems provide alternatives to approaches relying on purified enzymes.
Collapse
Affiliation(s)
- Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|