51
|
Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG. In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc Natl Acad Sci U S A 2007; 104:8737-42. [PMID: 17502613 PMCID: PMC1885572 DOI: 10.1073/pnas.0701829104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The goal of this study was to create an in vitro cell culture system that captures essential features of the in vivo erythroid micronucleus (MN) genotoxicity assay, thus enabling increased throughput and controlled studies of the hematopoietic DNA damage response. We show that adult bone marrow (BM) cultures respond to erythropoietin, the principal hormone that stimulates erythropoiesis, with physiological erythropoietic proliferation, differentiation, and enucleation. We then show that this in vitro erythropoietic system clearly signals exposure to genotoxicants through erythroid MN formation. Furthermore, we determined that DNA repair-deficient (MGMT(-/-)) BM displayed sensitivity to genotoxic exposure in vivo compared with WT BM and that this phenotypic response was reflected in erythropoietic cultures. These findings suggest that this in vitro erythroid MN assay is capable of screening for genotoxicity on BM in a physiologically reflective manner. Finally, responses to genotoxicants during erythroid differentiation varied with exposure time, demonstrating that this system can be used to study the effect of DNA damage at specific developmental stages.
Collapse
Affiliation(s)
- J. Shuga
- Department of Chemical Engineering
- Whitehead Institute for Biomedical Research
- Center for Environmental Health Sciences
| | - J. Zhang
- Whitehead Institute for Biomedical Research
| | - L. D. Samson
- Center for Environmental Health Sciences
- Biological Engineering Division
- Department of Biology, and
| | - H. F. Lodish
- Whitehead Institute for Biomedical Research
- Biological Engineering Division
- Department of Biology, and
- To whom correspondence should be addressed at:
Nine Cambridge Center, WI-601, Cambridge, MA 02141. E-mail:
| | - L. G. Griffith
- Center for Environmental Health Sciences
- Biological Engineering Division
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
52
|
Levitt PS, Zhu M, Cassano A, Yazinski SA, Liu H, Darfler J, Peters RM, Weiss RS. Genome maintenance defects in cultured cells and mice following partial inactivation of the essential cell cycle checkpoint gene Hus1. Mol Cell Biol 2007; 27:2189-201. [PMID: 17220276 PMCID: PMC1820507 DOI: 10.1128/mcb.01763-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cell cycle checkpoints are evolutionarily conserved signaling pathways that uphold genomic integrity. Complete inactivation of the mouse checkpoint gene Hus1 results in chromosomal instability, genotoxin hypersensitivity, and embryonic lethality. To determine the functional consequences of partial Hus1 impairment, we generated an allelic series in which Hus1 expression was incrementally reduced by combining a hypomorphic Hus1 allele, Hus1(neo), with either wild-type or null (Hus1(Delta1)) alleles. Primary Hus1(neo/Delta1) embryonic fibroblasts exhibited spontaneous chromosomal abnormalities and underwent premature senescence, while higher Hus1 expression in Hus1(neo/neo) cells allowed for normal proliferation. Antioxidant treatment almost fully suppressed premature senescence in Hus1(neo/Delta1) cultures, suggesting a critical role for Hus1 in oxidative stress responses. Treatment of Hus1(neo/neo) and Hus1(neo/Delta1) cells with the DNA adducting agent benzo(a)pyrene dihydrodriol epoxide resulted in a loss of cell viability that was associated with S-phase DNA damage checkpoint failure. Likewise, the DNA polymerase inhibitor aphidicolin triggered increased cell death, chromosomal aberrations, and H2AX phosphorylation, a marker for double-stranded DNA breaks, in Hus1(neo/neo) and Hus1(neo/Delta1) cultures compared to controls. Despite these pronounced genome maintenance defects in cultured Hus1(neo/Delta1) and Hus1(neo/neo) cells, mice of the same genotypes were born at expected frequencies and appeared grossly normal. A significant increase in micronucleus formation was observed in peripheral blood cells from Hus1(neo/Delta1) mice, but reduced Hus1 expression did not cause an elevated predisposition to spontaneous tumor development or accelerate tumorigenesis in p53-deficient mice. These results identify differential effects of altered Hus1 gene dosage on genome maintenance during in vitro culture, genotoxic stress responses, embryonic development, and adult homeostasis.
Collapse
Affiliation(s)
- Peter S Levitt
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Hayashi M, MacGregor JT, Gatehouse DG, Blakey DH, Dertinger SD, Abramsson-Zetterberg L, Krishna G, Morita T, Russo A, Asano N, Suzuki H, Ohyama W, Gibson D. In vivo erythrocyte micronucleus assay III. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood reticulocytes, with discussion of non-hematopoietic target cells and a single dose-level limit test. Mutat Res 2006; 627:10-30. [PMID: 17157053 DOI: 10.1016/j.mrgentox.2006.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/31/2006] [Accepted: 08/14/2006] [Indexed: 10/23/2022]
Abstract
The in vivo micronucleus assay working group of the International Workshop on Genotoxicity Testing (IWGT) discussed new aspects in the in vivo micronucleus (MN) test, including the regulatory acceptance of data derived from automated scoring, especially with regard to the use of flow cytometry, the suitability of rat peripheral blood reticulocytes to serve as the principal cell population for analysis, the establishment of in vivo MN assays in tissues other than bone marrow and blood (for example liver, skin, colon, germ cells), and the biological relevance of the single-dose-level test. Our group members agreed that flow cytometric systems to detect induction of micronucleated immature erythrocytes have advantages based on the presented data, e.g., they give good reproducibility compared to manual scoring, are rapid, and require only small quantities of peripheral blood. Flow cytometric analysis of peripheral blood reticulocytes has the potential to allow monitoring of chromosome damage in rodents and also other species as part of routine toxicology studies. It appears that it will be applicable to humans as well, although in this case the possible confounding effects of splenic activity will need to be considered closely. Also, the consensus of the group was that any system that meets the validation criteria recommended by the IWGT (2000) should be acceptable. A number of different flow cytometric-based micronucleus assays have been developed, but at the present time the validation data are most extensive for the flow cytometric method using anti-CD71 fluorescent staining especially in terms of inter-laboratory collaborative data. Whichever method is chosen, it is desirable that each laboratory should determine the minimum sample size required to ensure that scoring error is maintained below the level of animal-to-animal variation. In the second IWGT, the potential to use rat peripheral blood reticulocytes as target cells for the micronucleus assay was discussed, but a consensus regarding acceptability for regulatory purposes could not be reached at that time. Subsequent validation efforts, combined with accumulated published data, demonstrate that blood-derived reticulocytes from rats as well as mice are acceptable when young reticulocytes are analyzed under proper assay protocol and sample size. The working group reviewed the results of micronucleus assays using target cells/tissues other than hematopoietic cells. We also discussed the relevance of the liver micronucleus assay using young rats, and the importance of understanding the maturation of enzyme systems involved in the processes of metabolic activation in the liver of young rats. Although the consensus of the group was that the more information with regard to the metabolic capabilities of young rats would be useful, the published literature shows that young rats have sufficient metabolic capacity for the purposes of this assay. The use of young rats as a model for detecting MN induction in the liver offers a good alternative methodology to the use of partial hepatectomy or mitogenic stimulation. Additional data obtained from colon and skin MN models have been integrated into the data bases, enhancing confidence in the utility of these models. A fourth topic discussed by the working group was the regulatory acceptance of the single-dose-level assay. There was no consensus regarding the acceptability of a single dose level protocol when dose-limiting toxicity occurs. The use of a single dose level can lead to problems in data interpretation or to the loss of animals due to unexpected toxicity, making it necessary to repeat the study with additional doses. A limit test at a single dose level is currently accepted when toxicity is not dose-limiting.
