51
|
Zhou W, Miao Y, Zhang Y, Liu L, Lin J, Yang JY, Xie Y, Wen L. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals. NANOTECHNOLOGY 2013; 24:165102. [PMID: 23535229 DOI: 10.1088/0957-4484/24/16/165102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.
Collapse
Affiliation(s)
- Wei Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Gheidi M, Safari N, Zahedi M. Structure and Redox Behavior of Iron Oxophlorin and Role of Electron Transfer in the Heme Degradation Process. Inorg Chem 2012; 51:12857-66. [DOI: 10.1021/ic3017497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahin Gheidi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| | - Nasser Safari
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| | - Mansour Zahedi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| |
Collapse
|
53
|
Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth. Antimicrob Agents Chemother 2012; 57:356-64. [PMID: 23114783 DOI: 10.1128/aac.01709-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).
Collapse
|
54
|
Kamachi T, Nishimi T, Yoshizawa K. A new understanding on how heme metabolism occurs in heme oxygenase: water-assisted oxo mechanism. Dalton Trans 2012; 41:11642-50. [PMID: 22825429 DOI: 10.1039/c2dt30777d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme metabolism by heme oxygenase (HO) is investigated with quantum mechanical/molecular mechanical (QM/MM) calculations. A mechanism assisted by water is proposed: (1) an iron-oxo species and a water molecule are generated by the heterolytic cleavage of the O-O bond of an iron-hydroperoxo species in a similar way to P450-mediated reactions, (2) a hydrogen atom abstraction by the iron-oxo species from the generated water molecule and the C-O bond formation between the water molecule and the α-meso carbon take place simultaneously. The water molecule is hydrogen-bonded to the oxo ligand and to the water cluster in the active site of HO. The water cluster can control the position of the generated water molecule to ensure the regioselective oxidation of heme at the α-meso position, at the same time, can facilitate the oxidation by stabilizing a positive charge on the water molecule in the transition state. A key difference between HO and P450 is observed in the structure of the active site; Thr252 in P450 blocks the access of the water molecule to the α-meso position, and can thus suppress the undesired heme oxidation for P450.
Collapse
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
55
|
Kakeya K, Nakagawa A, Mizutani T, Hitomi Y, Kodera M. Synthesis, Reactivity, and Spectroscopic Properties of meso-Triaryl-5-oxaporphyrins. J Org Chem 2012; 77:6510-9. [DOI: 10.1021/jo3010342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Aya Nakagawa
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tadashi Mizutani
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
56
|
d'Alessandro N, Tonucci L, Dragani LK, Morvillo A, Bressan M. Fate of nickel and cobalt sulfophthalocyanines under oxidizing conditions: a spectroscopic investigation. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424603000616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two water-soluble metal sulfophthalocyanines, namely Ni (II) PcS and Co (II) PcS , were structurally characterized by electrospray ionization mass spectrometry (ESI-MS) and UV-vis and NMR spectroscopy. The dominant ion in ESI-MS was a penta-protonated monomeric Ni (II) complex and a tetra-protonated form with the Co (II) ion being oxidized to Co (III), confirming the facile oxidation of the central cobalt atom of the phthalocyanine ring by a soft ionization method as ESI. Experiments at various ESI voltages were also performed to ascertain the target of the oxidation, whether it was the metal or the phthalocyanine unsaturated system. Addition of small amounts of oxidizing agents, like potassium persulfate, resulted in a definite attenuation of the Q band in the UV-vis spectra, while ESI-MS detected a variety of complexes, containing at least one oxygen atom, which rapidly replaced the initial complexes.
Collapse
Affiliation(s)
- Nicola d'Alessandro
- Dipartimento di Scienze, Università “G. d'Annunzio”di Chieti-Pescara, Viale Pindaro 42, Pescara, I-65127, Italy
| | - Lucia Tonucci
- Dipartimento di Scienze, Università “G. d'Annunzio”di Chieti-Pescara, Viale Pindaro 42, Pescara, I-65127, Italy
| | - Luana K. Dragani
- Centro di Salute Ambientale “G. Paone”, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria Imbaro, Chieti, I-66030, Italy
| | - Antonino Morvillo
- Dipartimento di Chimica Inorganica, Università di Padova, Via Marzolo 1, Padova, I-35100, Italy
| | - Mario Bressan
- Dipartimento di Scienze, Università “G. d'Annunzio”di Chieti-Pescara, Viale Pindaro 42, Pescara, I-65127, Italy
| |
Collapse
|
57
|
Liu S, Hou W, Yao P, Li N, Zhang B, Hao L, Nüssler AK, Liu L. Heme oxygenase-1 mediates the protective role of quercetin against ethanol-induced rat hepatocytes oxidative damage. Toxicol In Vitro 2011; 26:74-80. [PMID: 22056766 DOI: 10.1016/j.tiv.2011.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/29/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022]
Abstract
Quercetin, one of the most widely distributed flavonoids in plants, possesses strong free radical scavenging ability and potent hepatoprotective effects. However, the protective effect and mechanism of quercetin on ethanol-induced oxidative damage in hepatocytes remain unclear. In this study, primary rat hepatocytes were incubated with ethanol and quercetin in the presence or absence of ZnPP 9, an antagonist of HO-1 induction. The ethanol-induced hepatotoxicity was found to be greatly diminished by pre-treatment of quercetin and this hepatoprotective effect could be partly blocked by ZnPP 9. This study also showed that quercetin significantly stimulated HO-1 expression at both mRNA and protein levels, then subsequently induced HO-1 activity. To further study the signaling pathways underlying quercetin-induced HO-1 up-regulation, HO-1 expression and activity in cytosolic microsomal fractions and Nrf2 expression in nuclear fractions were analyzed following quercetin or/and MAPK inhibitor(s) as well as PI3K inhibitor incubation for primary rat hepatocytes. These results indicated that ERK was required to induce HO-1 expression in rat hepatocytes. In summary, these data suggested that quercetin attenuates ethanol-induced oxidative stress through a pathway which involves ERK activation and HO-1 upregulation.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Nakamura R, Kakeya K, Furuta N, Muta E, Nishisaka H, Mizutani T. Synthesis of para- or ortho-Substituted Triarylbilindiones and Tetraarylbiladienones by Coupled Oxidation of Tetraarylporphyrins. J Org Chem 2011; 76:6108-15. [DOI: 10.1021/jo2007994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryosuke Nakamura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Nao Furuta
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Etsuko Muta
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Nishisaka
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tadashi Mizutani
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
59
|
Liu X, Du Q, Wang Z, Zhu D, Huang Y, Li N, Wei T, Xu S, Gu L. Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem 2011; 286:14922-31. [PMID: 21324904 DOI: 10.1074/jbc.m110.197780] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EfeB/YcdB is a member of the dye-decolorizing peroxidase (DyP) protein family. A recent study has shown that this protein can extract iron from heme without breaking the tetrapyrrole ring. We report the crystal structure of EfeB from Escherichia coli O157 bound to heme at 1.95 Å resolution. The EfeB monomer contains two domains. The heme molecule is located in a large hydrophobic pocket in the C-terminal domain. A long loop connecting the two domains extensively interacts with the heme, which is a distinctive structural feature of EfeB homologues. A large tunnel formed by this loop and the β-sheet of C-terminal domain provides a potential cofactor/substrate binding site. Biochemical data show that the production of protoporphyrin IX (PPIX) is closely related to the peroxidation activity. The mutant D235N keeps nearly the same activity of guaiacol peroxidase as the wild-type protein, whereas the corresponding mutation in the classic DyP protein family completely abolished the peroxidation activity. These results suggest that EfeB is a unique member of the DyP protein family. In addition, dramatically enhanced fluorescence excitation and emission of EfeB-PPIX was observed, implying this protein may be used as a red color fluorescence marker.
Collapse
Affiliation(s)
- Xiuhua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bhuyan J, Sarkar S. Oxidative degradation of zinc porphyrin in comparison with its iron analogue. Chemistry 2011; 16:10649-52. [PMID: 20687149 DOI: 10.1002/chem.201001073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jagannath Bhuyan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, U.P., India
| | | |
Collapse
|
61
|
Balestrasse KB, Tomaro ML, Batlle A, Noriega GO. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. PHYTOCHEMISTRY 2010; 71:2038-45. [PMID: 21051062 DOI: 10.1016/j.phytochem.2010.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 05/08/2023]
Abstract
In this study, the possibility of enhancing cold stress tolerance of soybean plants (Glycine max L.) by exogenous application of 5-aminolevulinic acid (ALA) was investigated. ALA was added to the Hoagland solution at various concentrations ranging from 0 to 40 μM for 12 h. After ALA treatment, the plants were subjected to cold stress at 4°C for 48 h. ALA at low concentrations (5-10 μM) provided significant protection against cold stress compared to non-ALA-treated plants, enhancing chlorophyll content (Chl) as well as relative water content (RWC). Increase of thiobarbituric acid reactive species (TBARS) levels was also prevented, whereas exposure to higher ALA concentrations (15-40 μM) brought about a dose dependent increase of these species, reaching a maximum of 117% in plants pre-treated with 40 μM ALA compared to controls. ALA pre-treatment also enhanced catalase (CAT) and heme oxygenase-1 (HO-1) activities. These findings indicate that HO-1 acts not only as the rate limiting enzyme in heme catabolism, but also as an antioxidant enzyme. The highest cold tolerance was obtained with 5 μM ALA pre-treatment. Results show that ALA, which is considered as an endogenous plant growth regulator, could be used effectively to protect soybean plants from the damaging effects of cold stress by enhancing the activity of heme proteins, e.g., catalase (CAT) and by promoting heme catabolism leading to the production of the highly antioxidant biliverdin and carbon monoxide, without any adverse effect on the plant growth.
Collapse
Affiliation(s)
- Karina B Balestrasse
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
62
|
Effect of the axial ligands on the structure and reactivity of tin verdoheme in the ring opening process. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2009.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
63
|
Gheidi M, Safari N, Zahedi M. Theoretical investigation of the ring opening process of verdoheme to biliverdin in the presence of dioxygen. J Mol Model 2010; 16:1401-13. [DOI: 10.1007/s00894-010-0644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/10/2009] [Indexed: 10/19/2022]
|
64
|
Savcioglu F, Akpinar D, Yargicoglu P, Agar A. The effect of heme oxygenase inhibition on visual evoked potentials. Int J Neurosci 2009; 119:1384-98. [PMID: 19922363 DOI: 10.1080/00207450902961950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study investigated the effect of heme oxygenase (HO) inhibition on visual evoked potentials (VEPs). HO catalyzes the oxidative degradation of heme. Products of HO reaction are biliverdin, ferrous iron, and carbon monoxide (CO). CO is a signal molecule and is an endogenous modulator in the soluble guanylate cyclase/cyclic guanosine monophosphate signaling pathway. Rats were treated with HO inhibitors tin protoporphyrin IX (SnPP IX) or zinc protoporphyrin IX (ZnPP IX) or HO inducer sodium arsenite (Na-arsenite). Soluble guanylate cyclase is inhibited by 1H-[1,2,3]oxydiazolo[4,3-a]quinoxalin-1-one (ODQ) and induced by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1). VEPs were recorded under mild ether anesthesia with the help of stainless steel subdermal electrodes and a photic stimulator. SnPP IX, ODQ or SnPP IX + YC-1 injections significantly prolonged latencies of P3; however, Na-arsenite shortened latency of P3. It has been shown that HO affects VEPs.
Collapse
Affiliation(s)
- Feyza Savcioglu
- Department of Physiology, Institute of Health Sciences, Akdeniz University, School of Medicine, Antalya, Turkey.
| | | | | | | |
Collapse
|
65
|
Li Z, Chen-Roetling J, Regan RF. Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radic Res 2009; 43:613-21. [PMID: 19513908 DOI: 10.1080/10715760902942808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Iron toxicity may contribute to oxidative injury in cells surrounding an intracerebral haematoma. Cells detoxify iron by sequestering it in ferritin, a 24-mer heteropolymer constructed of H and L subunits. The relative antioxidant efficacy of H- and L-ferritin has not been defined and was tested in this study using an established model of hemin toxicity. Consistent with prior observations, cultures treated with 30 microM hemin sustained loss of approximately half of the cells by 6 h, as measured by LDH and MTT assays, and a 14-fold increase in protein carbonyls. Increasing expression of either ferritin by adenoviral gene transfer prior to hemin treatment had a similar protective effect. Quenching of calcein fluorescence, a marker of the labile iron pool, in hemin-treated cultures was also equally reduced by either subunit. These results suggest that over-expression of either H- or L-ferritin protects astrocytes from hemin and may be beneficial after CNS haemorrhage.
Collapse
Affiliation(s)
- Zhi Li
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
66
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
67
|
Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun 2009; 386:322-6. [PMID: 19523448 DOI: 10.1016/j.bbrc.2009.06.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/06/2009] [Indexed: 11/29/2022]
Abstract
Iron neurotoxicity may contribute to the pathogenesis of intracerebral hemorrhage (ICH). The tetracycline derivative minocycline is protective in ICH models, due putatively to inhibition of microglial activation. Although minocycline also chelates iron, its effect on iron neurotoxicity has not been reported, and was examined in this study. Cortical cultures treated with 10 microM ferrous sulfate for 24h sustained loss of most neurons and an increase in malondialdehyde. Minocycline prevented this injury, with near-complete protection at 30 microM. Two other inhibitors of microglial activation, doxycycline and macrophage/microglia inhibitory factor, were ineffective. Oxidation of isolated culture membranes by iron was also inhibited by minocycline. Consistent with prior observations, minocycline chelated iron in a siderophore colorometric assay; at concentrations less than 100 microM, its activity exceeded that of deferoxamine. These results suggest that attenuation of iron neurotoxicity may contribute to the beneficial effect of minocycline in hemorrhagic stroke and other CNS injury models.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
68
|
Badyal SK, Eaton G, Mistry S, Pipirou Z, Basran J, Metcalfe CL, Gumiero A, Handa S, Moody PCE, Raven EL. Evidence for heme oxygenase activity in a heme peroxidase. Biochemistry 2009; 48:4738-46. [PMID: 19309109 DOI: 10.1021/bi900118j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The heme peroxidase and heme oxygenase enzymes share a common heme prosthetic group but catalyze fundamentally different reactions, the first being H(2)O(2)-dependent oxidation of substrate using an oxidized Compound I intermediate, and the second O(2)-dependent degradation of heme. It has been proposed that these enzymes utilize a common reaction intermediate, a ferric hydroperoxide species, that sits at a crossroads in the mechanism and beyond which there are two mutually exclusive mechanistic pathways. Here, we present evidence to support this proposal in a heme peroxidase. Hence, we describe kinetic data for a variant of ascorbate peroxidase (W41A) which reacts slowly with tert-butyl hydroperoxide and does not form the usual peroxidase Compound I intermediate; instead, structural data show that a product is formed in which the heme has been cleaved at the alpha-meso position, analogous to the heme oxygenase mechanism. We interpret this to mean that the Compound I (peroxidase) pathway is shut down, so that instead the reaction intermediate diverts through the alternative (heme oxygenase) route. A mechanism for formation of the product is proposed and discussed in the light of what is known about the heme oxygenase reaction mechanism.