Collapse
Affiliation(s)
- Makoto Hayashi
- Division of Genetics & Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 2006; 39:93-8. [PMID: 17143284 DOI: 10.1038/ng1936] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/03/2006] [Indexed: 12/30/2022]
Abstract
Mcm4 (minichromosome maintenance-deficient 4 homolog) encodes a subunit of the MCM2-7 complex (also known as MCM2-MCM7), the replication licensing factor and presumptive replicative helicase. Here, we report that the mouse chromosome instability mutation Chaos3 (chromosome aberrations occurring spontaneously 3), isolated in a forward genetic screen, is a viable allele of Mcm4. Mcm4(Chaos3) encodes a change in an evolutionarily invariant amino acid (F345I), producing an apparently destabilized MCM4. Saccharomyces cerevisiae strains that we engineered to contain a corresponding allele (resulting in an F391I change) showed a classical minichromosome loss phenotype. Whereas homozygosity for a disrupted Mcm4 allele (Mcm4(-)) caused preimplantation lethality, Mcm(Chaos3/-) embryos died late in gestation, indicating that Mcm4(Chaos3) is hypomorphic. Mutant embryonic fibroblasts were highly susceptible to chromosome breaks induced by the DNA replication inhibitor aphidicolin. Most notably, >80% of Mcm4(Chaos3/Chaos3) females succumbed to mammary adenocarcinomas with a mean latency of 12 months. These findings suggest that hypomorphic alleles of the genes encoding the subunits of the MCM2-7 complex may increase breast cancer risk.
Collapse
Affiliation(s)
- Naoko Shima
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Asano N, Torous DK, Tometsko CR, Dertinger SD, Morita T, Hayashi M. Practical threshold for micronucleated reticulocyte induction observed for low doses of mitomycin C, Ara-C and colchicine. Mutagenesis 2005; 21:15-20. [PMID: 16364928 DOI: 10.1093/mutage/gei068] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Micronucleus induction was studied for the DNA target clastogens mitomycin C (MMC) and 1-beta-D-arabinofuranosylcytosine (Ara-C), and also the non-DNA target aneugen colchicine (COL) in order to evaluate the dose-response relationship at very low dose levels. The acridine orange (AO) supravital staining method was used for microscopy and the anti-CD71-FITC based method was used for flow cytometric analysis. In the AO method, 2000 reticulocytes were analysed as commonly advised, but in the flow cytometric method, 2000, 20,000, 200,000 and 1,000,000 reticulocytes were analysed for each sample to increase the detecting power (i.e. sensitivity) of the assay. The present data show that increasing the number of cells scored increases the statistical power of the assay when the cell was considered as a statistical unit. Even so, statistically significant differences from respective vehicle controls were not observed at the lowest dose level for MMC and Ara-C, or the lower four dose levels for COL, even after one million cells were analysed. When the animal was considered as a statistical unit, only the top dose group for each chemical showed significant increase of micronucleated reticulocytes frequency. As non-linear dose-response curves were obtained for each of the three chemicals studied, these observations provide evidence for the existence of a practical threshold for the DNA target clastogens as well as the non-DNA target aneugen studied.
Collapse
Affiliation(s)
- Norihide Asano
- Toxicological Research Center, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki Osaka 567-8680, Japan.
| | | | | | | | | | | |
Collapse
|
56
|
Chang PY, Bakke J, Orduna J, Lin S, Doppalaudi R. Proton-induced genetic damage in lacZ transgenic mice. Radiat Res 2005; 164:481-6. [PMID: 16187753 DOI: 10.1667/rr3322.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The plasmid-based lacZ transgenic mouse model system was used to evaluate the mutagenic and genotoxic potential of 250 MeV/nucleon proton radiation by evaluating the frequency of micronucleated polychromatic reticulocytes in peripheral blood and bone marrow and the mutant frequencies of the lacZ reporter transgene in spleen and brain, respectively. Doses of 0.1-2 Gy produced dose- and time-dependent changes in the frequency of micronucleated polychromatic reticulocytes within 48 h, with peak induction up to sixfold above control levels. The frequency of micronucleated polychromatic reticulocytes returned to control levels within 1 week after exposure. With doses of 4 Gy, the elevation in the frequency of micronucleated polychromatic reticulocytes was delayed up to 1 week after exposure, but complete recovery to control levels was observed at 16 weeks postirradiation. Significant increase in mutant frequencies in brain tissue was observed at 8 week after proton exposure at doses as low of 0.1 Gy. Mutant frequencies in spleen increased up to twofold above spontaneous mutant frequencies at 8 weeks after exposure to 0.5-1 Gy. These effects appeared saturated at doses >1 Gy for both tissues, possibly due to elimination of damaged cells from the tissue systems. These in vivo results highlight the importance of considering tissue specificity, dose and temporal dependence when assessing radiation effects.
Collapse
Affiliation(s)
- Polly Y Chang
- SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | |
Collapse
|
57
|
Torous D, Asano N, Tometsko C, Sugunan S, Dertinger S, Morita T, Hayashi M. Performance of flow cytometric analysis for the micronucleus assay--a reconstruction model using serial dilutions of malaria-infected cells with normal mouse peripheral blood. Mutagenesis 2005; 21:11-3. [PMID: 16188876 DOI: 10.1093/mutage/gei053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To confirm the performance and statistical power of a flow cytometric method for scoring micronucleated erythrocytes, reconstruction experiments were performed. For these investigations, peripheral blood erythrocytes from untreated mice, with a micronucleated erythrocyte frequency of approximately 0.1% were combined with known quantities of Plasmodium berghei (malaria) infected mouse erythrocytes. These cells had an infected erythrocyte frequency of approximately 0.7%, and mimic the DNA content of micronuclei (MN). For an initial experiment, samples with a range of MN/malaria (Mal) content were constructed and analysed in triplicate by flow cytometry until 2000, 20,000 and 200,000 total erythrocytes were acquired. In a second experiment, each specimen was analysed in triplicate until 2000, 20,000, 200,000 and 1,000,000 erythrocytes were acquired. As expected, the sensitivity of the assay to detect small changes in rare erythrocyte sub-population frequencies was directly related to the number of cells analysed. For example, when 2000 cells were scored, increases in MN/Mal frequencies of 3.9- or 2.7-fold were detected as statistically significant. When 200,000 cells were analysed, a 1.2-fold increase was detected. These data have implications for the experimental design and interpretation of micronucleus assays that are based on automated scoring procedures, since previously unattainable numbers of cells can now be readily scored.