Collapse
Affiliation(s)
- Sandip K Badyal
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Davari MD, Bahrami H, Zahedi M, Safari N. Theoretical investigations on the hydrolysis pathway of tin verdoheme complexes: elucidation of tin's ring opening inhibition role. J Mol Model 2009; 15:1299-315. [PMID: 19373497 DOI: 10.1007/s00894-009-0495-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 02/25/2009] [Indexed: 12/24/2022]
Abstract
In order to obtain a better molecular understanding of inhibitory role of tin metal in the verdoheme ring opening process, hydrolysis of three possibly six, five, and four coordinate verdoheme complexes of tin(IV) and (II) have been studied using DFT method. The results of calculations indicate that, in excellent accord with experimental reports, hydrolysis of different possibly coordinated tin(IV) and (II) verdohemes does not lead to the opening of the macrocycle. Contrary to iron and zinc verdohemes, in five and four coordinate verdoheme complexes of tin(IV) and (II), formation of open ring helical complexes of tin are unfavorable both thermodynamically and kinetically. In these pathways, coordination of hydroxide nucleophile to tin metal due to the highly charged, exclusive oxophilicity nature of the Sn center, and high affinity of Sn to increase coordination state are proposed responsible as inhibiting roles of tin via the ring opening. While, in saturated six coordinate tin(IV) and (II) verdoheme complexes the ring opening of tin verdohemes is possible thermodynamically, but it is not predicted to occur from a kinetics point of view. In the six coordinate pathway, tin plays no coordination role and direct addition of hydroxide nucleophile to the positive oxo-carbon centers and formation of closed ring hydroxy compounds is proposed for preventing the verdoheme ring opening. These key points and findings have been corroborated by the results obtained from atomic charge analysis, geometrical parameters, and molecular orbital calculations. In addition, the results of inhibiting ring opening reaction of tin verdoheme complexes could support the great interest of tin porphyrin analogues as pharmacologic means of chemoprevention of neonatal jaundice by the competitive inhibitory action of tin porphyrins on heme oxygenase.
Collapse
Affiliation(s)
- Mahdi D Davari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
70
|
Okada K. HO1 and PcyA proteins involved in phycobilin biosynthesis form a 1:2 complex with ferredoxin-1 required for photosynthesis. FEBS Lett 2009; 583:1251-6. [DOI: 10.1016/j.febslet.2009.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
71
|
D'Agostino D, Mazza E, Neubauer JA. Heme oxygenase is necessary for the excitatory response of cultured neonatal rat rostral ventrolateral medulla neurons to hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 296:R102-18. [PMID: 18971354 PMCID: PMC2636982 DOI: 10.1152/ajpregu.90325.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 10/21/2008] [Indexed: 12/17/2022]
Abstract
Heme oxygenase has been linked to the oxygen-sensing function of the carotid body, pulmonary vasculature, cerebral vasculature, and airway smooth muscle. We have shown previously that the cardiorespiratory regions of the rostral ventrolateral medulla are excited by local hypoxia and that heme oxygenase-2 (HO-2) is expressed in the hypoxia-chemosensitive regions of the rostral ventrolateral medulla (RVLM), the respiratory pre-Bötzinger complex, and C1 sympathoexcitatory region. To determine whether heme oxygenase is necessary for the hypoxic-excitation of dissociated RVLM neurons (P1) cultured on confluent medullary astrocytes (P5), we examined their electrophysiological responses to hypoxia (NaCN and low Po(2)) using the whole-cell perforated patch clamp technique before and after blocking heme oxygenase with tin protoporphyrin-IX (SnPP-IX). Following the electrophysiological recording, immunocytochemistry was performed on the recorded neuron to correlate the electrophysiological response to hypoxia with the expression of HO-2. We found that the responses to NaCN and hypoxia were similar. RVLM neurons responded to NaCN and low Po(2) with either depolarization or hyperpolarization and SnPP-IX blocked the depolarization response of hypoxia-excited neurons to both NaCN and low Po(2) but had no effect on the hyperpolarization response of hypoxia-depressed neurons. Consistent with this observation, HO-2 expression was present only in the hypoxia-excited neurons. We conclude that RVLM neurons are excited by hypoxia via a heme oxygenase-dependent mechanism.
Collapse
Affiliation(s)
- Dominic D'Agostino
- Div. of Pulmonary & Critical Care Medicine, Dept. of Medicine, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
72
|
Okada K. The novel heme oxygenase-like protein fromPlasmodiumfalciparumconverts heme to bilirubin IXα in the apicoplast. FEBS Lett 2008; 583:313-9. [DOI: 10.1016/j.febslet.2008.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
|
73
|
Ma LH, Liu Y, Zhang X, Yoshida T, La Mar GN. 1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure. J Inorg Biochem 2008; 103:10-9. [PMID: 18976815 DOI: 10.1016/j.jinorgbio.2008.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/16/2008] [Accepted: 08/26/2008] [Indexed: 11/28/2022]
Abstract
Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex.
Collapse
Affiliation(s)
- Li-Hua Ma
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
74
|
Regan RF, Chen M, Li Z, Zhang X, Benvenisti-Zarom L, Chen-Roetling J. Neurons lacking iron regulatory protein-2 are highly resistant to the toxicity of hemoglobin. Neurobiol Dis 2008; 31:242-9. [PMID: 18571425 DOI: 10.1016/j.nbd.2008.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/07/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022] Open
Abstract
The effect of iron regulatory protein-2 (IRP2) on ferritin expression and neuronal vulnerability to hemoglobin was assessed in primary cortical cell cultures prepared from wild-type and IRP2 knockout mice. Baseline levels of H and L-ferritin subunits were significantly increased in IRP2 knockout neurons and astrocytes. Hemoglobin was toxic to wild-type neurons in mixed neuron-astrocyte cultures, with an LC(50) near 3 microM for a 24 h exposure. Neuronal death was reduced by 85-95% in knockout cultures, and also in cultures containing knockout neurons plated on wild-type astrocytes. Protein carbonylation, reactive oxygen species formation, and heme oxygenase-1 expression after hemoglobin treatment were also attenuated by IRP2 gene deletion. These results suggest that IRP2 binding activity increases the vulnerability of neurons to hemoglobin, possibly by reducing ferritin expression. Therapeutic strategies that target this regulatory mechanism may be beneficial after hemorrhagic CNS injuries.