Collapse
Affiliation(s)
- Dorothea Torous
- Litron Laboratories, 200 Canal View Boulevard, Rochester, NY 14623, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Wilson L, Ching YH, Farias M, Hartford SA, Howell G, Shao H, Bucan M, Schimenti JC. Random mutagenesis of proximal mouse chromosome 5 uncovers predominantly embryonic lethal mutations. Genome Res 2005; 15:1095-105. [PMID: 16024820 PMCID: PMC1182222 DOI: 10.1101/gr.3826505] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A region-specific ENU mutagenesis screen was conducted to elucidate the functional content of proximal mouse Chr 5. We used the visibly marked, recessive, lethal inversion Rump White (Rw) as a balancer in a three-generation breeding scheme to identify recessive mutations within the approximately 50 megabases spanned by Rw. A total of 1003 pedigrees were produced, representing the largest inversion screen performed in mice. Test-class animals, homozygous for the ENU-mutagenized proximal Chr 5 and visibly distinguishable from nonhomozygous littermates, were screened for fertility, hearing, vestibular function, DNA repair, behavior, and dysmorphology. Lethals were identifiable by failure to derive test-class animals within a pedigree. Embryonic lethal mutations (total of 34) were overwhelmingly the largest class of mutants recovered. We characterized them with respect to the time of embryonic death, revealing that most act at midgestation (8.5-10.5) or sooner. To position the mutations within the Rw region and to guide allelism tests, we performed complementation analyses with a set of new and existing chromosomal deletions, as well as standard recombinational mapping on a subset of the mutations. By pooling the data from this and other region-specific mutagenesis projects, we calculate that the mouse genome contains approximately 3479-4825 embryonic lethal genes, or about 13.7%-19% of all genes.
Collapse
|
59
|
De Boeck M, van der Leede BJ, Van Goethem F, De Smedt A, Steemans M, Lampo A, Vanparys P. Flow cytometric analysis of micronucleated reticulocytes: Time- and dose-dependent response of known mutagens in mice, using multiple blood sampling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:30-42. [PMID: 15880423 DOI: 10.1002/em.20127] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
According to the current Organization of Economic Cooperation and Development (OECD) and International Committee on Harmonization (ICH) guidelines for the mammalian erythrocyte micronucleus (MN) test, analysis of peripheral blood reticulocytes (RETs) for the presence of micronuclei can be performed using flow cytometry. The MicroFlow PLUS method (Litron Laboratories, Rochester, NY) for MN analysis by flow cytometry is based on the binding of FITC-labeled antibodies to the CD71 transferrin receptor of immature RETs, on parallel RNA degradation, and on propidium iodide staining of DNA present as micronuclei. The objective of this study was to assess the sensitivity of this flow cytometry method to detect time- and dose-dependent induction of micronuclei in mouse peripheral blood RETs after treatment with nine chemical agents. Five known clastogens, two known aneugens, and two compounds previously reported to be inactive in the mouse bone marrow MN test were evaluated at three dose levels. Multiple blood sampling of the same animal before and at two time points after treatment was conducted. All known mutagens produced a dose-dependent increase in micronucleated reticulocytes (MN-RETs); the compounds previously shown to be inactive in the in vivo MN test were also negative using the present methodology. The highest frequency of MN-RETs was observed at 48 hr after treatment, except for 5-fluorouracil, which had its peak response at 72 hr. The results indicate that micronuclei can be measured by multiple blood sampling of the same animal before and after treatment without altering the sensitivity of the assay. The results confirm that the flow cytometric assessment of MN-RETs in mouse peripheral blood using MicroFlow PLUS is a sensitive method with high analysis throughput, and robust quality control.
Collapse
Affiliation(s)
- Marlies De Boeck
- Johnson & Johnson Pharmaceutical Research & Development--Division of Janssen Pharmaceutica N.V., Genetic and In Vitro Toxicology, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | | | | | |
Collapse
|
60
|
Torous DK, Hall NE, Illi-Love AH, Diehl MS, Cederbrant K, Sandelin K, Pontén I, Bolcsfoldi G, Ferguson LR, Pearson A, Majeska JB, Tarca JP, Hynes GM, Lynch AM, McNamee JP, Bellier PV, Parenteau M, Blakey D, Bayley J, van der Leede BJM, Vanparys P, Harbach PR, Zhao S, Filipunas AL, Johnson CW, Tometsko CR, Dertinger SD. Interlaboratory validation of a CD71-based flow cytometric method (Microflow) for the scoring of micronucleated reticulocytes in mouse peripheral blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:44-55. [PMID: 15605355 DOI: 10.1002/em.20081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An interlaboratory study was performed to validate an anti-CD71/flow cytometry-based technique for enumerating micronucleated reticulocytes (MN-RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by evaluating the degree of correspondence between MN-RET measurements generated by flow cytometry (FCM) with those obtained using traditional microscopy-based methods. In addition to these cross-methods data, flow cytometric MN-RET measurements for each blood sample were performed at two separate sites in order to evaluate the reproducibility of data between laboratories. In these studies, groups of male CD-1 mice were treated with vehicle (saline or vegetable oil), a negative control (saline or vegetable oil), or four dose levels of five known genotoxicants (clastogens: cyclophosphamide, benzo[a]pyrene, 5-fluorouracil, methotrexate; aneugen: vincristine sulfate). Exposure occurred on 3 consecutive days via intraperitoneal injection, and blood samples were obtained approximately 24 hr after the final treatment. MN-RET frequencies were determined for each sample based on the analysis of 2,000 (microscopy) and 20,000 (FCM) reticulocytes. Regardless of the method utilized, each genotoxic agent was observed to cause statistically significant increases in the frequency of MN-RETs, and each response occurred in a dose-dependent manner. Spearman's correlation coefficient (rs) for FCM versus microscopy-based MN-RET measurements (nine experiments, 252 paired measurements) was 0.740, indicating a high degree of correspondence between methods. The rs value for all flow cytometric MN-RET measurements performed at the two independent sites was 0.857 (n = 248), suggesting that the automated method is highly transferable between laboratories. Additionally, the flow cytometric system offered advantages relative to microscopy-based scoring, including a greater number of cells analyzed, much faster analysis times, and a greater degree of objectivity. Collectively, data presented in this report suggest that the overall performance of mouse peripheral blood micronucleus tests is enhanced by the use of the flow cytometric scoring procedure.
Collapse
|
61
|
Offer T, Ho E, Traber MG, Bruno RS, Kuypers FA, Ames BN. A simple assay for frequency of chromosome breaks and loss (micronuclei) by flow cytometry of human reticulocytes. FASEB J 2004; 19:485-7. [PMID: 15601670 DOI: 10.1096/fj.04-2729fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure to environmental stress, such as radiation, poor nutrition, or smoking, can cause hazardous lesions in DNA, including double-strand breaks. In red blood cells, a DNA fragment or lagging chromosome forms a micronucleus when left behind after the main nucleus is extruded to form the mature reticulocyte during erythropoiesis. Reticulocytes with micronuclei in human peripheral blood are not generally available for analysis because the spleen removes aberrant cells. We have developed a simple and rapid method to isolate and analyze immature reticulocytes in the peripheral blood for the presence of micronuclei before these cells are removed by the spleen. This method applies single-laser flow-cytometry to measure micronuclei in an enriched transferrin-positive reticulocyte population. Abramsson-Zetterberg et al. (Abramsson-Zetterberg, L., Zetterberg, G., Bergqvist, M., and Grawe, J. Environ. Mol. Mutagen. 36, 22-31, 2000) have described a method to measure micronuclei in an enriched reticulocyte population using a dual-laser flow cytometry. Unlike the beads used in their magnetic-immunoseparation procedures, the beads used in this study do not require a prelabeling step and are compatible with the flow cell, sparing the need to release the cells from the beads and avoiding the potentially confounding DNase-treatment step. Dertinger et al. (Dertinger, S. D., Torous, D. K., Hall, N. E., Murante, F. G., Gleason, S. E., Miller, R. K., and Tometsko, C. R. Mutat. Res. 515, 3-14, 2002; Dertinger, S. D., Chen, Y., Miller, R. K., Brewer, K. J., Smudzin, T., Torous, D. K., Hall, N. E., Olvany, K. A., Murante, F. G., and Tometsko, C. R. (2003) Mutat. Res. 542, 77-87, 2003) further improved the scoring of micronuclei to enable the use of bench-top instruments in analyzing samples of unenriched reticulocyte-populations. The present method is distinct from flow cytometric assays, such as reported by Dertinger et al., which enable scoring of limited numbers of reticulocytes per sample and require lengthy data acquisition times. We assessed DNA damage in smokers using this novel flow-cytometry based micronuclei-assay. The results show that this assay can effectively detect micronuclei in human blood samples. This method, unlike available micronuclei assays, allows rapid evaluation of a large number of cells and therefore should prove to be useful in monitoring of human populations for genetic damage.
Collapse
Affiliation(s)
- Tal Offer
- Nutritional Genomics Center, Children's Hospital of Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|
62
|
Shima N, Munroe RJ, Schimenti JC. The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm. Mol Cell Biol 2004; 24:10381-9. [PMID: 15542845 PMCID: PMC529050 DOI: 10.1128/mcb.24.23.10381-10389.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/10/2004] [Accepted: 08/19/2004] [Indexed: 11/20/2022] Open
Abstract
chaos1 (for chromosome aberrations occurring spontaneously 1) is a recessive mutation that was originally identified in a phenotype-based screen for chromosome instability mutants in mice. Mutant animals exhibit significantly higher frequencies of spontaneous and radiation- or mitomycin C-induced micronucleated erythrocytes, indicating a potential defect in homologous recombination or interstrand cross-link repair. The chaos1 allele was genetically associated with a missense mutation in Polq, which encodes DNA polymerase theta;. We demonstrate here that chaos1 is a mutant allele of Polq by using two genetic approaches: chaos1 mutant phenotype correction by a bacterial artificial chromosome carrying wild-type Polq and a failed complementation test between chaos1 and a Polq-disrupted allele generated by gene targeting. To investigate the potential involvement of Polq in DNA double-strand break repair, we introduced chaos1 into an Atm (for ataxia telangiectasia mutated)-deficient background. The majority ( approximately 90%) of double-homozygous mice died during the neonatal period. Surviving double mutants exhibited synergistic phenotypes such as severe growth retardation and enhanced chromosome instability. However, remarkably, double mutants had delayed onset of thymic lymphoma, significantly increasing life span. These data suggest a unique role of Polq in maintaining genomic integrity, which is probably distinctive from the major homologous recombination pathway regulated by ATM.
Collapse
Affiliation(s)
- Naoko Shima
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, 9th Fl. Vet. Research Tower, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
63
|
Trentin GA, Moody J, Torous DK, Thompson LU, Heddle JA. The influence of dietary flaxseed and other grains, fruits and vegetables on the frequency of spontaneous chromosomal damage in mice. Mutat Res 2004; 551:213-22. [PMID: 15225594 DOI: 10.1016/j.mrfmmm.2004.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 04/04/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022]
Abstract
Spontaneous genetic damage, whether mutations or chromosomal aberrations, undoubtedly arise from a variety of sources including replication errors, oxidative damage, background radiation, and chemical exposure. Given the numerous correlations between diet and cancer, it seemed possible that diet could influence the spontaneous rate of DNA damage and its genetic consequences. Since diets high in vegetables, fruits, and grains are associated with lower rates of cancer, we supplemented the diets of mice and measured the frequency of micronuclei in the peripheral blood. Micronuclei arise from broken chromosomes or chromosome loss in the erythroblast. They are first seen in the short reticulocyte stage of the red blood cell but persist for the entire 30-day lifespan of the cell in mice. C57Bl mice were placed on a defined diet (AIN-93G) supplemented to 20% final dry weight with grains or freeze-dried fruits or vegetables. The micronucleus frequency was measured in a pre-exposure blood sample and every 2 weeks thereafter for 6 weeks. This was possible in spite of the low spontaneous frequency of 1/1000-2/1000 cells by the use of a novel flow cytometric method, which permitted the analysis of both the mature red blood cells and reticulocytes. Of the foods tested, flaxseed proved to be the most protective by reducing the incidence of micronuclei in both the reticulocyte and normochromatic erythrocyte cell populations by 30 and 11%, respectively. The results show that at least one class of spontaneous genetic damage can be modified by diet and suggests that short-term experiments with small numbers of animals can be used to identify dietary anticarcinogens that may influence human cancer rates.