Collapse
Affiliation(s)
- Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson Building Room 239, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Chen H, Moreau Y, Derat E, Shaik S. Quantum Mechanical/Molecular Mechanical Study of Mechanisms of Heme Degradation by the Enzyme Heme Oxygenase: The Strategic Function of the Water Cluster. J Am Chem Soc 2008; 130:1953-65. [DOI: 10.1021/ja076679p] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hui Chen
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Yohann Moreau
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Etienne Derat
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Sason Shaik
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
76
|
Zhu L, Pi J, Wachi S, Andersen ME, Wu R, Chen Y. Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling. Am J Physiol Lung Cell Mol Physiol 2007; 294:L469-77. [PMID: 18156441 DOI: 10.1152/ajplung.00310.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In inflammatory diseases of the airway, a high level (estimated to be as high as 8 mM) of HOCl can be generated through a reaction catalyzed by the leukocyte granule enzyme myeloperoxidase (MPO). HOCl, a potent oxidative agent, causes extensive tissue injury through its reaction with various cellular substances, including thiols, nucleotides, and amines. In addition to its physiological source, HOCl can also be generated by chlorine gas inhalation from an accident or a potential terrorist attack. Despite the important role of HOCl-induced airway epithelial injury, the underlying molecular mechanism is largely unknown. In the present study, we found that HOCl induced dose-dependent toxicity in airway epithelial cells. By transcription profiling using GeneChip, we identified a battery of HOCl-inducible antioxidant genes, all of which have been reported previously to be regulated by nuclear factor erythroid-related factor 2 (Nrf2), a transcription factor that is critical to the lung antioxidant response. Consistent with this finding, Nrf2 was found to be activated time and dose dependently by HOCl. Although the epidermal growth factor receptor-MAPK pathway was also highly activated by HOCl, it was not involved in Nrf2 activation and Nrf2-dependent gene expression. Instead, HOCl-induced cellular oxidative stress appeared to lead directly to Nrf2 activation. To further understand the functional significance of Nrf2 activation, small interference RNA was used to knock down Nrf2 level by targeting Nrf2 or enhance nuclear accumulation of Nrf2 by targeting its endogenous inhibitor Keap1. By both methods, we conclude that Nrf2 directly protects airway epithelial cells from HOCl-induced toxicity.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Division of Translational Biology, The Hamner Institutes for Health Sciences, 6 Davis Dr., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
77
|
Ogura H, Evans JP, de Montellano PRO, La Mar GN. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation. Biochemistry 2007; 47:421-30. [PMID: 18078349 DOI: 10.1021/bi7017333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.
Collapse
Affiliation(s)
- Hiroshi Ogura
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
78
|
Shibahara S, Han F, Li B, Takeda K. Hypoxia and heme oxygenases: oxygen sensing and regulation of expression. Antioxid Redox Signal 2007; 9:2209-25. [PMID: 17887916 DOI: 10.1089/ars.2007.1784] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heme is an essential molecule for life, as it is involved in sensing and using oxygen. Heme must be synthesized and degraded within an individual nucleated cell. Physiologic heme degradation is catalyzed by two functional isozymes of heme oxygenase, heme oxygenase-1 (HO-1) and HO-2, yielding carbon monoxide, iron, and biliverdin, an immediate precursor to bilirubin. HO-1 is an inducible enzyme, but the expression level of HO-2 is maintained in a narrow range. Characteristically, human HO-1 contains no Cys residue, whereas human HO-2 contains three Cys residues, each of which might be involved in heme binding. These features suggest separate physiologic roles of HO-1 and HO-2. Recent studies have shown that the expression levels of HO-1 and HO-2 are reduced under hypoxia, depending on the cell types. Moreover, we have proposed HO-2 as a potential O(2) sensor, because HO-2-deficient mice show hypoxemia and a blunted hypoxic ventilatory response with normal hypercapnic ventilatory response. HO-2-deficient mice also show hypertrophy of the pulmonary venous myocardium and enlargement of the carotid body. These morphometric changes are attributable to chronic hypoxemia. Here, we update the understanding of the regulation of HO-1 and HO-2 expression and summarize the regulatory role of HO-2 in the intercellular communication.
Collapse
Affiliation(s)
- Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | |
Collapse
|
79
|
Jamaat PR, Safari N, Ghiasi M, Naghavi SSAD, Zahedi M. Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin. J Biol Inorg Chem 2007; 13:121-32. [DOI: 10.1007/s00775-007-0308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
|
80
|
Sugishima M, Higashimoto Y, Oishi T, Takahashi H, Sakamoto H, Noguchi M, Fukuyama K. X-ray crystallographic and biochemical characterization of the inhibitory action of an imidazole-dioxolane compound on heme oxygenase. Biochemistry 2007; 46:1860-7. [PMID: 17253780 DOI: 10.1021/bi062264p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Liu Y, Ma LH, Zhang X, Yoshida T, Satterlee JD, La Mar GN. 1H NMR Study of the influence of hemin vinyl-->methyl substitution on the interaction between the C-terminus and substrate and the "aging" of the heme oxygenase from Neisseria meningitidis: induction of active site structural heterogeneity by a two-fold symmetric hemin. Biochemistry 2007; 45:13875-88. [PMID: 17105206 DOI: 10.1021/bi061747q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution 1H NMR has been used to characterize the active site molecular and electronic structure of the cyanide-inhibited 2,4-dimethyldeuterohemin complex of the heme oxygenase from Neisseria meningitidis (NmHO) with respect to the mode of interaction of the C-terminus with the substrate and the spontaneous "aging" of NmHO that results in the cleavage of the C-terminal Arg208-His209 dipeptide. The structure of the portion involving residues Ala12-Phe192 is found to be essentially identical to that of the protohemin complex in either solution or crystal. However, His207 from the C-terminus is found to interact strongly with the substrate 1CH3, as opposed to the 8CH3 in the protohemin complex. The different mode of interaction of His207 with the alternate substrates is attributed to the 2-vinyl group of protohemin sterically interfering with the optimal orientation of the proximal helix Asp27 carboxylate that serves as acceptor to the strong H-bond by the peptide of His207. The 2,4-dimethyldeuterohemin HO complex "ages" in manner similary to that of protohemin, (Liu, Y., Ma, L.-H., Satterlee, J.D., Zhang, X., Yoshida, T., and La Mar, G. N., (2006) Biochemistry 45, 3875-3886) with mass spectrometry and N-terminal sequencing indicating that the Arg208-His209 dipeptide is cleaved. The 2,4-dimethyldeuterohemin complex of WT HO populates an equilibrium isomer stabilized in low phosphate concentration for which the axial His imidazole ring is rotated by approximately 20 degrees from that in the WT. The His ring reorientation is attributed to Asp24 serving as the H-bond acceptor to the His207 peptide NH, rather than to the His23 ring NdeltaH as in the crystals. The functional implications of the altered C-terminal interaction with substrate modification are discussed.
Collapse
Affiliation(s)
- Yangzhong Liu
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
82
|
Gheidi M, Safari N, Bahrami H, Zahedi M. Theoretical investigations of the hydrolysis pathway of verdoheme to biliverdin. J Inorg Biochem 2006; 101:385-95. [PMID: 17197029 DOI: 10.1016/j.jinorgbio.2006.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 10/19/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Conversion of iron(II) verdoheme to iron biliverdin in the presence of OH(-) was investigated using B3LYP method. Both 3-21G and 6-31G* basis sets were employed for geometry optimization calculation as well as energy stabilization estimation. Calculation at 6-31G* level was found necessary for a correct spin state estimation of the iron complexes. Two possible pathways for the conversion of iron verdoheme to iron biliverdin were considered. In one path the iron was six-coordinate while in the other it was considered to be five-coordinate. In the six-coordinated pathway, the ground state of bis imidazole iron verdoheme is singlet while that for open chain iron biliverdin it is triplet state with 4.86 kcal/mol more stable than the singlet state. The potential energy surface suggests that a spin inversion take place during the course of reaction after TS. The ring opening process in the six-coordinated pathway is in overall -2.26 kcal/mol exothermic with a kinetic barrier of 9.76 kcal/mol. In the five-coordinated pathway the reactant and product are in the ground triplet state. In this path, hydroxyl ion attacks the iron center to produce a complex, which is only 1.59 kcal/mol more stable than when OH(-) directly attacks the macrocycle. The activation barrier for the conversion of iron hydroxy species to the iron biliverdin complex by a rebound mechanism is estimated to be 32.68 kcal/mol. Large barrier for rebound mechanism, small barrier of 4.18 kcal/mol for ring opening process of the hydroxylated macrocycle, and relatively same stabilities for complexes resulted by the attack of nucleophile to the iron and macrocycle indicate that five-coordinated pathway with direct attack of nucleophile to the 5-oxo position of macrocycle might be the path for the conversion of verdoheme to biliverdin.
Collapse
Affiliation(s)
- Mahin Gheidi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Evin 19839-63113, Tehran, Iran
| | | | | | | |
Collapse
|
83
|
Reiter TA, Pang B, Dedon P, Demple B. Resistance to nitric oxide-induced necrosis in heme oxygenase-1 overexpressing pulmonary epithelial cells associated with decreased lipid peroxidation. J Biol Chem 2006; 281:36603-12. [PMID: 17020887 DOI: 10.1074/jbc.m602634200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased expression of heme oxygenase-1 (HO-1) increases NO resistance in several cell types, although the biochemical mechanism for this protection is unknown. To address this issue, we have measured different molecular markers of nitrosative stress in three stably transfected cell lines derived from the human lung epithelial line A549: two lines that overexpress rat HO-1 (L1 and A4), and a control line with the empty vector (Neo). Compared with the control Neo cells, L1 and A4 cells had, respectively, 5.8- and 3.8-fold greater HO activity accompanied by increased resistance to NO-induced necrosis. Compared with the Neo control, the HO-1-overexpressing cells also showed significantly less lipid peroxide formation and decreased perturbation of transition metal oxidation and coordination states following a cytotoxic NO exposure. These effects were blocked by the HO-1 inhibitors Zn- and Sn-protoporphyrin IX. In contrast, HO-1 overexpression did not significantly affect total reactive oxygen or nitrogen species, the levels of the nucleobase deamination products in DNA (xanthine, inosine, and uracil) following NO exposure, or NO-induced protein nitration. While increased HO-1 activity prevented NO-induced fluctuations in transition metal homeostasis, addition of an iron chelator decreased NO toxicity only slightly. Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
84
|
Cobbold SP, Adams E, Graca L, Daley S, Yates S, Paterson A, Robertson NJ, Nolan KF, Fairchild PJ, Waldmann H. Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol Rev 2006; 213:239-55. [PMID: 16972908 DOI: 10.1111/j.1600-065x.2006.00428.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immune privilege was originally believed to be associated with particular organs, such as the testes, brain, the anterior chamber of the eye, and the placenta, which need to be protected from any excessive inflammatory activity. It is now becoming clear, however, that immune privilege can be acquired locally in many different tissues in response to inflammation, but particularly due to the action of regulatory T cells (Tregs) induced by the deliberate therapeutic manipulation of the immune system toward tolerance. In this review, we consider the interplay between Tregs, dendritic cells, and the graft itself and the resulting local protective mechanisms that are coordinated to maintain the tolerant state. We discuss how both anti-inflammatory cytokines and negative costimulatory interactions can elicit a number of interrelated mechanisms to regulate both T-cell and antigen-presenting cell activity, for example, by catabolism of the amino acids tryptophan and arginine and the induction of hemoxygenase and carbon monoxide. The induction of local immune privilege has implications for the design of therapeutic regimens and the monitoring of the tolerant status of patients being weaned off immunosuppression.
Collapse
Affiliation(s)
- Stephen P Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ma LH, Liu Y, Zhang X, Yoshida T, La Mar GN. 1H NMR study of the magnetic properties and electronic structure of the hydroxide complex of substrate-bound heme oxygenase from Neisseria meningitidis: influence of the axial water deprotonation on the distal H-bond network. J Am Chem Soc 2006; 128:6657-68. [PMID: 16704267 PMCID: PMC2566968 DOI: 10.1021/ja0584626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The substrate and active site residues of the low-spin hydroxide complex of the protohemin complex of Neisseria meningitidis heme oxygenase (NmHO) have been assigned by saturation transfer between the hydroxide and previously characterized aquo complex. The available dipolar shifts allowed the quantitation of both the orientation and anisotropy of the paramagnetic susceptibility tensor. The resulting positive sign, and reduced magnitude of the axial anisotropy relative to the cyanide complex, dictate that the orbital ground state is the conventional "d(pi)" (d(2)(xy)(d(xz), d(yz))(3)); and not the unusual "d(xy)" (d(2)(xz)d(2)(yz)d(xy)) orbital ground state reported for the hydroxide complex of the homologous heme oxygenase (HO) from Pseudomonas aeruginosa (Caignan, G.; Deshmukh, R.; Zeng, Y.; Wilks, A.; Bunce, R. A.; Rivera, M. J. Am. Chem. Soc. 2003, 125, 11842-11852) and proposed as a signature of the HO distal cavity. The conservation of slow labile proton exchange with solvent from pH 7.0 to 10.8 confirms the extraordinary dynamic stability of NmHO complexes. Comparison of the diamagnetic contribution to the labile proton chemical shifts in the aquo and hydroxide complexes reveals strongly conserved bond strengths in the distal H-bond network, with the exception of the distal His53 N(epsilon)(1)H. The iron-ligated water is linked to His53 primarily by a pair of nonligated, ordered water molecules that transmit the conversion of the ligated H-bond donor (H(2)O) to a H-bond acceptor (OH(-)), thereby increasing the H-bond donor strength of the His53 side chain.