Collapse
Affiliation(s)
- G A Trentin
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3
| | | | | | | | | |
Collapse
|
64
|
Ortiz R, Medina H, Rodríguez L, González-Márquez H, Cortés E. Spontaneous and mitomycin C-induced micronuclei in peripheral blood reticulocytes from severely malnourished rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:179-185. [PMID: 15065205 DOI: 10.1002/em.20009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Severe malnutrition caused by deficiencies in protein, calorie, and micronutrient intake is widely distributed throughout the world and is a particular problem in developing countries. Animal models have been useful for studying the effects of malnutrition under different experimental conditions. In this study, we have evaluated the effect of malnutrition on the frequency of spontaneous and mitomycin C (MMC)-induced micronuclei in the peripheral blood of rats measured using a flow cytometric analysis technique. Neonatal rats were experimentally malnourished during lactation and assayed at weaning (21 days of age). The malnourished rats weighed 49.2% less than well-nourished controls and had lower concentrations of serum protein, triglycerides, and cholesterol. In rats not treated with MMC, the frequency of micronucleated reticulocytes (MN-RETs) was 1.6 times greater in malnourished rats than in well-nourished rats (0.48% +/- 0.16% vs. 0.31% +/- 0.09%). The mean MN-RET frequency measured 32 hr after treatment with single i.p. doses of 0.5, 0.75, or 1.0 mg/kg of MMC was 0.60 +/- 0.10 vs. 0.84 +/- 0.14, 1.21 +/- 0.52 vs. 2.36 +/- 0.47, and 2.50 +/- 0.06 vs. 4.64 +/- 1.14 for well-nourished vs. malnourished rats, respectively. Statistical comparisons indicate significant differences between the two groups of rats at all doses tested. Malnourishment and MMC treatment had no significant effects on the frequencies of RETs or micronucleated normochromatic erythrocytes. The data indicate that protein-calorie malnutrition during lactation is associated with increased frequencies of MN-RETs, which are indicative of chromosome damage. These findings suggest that malnutrition could result in greater susceptibility to environmental damage.
Collapse
Affiliation(s)
- Rocío Ortiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, México.
| | | | | | | | | |
Collapse
|
65
|
Dertinger SD, Camphausen K, Macgregor JT, Bishop ME, Torous DK, Avlasevich S, Cairns S, Tometsko CR, Menard C, Muanza T, Chen Y, Miller RK, Cederbrant K, Sandelin K, Pontén I, Bolcsfoldi G. Three-color labeling method for flow cytometric measurement of cytogenetic damage in rodent and human blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:427-435. [PMID: 15517570 DOI: 10.1002/em.20075] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experiments described herein were designed to evaluate the performance characteristics of a flow cytometry-based system that scores the incidence of peripheral blood micronucleated reticulocytes (MN-RETs). These procedures represent the continued refinement of a previously reported anti-CD71-based method (Dertinger et al. [1996]: Mutat Res 371:283-292), with the following modifications: incorporation of a third fluorescent label to exclude platelets from the MN-RET region, and use of a CD71-associated fluorescence thresholding technique to increase data acquisition rates. Mouse, rat, and human blood samples were analyzed using both the previously described two-color procedure (anti-CD71-FITC and propidium iodide) and a newly developed three-color technique (which adds an antiplatelet-PE antibody). The rodent specimens were also evaluated by standard microscopy procedures (acridine orange staining). Mouse blood was collected via heart puncture of vehicle- and 5-fluorouracil-treated CD-1 mice; blood samples from saline-treated Sprague-Dawley rats were collected from the tail vein and via heart puncture. Rodent blood samples were analyzed by both the two- and three-color methods. Human blood specimens, obtained via arm venipuncture from cancer patients undergoing radiation therapy, were analyzed for MN-RETs using the two-color method. Subsequently, blood samples from a single chemotherapy patient were analyzed by both the two- and three-color methods. Finally, the chemotherapy patient blood samples and blood samples from 15 healthy volunteers were evaluated at very high densities in conjunction with a CD71-associated fluorescence thresholding technique. Results of these investigations showed that data from mouse blood analyzed by the two- and three-color procedures correlated well with microscopy data (r values = 0.917 and 0.937 for the two- and three-color methods, respectively); all three methods confirmed the genotoxicity of 5-FU. Data from rat tail vein samples showed improved reproducibility with the three-color technique, but no significant difference between the two techniques was seen with the heart puncture specimens. Human blood analyzed according to the two-color procedure produced unreliable results, as platelets and platelet aggregates impacted the rare MN-RET scoring region. The three-color technique effectively overcame this problem and produced reproducible measurements that fell within expected ranges. For human blood analyses, the high cell density/CD71-thresholding technique provided significant improvements over the low-density technique, as it allowed data acquisition to occur approximately six times faster with no loss of sensitivity.
Collapse
|
66
|
Torous DK, Hall NE, Murante FG, Gleason SE, Tometsko CR, Dertinger SD. Comparative scoring of micronucleated reticulocytes in rat peripheral blood by flow cytometry and microscopy. Toxicol Sci 2003; 74:309-14. [PMID: 12773756 DOI: 10.1093/toxsci/kfg143] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A flow cytometric technique for scoring the incidence of micronucleated reticulocytes in rat peripheral blood was compared to a standard microscopy-based procedure. For these studies, groups of five male Sprague-Dawley rats were treated with vehicle or a broad range of chemical genotoxicants: 6-thioguanine, N-methyl-N'-nitro-N-nitrosoguanidine, vincristine, methylaziridine, acetaldehyde, methyl methanesulfonate, benzene, monocrotaline, and azathioprine. Animals were treated once a day for up to 2 days, and peripheral blood was collected between 24 and 48 h after the final administration. These samples were processed for flow cytometric scoring and microscopy-based analysis using supravital acridine orange staining, and the percentage of reticulocytes and micronucleated reticulocytes was determined for each sample. The resulting data demonstrate good agreement between these scoring methodologies, although careful execution of the flow cytometric method was found to enhance the micronucleus assay by reducing both scoring time and scoring error. These data add further support to the premise that the peripheral blood compartment of rats can be used effectively to detect genotoxicant-induced micronuclei.