Collapse
Affiliation(s)
- Li-Hua Ma
- Department of Chemistry, University of California, Davis, CA 95616
| | - Yangzhong Liu
- Department of Chemistry, University of California, Davis, CA 95616
| | - Xuhang Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tadashi Yoshida
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
86
|
Liu Y, Ma LH, Zhang X, Yoshida T, Satterlee JD, La Mar GN. Characterization of the spontaneous "aging" of the heme oxygenase from the pathological bacterium Neisseria meningitidis via cleavage of the C-terminus in contact with the substrate. Implications for functional studies and the crystal structure. Biochemistry 2006; 45:3875-86. [PMID: 16548515 PMCID: PMC2566967 DOI: 10.1021/bi0523097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution 1H NMR spectroscopy and mass spectrometry are utilized to characterize the irreversible "aging" of native heme oxygenase from N. meningitidis, NmHO. 2D NMR characterization of the cyanide-inhibited substrate complex shows that the C-terminal interaction between Arg208His209 and the exposed pyrrole of the protohemin substrate in the "native" NmHO complex is lost in the "aging". Mass spectrometry and N-terminal sequencing of wild type and "aged" NmHO reveal that the "aging" process involves cleavage of the Arg208His209 dipeptide. The construction of the double deletion mutant without Arg208His209 and its NMR comparison as both the resting state substrate complex and its cyanide-inhibited complex with the "aged" NmHO reveal that cleavage of the C-terminal dipeptide is the only modification during the aging. Comparison of cyanide ligand binding constants reveal a factor approximately 1.7 greater CN- affinity in the native than "aged" NmHO. The rate of protohemin degradation and its stereoselectivity are unaffected by the C-terminal truncation. However, the free alpha-biliverdin yield in the presence of desferrioxamine is significantly increased in the "aged" NmHO and its deletion mutant relative to WT, arguing for a role of the NmHO C-terminus in modulating product release. The facile cleavage of Arg208His209 in the resting state complex, with a half-life of approximately 24 h at 25 degrees C, suggests that previous characterization of NmHO may have been carried out on a mixture of native and "aged" NmHO, and may account for the "lost" C-terminal residues in the crystal structures.
Collapse
Affiliation(s)
- Yangzhong Liu
- Department of Chemistry, University of California, Davis, CA 95616
| | - Li-Hua Ma
- Department of Chemistry, University of California, Davis, CA 95616
| | - Xuhong Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tadashi Yoshida
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, CA 95616
- Corresponding author: Gerd N. La Mar, Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, Phone: (530) 752-0958, FAX: (530) 752-8995, e-mail:
| |
Collapse
|
87
|
Ma LH, Liu Y, Zhang X, Yoshida T, Langry KC, Smith KM, La Mar GN. Modulation of the axial water hydrogen-bonding properties by chemical modification of the substrate in resting state, substrate-bound heme oxygenase from Neisseria meningitidis; coupling to the distal H-bond network via ordered water molecules. J Am Chem Soc 2006; 128:6391-9. [PMID: 16683803 PMCID: PMC2566965 DOI: 10.1021/ja0578505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen bonding of ligated water in ferric, high-spin, resting-state substrate complexes of heme oxygenase from Neisseria meningitidis has been systematically perturbed by variable electron-withdrawing substituents on the hemin periphery. The pattern of 1H NMR-detected dipolar shifts due to the paramagnetic anisotropy is strongly conserved among the four complexes, with the magnitude of dipolar shifts or anisotropy increasing in the order of substituent formyl < vinyl < methyl. The magnetic anisotropy is axial and oriented by the axial Fe-His23 bond, and while individual anisotropies have uncertainties of approximately 5%, the relative values of deltachi (and the zero-field splitting constant, D proportional, variant deltachi(ax)) are defined to 1%. The unique changes in the axial field strength implied by the variable zero-field splitting are in accord with expectations for the axial water serving as a stronger H-bond donor in the order of hemin substituents formyl > vinyl > methyl. These results establish the axial anisotropy (and D) as a sensitive probe of the H-bonding properties of a ligated water in resting-state, substrate complexes of heme oxygenase. Correction of observed labile proton chemical shifts for paramagnetic influences indicates that Gln49 and His53, some approximately 10 angstroms from the iron, sense the change in the ligated water H-bonding to the three nonligated ordered water molecules that link the two side chains to the iron ligand. The present results augur well for detecting and characterizing changes in distal water H-bonding upon mutagenesis of residues in the distal network of ordered water molecules and strong H-bonds.
Collapse
Affiliation(s)
- Li-Hua Ma
- Department of Chemistry, University of California, Davis, California 95616
| | - Yangzhong Liu
- Department of Chemistry, University of California, Davis, California 95616
| | - Xuhong Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tadashi Yoshida
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Kevin C. Langry
- Department of Chemistry, University of California, Davis, California 95616
| | - Kevin M. Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
88
|
Paiva-Silva GO, Cruz-Oliveira C, Nakayasu ES, Maya-Monteiro CM, Dunkov BC, Masuda H, Almeida IC, Oliveira PL. A heme-degradation pathway in a blood-sucking insect. Proc Natl Acad Sci U S A 2006; 103:8030-5. [PMID: 16698925 PMCID: PMC1472424 DOI: 10.1073/pnas.0602224103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hematophagous insects are vectors of diseases that affect hundreds of millions of people worldwide. A common physiological event in the life of these insects is the hydrolysis of host hemoglobin in the digestive tract, leading to a massive release of heme, a known prooxidant molecule. Diverse organisms, from bacteria to plants, express the enzyme heme oxygenase, which catalyzes the oxidative degradation of heme to biliverdin (BV) IX, CO, and iron. Here, we show that the kissing bug Rhodnius prolixus, a vector of Chagas' disease, has a unique heme-degradation pathway wherein heme is first modified by addition of two cysteinylglycine residues before cleavage of the porphyrin ring, followed by trimming of the dipeptides. Furthermore, in contrast to most known heme oxygenases, which generate BV IXalpha, in this insect, the end product of heme detoxification is a dicysteinyl-BV IXgamma. Based on these results, we propose a heme metabolizing pathway that includes the identified intermediates produced during modification and cleavage of the heme porphyrin ring.
Collapse
Affiliation(s)
- Gabriela O. Paiva-Silva
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Christine Cruz-Oliveira
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Department of Biological Sciences, University of Texas, El Paso, TX 79968-0519
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Clarissa M. Maya-Monteiro
- Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, RJ, 21045-900, Rio de Janeiro, Brazil; and
| | - Boris C. Dunkov
- Department of Biochemistry and Molecular Biophysics, Center for Insect Science, University of Arizona, Tucson, AZ 85721
| | - Hatisaburo Masuda
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas, El Paso, TX 79968-0519
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- **To whom correspondence may be addressed at:
Department of Biological Sciences, University of Texas, 500 West University Avenue, El Paso, TX 79968-0519. E-mail:
| | - Pedro L. Oliveira
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
- To whom correspondence may be addressed at:
Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Sala 5 Bloco D subsolo, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil. E-mail:
| |
Collapse
|
89
|
Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86:583-650. [PMID: 16601269 DOI: 10.1152/physrev.00011.2005] [Citation(s) in RCA: 1766] [Impact Index Per Article: 98.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
90
|
Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy MP, Kalyanaraman R, Darley-Usmar VM, Noguchi N. Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1737-48. [PMID: 16651638 PMCID: PMC1606607 DOI: 10.2353/ajpath.2006.050648] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 01/09/2023]
Abstract
Lysophosphatidylcholine (lysoPC) evokes diverse biological responses in vascular cells including Ca(2+) mobilization, production of reactive oxygen species, and activation of the mitogen-activated protein kinases, but the mechanisms linking these events remain unclear. Here, we provide evidence that the response of mitochondria to the lysoPC-dependent increase in cytosolic Ca(2+) leads to activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase through a redox signaling mechanism in human umbilical vein endothelial cells. ERK activation was attenuated by inhibitors of the electron transport chain proton pumps (rotenone and antimycin A) and an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), suggesting that mitochondrial inner membrane potential plays a key role in the signaling pathway. ERK activation was also selectively attenuated by chain-breaking antioxidants and by vitamin E targeted to mitochondria, suggesting that transduction of the mitochondrial hydrogen peroxide signal is mediated by a lipid peroxidation product. Inhibition of ERK activation with MEK inhibitors (PD98059 or U0126) diminished induction of the antioxidant enzyme heme oxygenase-1. Taken together, these data suggest a role for mitochondrially generated reactive oxygen species and Ca(2+) in the redox cell signaling path-ways, leading to ERK activation and adaptation of the pathological stress mediated by oxidized lipids such as lysoPC.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJA. Free radical biology and medicine: it's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006; 291:R491-511. [PMID: 16627692 DOI: 10.1152/ajpregu.00614.2005] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review gases that can affect oxidative stress and that themselves may be radicals. We discuss O(2) toxicity, invoking superoxide, hydrogen peroxide, and the hydroxyl radical. We also discuss superoxide dismutase (SOD) and both ground-state, triplet oxygen ((3)O(2)), and the more energetic, reactive singlet oxygen ((1)O(2)). Nitric oxide ((*)NO) is a free radical with cell signaling functions. Besides its role as a vasorelaxant, (*)NO and related species have other functions. Other endogenously produced gases include carbon monoxide (CO), carbon dioxide (CO(2)), and hydrogen sulfide (H(2)S). Like (*)NO, these species impact free radical biochemistry. The coordinated regulation of these species suggests that they all are used in cell signaling. Nitric oxide, nitrogen dioxide, and the carbonate radical (CO(3)(*-)) react selectively at moderate rates with nonradicals, but react fast with a second radical. These reactions establish "cross talk" between reactive oxygen (ROS) and reactive nitrogen species (RNS). Some of these species can react to produce nitrated proteins and nitrolipids. It has been suggested that ozone is formed in vivo. However, the biomarkers that were used to probe for ozone reactions may be formed by non-ozone-dependent reactions. We discuss this fascinating problem in the section on ozone. Very low levels of ROS or RNS may be mitogenic, but very high levels cause an oxidative stress that can result in growth arrest (transient or permanent), apoptosis, or necrosis. Between these extremes, many of the gasses discussed in this review will induce transient adaptive responses in gene expression that enable cells and tissues to survive. Such adaptive mechanisms are thought to be of evolutionary importance.
Collapse
Affiliation(s)
- William A Pryor
- Biodynamics Institute, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther 2006; 111:327-45. [PMID: 16513178 DOI: 10.1016/j.pharmthera.2005.10.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 11/26/2022]
Abstract
Heme (iron protoporphyrin IX) exists as prosthetic group in several hemoproteins, which include respiration cytochromes, gas sensors, P450 enzymes (CYPs), catalases, peroxidases, nitric oxide synthases (NOS), guanyl cyclases, and even transcriptional factors. Hemin (the oxidized form of iron protoporphyrin IX) on the other hand is an essential regulator of gene expression and growth promoter of hematopoietic progenitor cells. This review is focused on the major developments occurred in this field of heme biosynthesis and catabolism and their implications in our understanding the pathogenesis of heme-related disorders like anemias, acute porphyrias, hematological malignancies (leukemias), and other disorders. Heme is transported into hematopoietic cells and enters the nucleus where it activates gene expression by removing transcriptional potential repressors, like Bach1, from enhancer DNA sequences. Evidence also exists to indicate that heme acts like a signaling ligand in cell respiration and metabolism, stress response adaptive processes, and even transcription of several genes. Impaired heme biosynthesis or heme deficiency lead to hematological disorders, tissue degeneration, and aging, while heme prevents cell damage via activation of heme oxygenase-1 (HO-1) gene. Therefore, heme, besides being a key regulator of mammalian functions, can be also a useful therapeutic agent alone or in combination with other drugs in several heme-related disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki GR54124, Macedonia, Greece.
| | | | | |
Collapse
|
93
|
Migita CT, Togashi S, Minakawa M, Zhang X, Yoshida T. Evidence for the hydrophobic cavity of heme oxygenase-1 to be a CO-trapping site. Biochem Biophys Res Commun 2005; 338:584-9. [PMID: 16125669 DOI: 10.1016/j.bbrc.2005.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/04/2005] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is produced during the heme catabolism by heme oxygenase. In brain or blood vessels, CO functions as a neurotransmitter or an endothelial-derived relaxing factor. To verify whether crystallographically proposed CO-trapping sites of rat and cyanobacterial heme oxygenase-1 really work, heme catabolism by heme oxygenase-1 from rat and cyanobacterial Synechocystis sp. PCC 6803 has been scrutinized in the presence of 2-propanol. If 2-propanol occupies the trapping sites, formation of CO-bound verdoheme should be enhanced. Although effects of 2-propanol on the rat heme oxygenase-1 reaction were obscure, the reaction of cyanobacterial enzyme in the presence of NADPH/ferredoxin reductase/ferredoxin was apparently affected. Relative amount of CO-verdoheme versus CO-free verdoheme detected by optical absorption spectra increased as the equivalent of 2-propanol increased, thereby supporting indirectly that the hydrophobic cavity in cyanobacterial enzyme traps CO to reduce CO inhibition of verdoheme degradation.