Collapse
MESH Headings
- Acridine Orange/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/analysis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Count/methods
- Flow Cytometry/methods
- Fluorescent Dyes/metabolism
- Image Cytometry/methods
- Male
- Micronuclei, Chromosome-Defective/classification
- Micronuclei, Chromosome-Defective/drug effects
- Micronuclei, Chromosome-Defective/ultrastructure
- Micronucleus Tests/methods
- Mutagens/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptors, Transferrin
- Reproducibility of Results
- Reticulocytes/drug effects
- Reticulocytes/metabolism
- Reticulocytes/pathology
Collapse
Affiliation(s)
- Dorothea K Torous
- Litron Laboratories, 1351 Mount Hope Avenue, Rochester, New York 14620, USA
| | | | | | | | | | | |
Collapse
|
67
|
Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC. Phenotype-based identification of mouse chromosome instability mutants. Genetics 2003; 163:1031-40. [PMID: 12663541 PMCID: PMC1462482 DOI: 10.1093/genetics/163.3.1031] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is increasing evidence that defects in DNA double-strand-break (DSB) repair can cause chromosome instability, which may result in cancer. To identify novel DSB repair genes in mice, we performed a phenotype-driven mutagenesis screen for chromosome instability mutants using a flow cytometric peripheral blood micronucleus assay. Micronucleus levels were used as a quantitative indicator of chromosome damage in vivo. Among offspring derived from males mutagenized with the germline mutagen N-ethyl-N-nitrosourea (ENU), we identified a recessive mutation conferring elevated levels of spontaneous and radiation- or mitomycin C-induced micronuclei. This mutation, named chaos1 (chromosome aberration occurring spontaneously 1), was genetically mapped to a 1.3-Mb interval on chromosome 16 containing Polq, encoding DNA polymerase theta. We identified a nonconservative mutation in the ENU-derived allele, making it a strong candidate for chaos1. POLQ is homologous to Drosophila MUS308, which is essential for normal DNA interstrand crosslink repair and is unique in that it contains both a helicase and a DNA polymerase domain. While cancer susceptibility of chaos1 mutant mice is still under investigation, these data provide a practical paradigm for using a forward genetic approach to discover new potential cancer susceptibility genes using the surrogate biomarker of chromosome instability as a screen.
Collapse
Affiliation(s)
- Naoko Shima
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
68
|
Dertinger SD, Torous DK, Hall NE, Murante FG, Gleason SE, Miller RK, Tometsko CR. Enumeration of micronucleated CD71-positive human reticulocytes with a single-laser flow cytometer. Mutat Res 2002; 515:3-14. [PMID: 11909751 DOI: 10.1016/s1383-5718(02)00009-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The extreme rarity of micronucleated reticulocytes (RETs) in the peripheral blood of non-splenectomized humans has precluded facile enumeration of these cells, as well as evaluation of this endpoint as an index of cytogenetic damage. In this report, we describe a high-throughput, single-laser flow cytometric system for scoring the incidence of micronuclei (MN) in newly formed human RETs. The procedure is based on an immunochemical reagent that differentially labels the most immature fraction of RETs from mature erythrocytes based on the expression level of the transferrin receptor (also known as CD71). The resolution of four erythrocyte populations (young RETs and mature erythrocytes, with and without MN) was achieved for human blood cells treated with phycoerythrin-conjugated anti-CD71, RNase, and either SYTOX Green or SYBR Green I nucleic acid dyes. Anti-glycophorin A labeling of erythroid cells (CyChrome conjugate) was also incorporated into the staining procedure to ensure that debris or other potential artifacts did not adversely impact the analyses. Instrument calibration procedures utilizing malaria-infected rodent erythrocytes were also developed, and are described. Using this analytical system, blood samples from 10 healthy non-splenectomized human volunteers were analyzed for micronucleus frequencies with a single-laser flow cytometer. Average micronucleus frequencies in the mature and most immature fraction of RETs were 0.016 and 0.19%, respectively. Blood samples from three healthy splenectomized volunteers were also evaluated. As expected, these samples exhibited higher micronucleus frequencies in the mature subset of erythrocytes (range 0.03-0.18%). The resulting data suggest that MN can be quantified in human erythrocyte populations with a single-laser flow cytometer, and that the frequency of MN cells in the youngest reticulocyte population approaches values expected in the absence of splenic selection against MN-erythrocytes. This high throughput system is potentially important for evaluating the value of the micronucleated reticulocyte endpoint as an index of chromosome breakage and/or chromosome segregational abnormalities in human populations.
Collapse
|
69
|
Torous DK, Hall NE, Dertinger SD, Diehl MS, Illi-Love AH, Cederbrant K, Sandelin K, Bolcsfoldi G, Ferguson LR, Pearson A, Majeska JB, Tarca JP, Hewish DR, Doughty L, Fenech M, Weaver JL, Broud DD, Gatehouse DG, Hynes GM, Kwanyuen P, McLean J, McNamee JP, Parenteau M, Van Hoof V, Vanparys P, Lenarczyk M, Siennicka J, Litwinska B, Slowikowska MG, Harbach PR, Johnson CW, Zhao S, Aaron CS, Lynch AM, Marshall IC, Rodgers B, Tometsko CR. Flow cytometric enumeration of micronucleated reticulocytes: high transferability among 14 laboratories. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:59-68. [PMID: 11473389 DOI: 10.1002/em.1051] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This laboratory previously described a single-laser flow cytometric method, which effectively resolves micronucleated erythrocyte populations in rodent peripheral blood samples. Even so, the rarity and variable size of micronuclei make it difficult to configure instrument settings consistently and define analysis regions rationally to enumerate the cell populations of interest. Murine erythrocytes from animals infected with the malaria parasite Plasmodium berghei contain a high prevalence of erythrocytes with a uniform DNA content. This biological model for micronucleated erythrocytes offers a means by which the micronucleus analysis regions can be rationally defined, and a means for controlling interexperimental variation. The experiments described herein were performed to extend these studies by testing whether malaria-infected erythrocytes could also be used to enhance the transferability of the method, as well as control intra- and interlaboratory variation. For these studies, blood samples from mice infected with malaria, or treated with vehicle or the clastogen methyl methanesulfonate, were fixed and shipped to collaborating laboratories for analysis. After configuring instrumentation parameters and guiding the position of analysis regions with the malaria-infected blood samples, micronucleated reticulocyte frequencies were measured (20,000 reticulocytes per sample). To evaluate both intra- and interlaboratory variation, five replicates were analyzed per day, and these analyses were repeated on up to five separate days. The data of 14 laboratories presented herein indicate that transferability of this flow cytometric technique is high when instrumentation is guided by the biological standard Plasmodium berghei.
Collapse
Affiliation(s)
- D K Torous
- Litron Laboratories, Rochester, New York 14620, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hamada S, Sutou S, Morita T, Wakata A, Asanami S, Hosoya S, Ozawa S, Kondo K, Nakajima M, Shimada H, Osawa K, Kondo Y, Asano N, Sato S, Tamura H, Yajima N, Marshall R, Moore C, Blakey DH, Schechtman LM, Weaver JL, Torous DK, Proudlock R, Ito S, Namiki C, Hayashi M. Evaluation of the rodent micronucleus assay by a 28-day treatment protocol: Summary of the 13th Collaborative Study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Environmental Mutagen Society of Japan (JEMS)-Mammalian Mutagenicity Study Group (MMS). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:93-110. [PMID: 11246216 DOI: 10.1002/em.1017] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To examine whether micronucleus tests can be incorporated into general toxicology assays, we performed micronucleus tests applying the treatment protocols typically used in such assays. In this 13th Collaborative Study of the CSGMT, both rats and mice were tested, although rats were used in the majority of the studies. Fifteen mutagens were tested in rats, mainly by oral (p.o.) administration. Micronucleus induction was evaluated 2, 3, and 4 days, and 1, 2, 3, and 28 days after the beginning of the treatment in the peripheral blood, and at 28 days in the bone marrow. Of the 15 chemicals that induced micronuclei in rats in short-term assays, two chemicals (1,2-dimethylhydrazine.2HCl and mitomycin C) were negative in all our experiments, possibly because of insufficient dose levels. The remaining 13 were positive within the estimated dose range of a general toxicology assay, suggesting the possibility of integrating the micronucleus assay into general toxicology assays. Three patterns were observed in micronucleus induction during the period of repeated treatment: (1) gradual increases in micronucleus frequency with sequential doses, (2) a peak at 3-5 days followed by gradual decreases in micronucleus frequency with sequential doses, and (3) a rapid increase in micronucleus frequency followed by a plateau. We evaluated factors that might have been involved in those patterns, such as the spleen function, target organ exposure, extramedullary hematopoiesis, hypothermia, and hypoxia. Another factor we considered was dosage. Because the dosages employed in a general toxicity assay are usually lower than those used in short-term micronucleus assays, this discrepancy was considered the greatest potential problem for integrating the micronucleus assay into general toxicology assays. Our results indicate that the integration of the micronucleus assay into a 28-day toxicological assay is feasible. To serve this purpose, blood samples collected 4 days after the beginning of treatment and blood and bone marrow samples collected at autopsy should be examined. Furthermore, although it is recognized that mice may be suitable for performing independent micronucleus assays, we propose that rats can provide biologically important and relevant information regarding potential chemical mutagens that can be evaluated under conditions used in the conduct of general toxicology studies.
Collapse
Affiliation(s)
- S Hamada
- Central Research Laboratory, SSP Company, Ltd., Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Dertinger SD, Lantum HB, Silverstone AE, Gasiewicz TA. Effect of 3'-methoxy-4'-nitroflavone on benzo[a]pyrene toxicity. Aryl hydrocarbon receptor-dependent and -independent mechanisms. Biochem Pharmacol 2000; 60:189-96. [PMID: 10825463 DOI: 10.1016/s0006-2952(00)00314-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This laboratory has studied a number of flavone derivatives for aryl hydrocarbon receptor (AhR) agonist and antagonist potential using cell-free and cell culture systems. The current report extends these investigations by testing the potent AhR antagonist 3'-methoxy-4'-nitroflavone (3'M4'NF) for in vivo activity. Wild-type C57Bl/6 male mice were treated with solvent, benzo[a]pyrene (B[a]P; 150 mg/kg), or concurrently with B[a]P and 3'M4'NF (60 mg/kg; delivered as a split dose). Since B[a]P is bioactivated to genotoxic metabolites by AhR-regulated enzymes, we measured B[a]P-induced chromosomal damage in peripheral blood (i.e. micronuclei) to characterize the antagonistic potential of 3'M4'NF in vivo. The influence of AhR signal transduction was investigated further by challenging wild-type and Ahr null allele mice with B[a]P with and without a 3'M4'NF co-treatment. The micronucleus data obtained from these experiments indicated that 3'M4'NF can attenuate the genotoxicity of B[a]P significantly. Since 3'M4'NF also protected Ahr null allele mice from B[a]P-induced genetic damage, it was apparent that AhR-independent mechanisms contribute to the effects observed. However, as opposed to the protective effects observed with the micronucleus endpoint, histological observations and lethality data indicated that some B[a]P effects are enhanced by 3'M4'NF. Potentiated B[a]P toxicity may be explained by inhibition of basal and induced CYP1A1/2 activities. Both in vitro and in vivo data presented herein support this hypothesis.
Collapse
Affiliation(s)
- S D Dertinger
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
72
|
Weaver JL, Torous D. Flow cytometry assay for counting micronucleated erythrocytes: development process. Methods 2000; 21:281-7. [PMID: 10873482 DOI: 10.1006/meth.2000.1008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of any new assay proceeds in several phases. When an assay is intended for regular use to support regulatory decision-making, there are significant additional stages in the development process beyond the initial description of the method. In this paper we discuss some of the studies related to the development of a flow cytometric method for counting micronuclei in rodent erythrocytes. Studies related to fixation methods and conditions, standardization of DNA staining, and antibody staining are discussed. These studies, while not part of the formal description of the method, are needed as part of the preparation for the formal validation of the method. In addition, the lessons learned in transferring the method to other laboratories are briefly discussed in relation to defining the final protocol.
Collapse
Affiliation(s)
- J L Weaver
- Division of Applied Pharmacology Research, Food and Drug Administration, Laurel, Maryland, USA
| | | |
Collapse
|
73
|
Chang PY, Torous D, Lutze-Mann L, Winegar R. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes. Mutat Res 2000; 466:87-96. [PMID: 10751730 DOI: 10.1016/s1383-5718(00)00007-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.
Collapse
Affiliation(s)
- P Y Chang
- PN147, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
74
|
Torous DK, Dertinger SD, Hall NE, Tometsko CR. Enumeration of micronucleated reticulocytes in rat peripheral blood: a flow cytometric study. Mutat Res 2000; 465:91-9. [PMID: 10708974 DOI: 10.1016/s1383-5718(99)00216-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Micronuclei (MN) are routinely enumerated in mouse peripheral blood to index genotoxicity. Recent data from the Collaborative Study Group for the Micronucleus Test (CSGMT) [CSGMT (The Collaborative Study Group for the Micronucleus Test), Evaluation of the rat micronucleus test with bone marrow and peripheral blood: summary of the 9th collaborative study by CSGMT/JEMS MMS, Environ. Mol. Mutagen. 32 (1998) 84-100] suggest that rat peripheral blood may also be appropriate for the enumeration of MN, if scoring is limited to the youngest fraction of reticulocytes. The experiments described herein were designed to test whether modifications to a flow cytometric scoring procedure for measuring micronucleated reticulocytes (MN-RET) in mouse peripheral blood could be extended to accurately enumerate MN in rat peripheral blood. Rats were treated with saline or one of three genotoxic agents (6-mercaptopurine, ethyl methanesulfonate or propane sultone) in an acute dosing protocol. Peripheral blood samples were subsequently collected for both microscopic and flow cytometric analysis. Micronucleus frequencies were scored in the youngest fraction of reticulocytes: scoring by microscopy was restricted to the types I and II reticulocytes based on RNA content utilizing acridine orange supravital staining; flow cytometric measurements were restricted to the youngest fraction of reticulocytes based on transferrin receptor (CD71) staining. A statistically significant dose-related increase in the incidence of MN was observed, irrespective of scoring method. A higher level of statistical discrimination between control and genotoxin-treated groups was observed for the flow cytometric data and can most likely be explained by the increased number of cells scored (10x more than microscopy) and the lower scoring variability. Together, these data suggest that (i) rat peripheral blood represents an appropriate compartment for evaluating genotoxin-induced MN when the analysis is restricted to young reticulocytes, and (ii) the measurement of MN in rat peripheral blood reticulocytes benefits from the high throughput methodology of flow cytometry.