Collapse
Affiliation(s)
- Catharina T Migita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
94
|
Reiter TA, Demple B. Carbon monoxide mediates protection against nitric oxide toxicity in HeLa cells. Free Radic Biol Med 2005; 39:1075-88. [PMID: 16198234 DOI: 10.1016/j.freeradbiomed.2005.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 05/19/2005] [Accepted: 05/19/2005] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) mediates cell signaling at low (nanomolar) concentrations, but can be cytotoxic at higher concentrations. Heme oxygenase-1 (HO-1), implicated in a role in NO resistance, might confer its protective effect through the direct products biliverdin and CO or the secondary product bilirubin. We have therefore tested whether biliverdin, bilirubin, or CO can provide resistance to NO toxicity. HeLa cells treated with bilirubin or biliverdin (up to 25 microM) had unchanged survival of an NO challenge (1 mM spermine-NONOate or 2 mM DEA-NO), although they displayed increased resistance to H2O2 (350 microM). In contrast, prior exposure to CO (up to 100 ppm) increased NO resistance. An interval between CO exposure and NO resistance was required for the increased NO resistance. Because the CO-activated NO resistance was also blocked by the transcription inhibitor actinomycin D, inducible gene expression seems critical for the cytoprotection elicited by CO. Experiments in the presence of HO and guanylate cyclase inhibitors indicated that HO activity and cGMP signaling are not essential for the CO-protective effect. Last, inhibition of p38 MAPK activation fully blocked the CO-protective effect, indicating the involvement of this signaling pathway(s) in the CO response.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue 1-512, Boston, MA 02115, USA
| | | |
Collapse
|
95
|
Khorasani-Motlagh M, Safari N, Noroozifar M, Saffari J, Biabani M, Rebouças JS, Patrick BO. New Class of Verdoheme Analogues with Weakly Coordinating Anions: The Structure of (μ-Oxo)bis[(octaethyloxoporphinato)iron(III)] Hexafluorophosphate. Inorg Chem 2005; 44:7762-9. [PMID: 16241125 DOI: 10.1021/ic050211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new verdoheme analogues with weakly coordinating anions, [OEOPFe(II)X], where OEOP is the monoanion of octaethyloxoporphyrin and X = PF(6), ClO(4), and BF(4), have been synthesized and characterized by spectroscopic methods. (1)H NMR spectroscopy reveals that the [OEOPFe(II)X] species are paramagnetic, and the iron is five-coordinate (S = 2). The oxidation of [OEOPFe(II)PF(6)] with dioxygen yields [(OEOPFe)(2)O](PF(6))(2). The structure of (mu-oxo)bis[(octaethyloxoporphinato)iron(III)] has been determined by X-ray diffraction analysis. The eight Fe-N bond distances have an average value of 2.077(3) Angstroms. The oxygen atom sits on the inversion center, and the average axial Fe-O bond length is 1.756(3) Angstroms. The average displacement of the iron(III) atom from the mean porphinato core is 0.60 Angstroms. Crystal data: crystal system, monoclinic; a = 8.7114(10) Angstroms; b = 26.102(4) Angstroms; c = 15.8323(14) Angstroms; beta = 104.134(6) degrees ; space group P2(1)/c; V = 3491.1(7) Angstroms (3); Z = 2; R1 = 0.0546, wR2 =0.1145 for data with I > 2sigma(I).
Collapse
|
96
|
Abstract
A mechanism of heme metabolism by heme oxygenase (HO) is discussed from B3LYP density functional theory calculations. The concerted OH group attack to the alpha-carbon by the iron-hydroperoxo species is investigated using a model with full protoporphyrin IX to confirm our previous conclusion that this species does not have sufficient oxidizing power for heme oxidation (J. Am. Chem. Soc. 2004, 126, 3672). Calculated activation energies and structures of the intermediates and transition state for this process remain unchanged from those for a small model with porphine in the previous study, which shows that the inclusion of the side chain of the porphyrin ring is not essential in describing the OH group transfer. The activation barrier for a direct oxo attack to the alpha-carbon by an iron-oxo model is calculated to be 49.8 kcal/mol, the barrier height of which looks very high for the enzymatic reaction under physiological conditions. This large activation energy is due to a highly bent porphyrin structure in the transition state. However, a bridging water molecule plays an important role in reducing the porphyrin distortion in the transition state, resulting in a remarkable decrease of the activation barrier to 13.9 kcal/mol. A whole-enzyme model with about 4000 atoms is constructed to elucidate functions of the protein environment in this enzymatic reaction using QM/MM calculations. The key water molecule is fixed in the protein environment to ensure the low-barrier and regioselective heme oxidation. A water-assisted oxo mechanism of heme oxidation by heme oxygenase is proposed from these calculational results.
Collapse
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan
| | | |
Collapse
|
97
|
Kumar D, de Visser SP, Shaik S. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase. J Am Chem Soc 2005; 127:8204-13. [PMID: 15926850 DOI: 10.1021/ja0446956] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
98
|
Liu Y, Zhang X, Yoshida T, La Mar GN. Solution 1H NMR characterization of the distal H-bond network and the effective axial field in the resting-state, high-spin ferric, substrate-bound complex of heme oxygenase from N. meningitidis. J Am Chem Soc 2005; 127:6409-22. [PMID: 15853349 DOI: 10.1021/ja042339h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution (1)H 1D and 2D NMR spectra of the high-spin ferric, resting-state, substrate-bound complex of heme oxygenase, HO, from the pathological bacterium N. meningitidis have been investigated to assess the prospects for definitive assignment of hyperfine shifted and relaxed residue protons and the interpretation of those shifts in terms of the anisotropy and orientation of the paramagnetic susceptibility tensor, chi. Appropriately tailored 1D/2D NMR data, together with analyses of paramagnetic relaxation and a preliminary estimate of the magnetic anisotropy, reveal a chi that is axially anisotropic and oriented along the Fe-His vector. Together with T(-)(2) dependence of the shifts, Deltachi(ax) yields a zero-field splitting constant, D = 9.1 cm(-)(1), which is expected to serve as a very sensitive probe of H-bond interactions between the iron-ligated water and a series of distal ordered water molecules implicated in the mechanism of HO action. The side chains, Gln49 and His53, involved in the stabilization of catalytically relevant water molecules, were found to exhibit orientations rotated by 180 degrees about the beta-gamma bonds in solution relative to those in the crystal. The implication of these reorientations on the details of the distal H-bond network is discussed. The H-bond donor strengths of Gln 49 and His53 were found to respond appropriately to H-bond donor (water) versus H-bond acceptor (cyanide) iron ligands. Very slow NH exchange for the N-terminal portion of the distal helix suggest that an intrinsically "unstable" distal helix may be valid only for the C-terminal portion.
Collapse
Affiliation(s)
- Yangzhong Liu
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
99
|
Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K. Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry 2005; 44:4257-66. [PMID: 15766254 DOI: 10.1021/bi0480483] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phycobiliproteins, light-harvesting proteins in cyanobacteria, red algae, and cryptophytes, contain phycobilin pigments. Phycobilins are synthesized from biliverdin, which is produced by the oxidative cleavage of the heme porphyrin ring catalyzed by heme oxygenase (HO). Two paralogs of ho (ho1 and ho2) have been identified in the genome of the cyanobacterium, Synechocystis sp. PCC 6803. The recombinant proteins of both paralogs (Syn HO-1 and Syn HO-2) possess in vitro heme degradation activity. We have determined the crystal structures of Syn HO-2 in complex with heme (heme-Syn HO-2) and its reduced and NO bound forms. The heme-Syn HO-2 crystal was a nonmerohedral twin, and detwinned diffraction data were used to refine the structure. Although heme-Syn HO-2 shares common folding with other HOs, the C-terminal segment is ordered and turns back to the heme-binding side. Gel-filtration chromatography analysis and molecular packing in the crystal indicate that heme-Syn HO-2 forms a homodimer, in which the C-terminal ordered segments interact with each other. Because Syn HO-2 is a monomer in the apo state, the dimeric interaction may aid in the selection of the reducing partner but likely does not interfere with heme binding. The heme iron is coordinated by a water molecule in the ferric form, but the distal water is absent in the ferrous form. In all of the Syn HO-2 structures, several water molecules form a hydrogen-bond network at the distal hemepocket, which is involved in HO activity. Upon NO binding, the side-chain conformation of Tyr 156 changes. Tyr 156 is located at the hydrophobic cluster, which interrupts the possible H(+) pathway from the molecular surface to the hemepocket. Thus, Tyr 156 may function as a H(+) shuttle by changing conformation.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chem Rev 2005; 105:2253-77. [PMID: 15941214 DOI: 10.1021/cr0307143] [Citation(s) in RCA: 1530] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|