Collapse
Affiliation(s)
- D K Torous
- Litron Laboratories, 1351 Mount Hope Avenue, Rochester, NY 14620, USA
| | | | | | | |
Collapse
|
75
|
Dertinger SD, Torous DK, Hall NE, Tometsko CR, Gasiewicz TA. Malaria-infected erythrocytes serve as biological standards to ensure reliable and consistent scoring of micronucleated erythrocytes by flow cytometry. Mutat Res 2000; 464:195-200. [PMID: 10648906 DOI: 10.1016/s1383-5718(99)00183-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A procedure for optimizing the configuration of flow cytometers for enumerating micronucleated erythrocytes is described. The method is based on the use of a biological model for micronucleated erythrocytes, the malaria parasite Plasmodium berghei. P. berghei endows target cells of interest (erythrocytes) with a micronucleus-like DNA content. Unlike micronuclei, parasitized red blood cells have a homogenous DNA content, and can be very prevalent in circulation. These characteristics make malaria-infected erythrocytes extremely well suited for optimizing instrument setup on a daily basis. The experiment described herein was designed to test the hypothesis that malaria-infected erythrocytes can greatly enhance the consistency with which flow cytometers are configured for micronucleus analyses, and thereby minimize intra- and interexperimental variation. Data collected over the course of several months, on two different flow cytometers, supports the premise that malaria-infected blood represents a useful biological standard which helps ensure reliable and consistent flow cytometric enumeration of rare micronucleated erythrocytes.
Collapse
Affiliation(s)
- S D Dertinger
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| | | | | | | | | |
Collapse
|
76
|
Hayashi M, MacGregor JT, Gatehouse DG, Adler ID, Blakey DH, Dertinger SD, Krishna G, Morita T, Russo A, Sutou S. In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000. [PMID: 10737958 DOI: 10.1002/(sici)1098-2280(2000)35:3<234::aid-em10>3.0.co;2-l] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
An expert working group on the in vivo micronucleus assay, formed as part of the International Workshop on Genotoxicity Test Procedures (IWGTP), discussed protocols for the conduct of established and proposed micronucleus assays at a meeting held March 25-26, 1999 in Washington, DC, in conjunction with the annual meeting of the Environmental Mutagen Society. The working group reached consensus on a number issues, including: (1) protocols using repeated dosing in mice and rats; (2) integration of the (rodent erythrocyte) micronucleus assay into general toxicology studies; (3) the possible omission of concurrently-treated positive control animals from the assay; (4) automation of micronucleus scoring by flow cytometry or image analysis; (5) criteria for regulatory acceptance; (6) detection of aneuploidy induction in the micronucleus assay; and (7) micronucleus assays in tissues (germ cells, other organs, neonatal tissue) other than bone marrow. This report summarizes the discussions and recommendations of this working group. In the classic rodent erythrocyte assay, treatment schedules using repeated dosing of mice or rats, and integration of assays using such schedules into short-term toxicology studies, were considered acceptable as long as certain study criteria were met. When the micronucleus assay is integrated into ongoing toxicology studies, relatively short-term repeated-dose studies should be used preferentially because there is not yet sufficient data to demonstrate that conservative dose selection in longer term studies (longer than 1 month) does not reduce the sensitivity of the assay. Additional validation data are needed to resolve this point. In studies with mice, either bone marrow or blood was considered acceptable as the tissue for assessing micronucleus induction, provided that the absence of spleen function has been verified in the animal strains used. In studies with rats, the principal endpoint should be the frequency of micronucleated immature erythrocytes in bone marrow, although scoring of peripheral blood samples gives important supplementary data about the time course of micronucleus induction. When dose concentration and stability are verified appropriately, concurrent treatment with a positive control agent is not necessary. Control of staining and scoring procedures can be obtained by including appropriate reference samples that have been obtained from a separate experiment. For studies in rats or mice, treatment/sampling regimens should include treatment at intervals of no more than 24 hr (unless the test article has a half-life of more than 24 hr) with sampling of bone marrow or blood, respectively, within 24 or 40 hr after the last treatment. The use of a DNA specific stain is recommended for the identification of micronuclei, especially for studies in the rat. In the case of a negative assay result with a non-toxic test article, it is desirable that systemic exposure to the test article is demonstrated. The group concluded that successful application of automated scoring by both flow cytometry and image analysis had been achieved, and defined criteria that should be met if automated scoring is employed. It was not felt appropriate to attempt to define specific recommended protocols for automated scoring at the present time. Other issues reviewed and discussed by the working group included micronucleus assays that have been developed in a number of tissues other than bone marrow. The group felt that these assays were useful research tools that could also be used to elucidate mechanisms in certain regulatory situations, but that these assays had not yet been standardized and validated for routine regulatory application.
Collapse
Affiliation(s)
- M Hayashi
- Division of Genetics & Mutagenesis, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Dertinger SD, Torous DK, Tometsko KR. Flow cytometric analysis of micronucleated reticulocytes in mouse bone marrow. Mutat Res 1997; 390:257-62. [PMID: 9186575 DOI: 10.1016/s1383-5718(97)00022-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This laboratory has previously reported a flow cytometric procedure for quantitatively analyzing mouse peripheral blood reticulocytes for micronucleus content. The current study extends this line of investigation by evaluating whether these same flow cytometric scoring procedures can be applied to the analysis of mouse bone marrow samples. To validate the method, three groups of male BALB/c mice were treated with 100 mg/kg b.wt. methyl methanesulfonate. Bone marrow samples were collected 20, 40 or 60 h after administration. A set of 5 untreated animals was included to provide an indication of spontaneous micronucleus frequencies. The cells were fixed with ultracold methanol, treated with ribonuclease, and labeled with anti-CD71 antibody (FITC conjugate) and propidium iodide. This fixing and labeling procedure resulted in the resolution of the micronucleated reticulocyte population and facilitated high-speed acquisition and enumeration via flow cytometry. The number of micronucleated reticulocytes was determined flow cytometrically by the analysis of 10,000 total reticulocytes per bone marrow sample. In addition to these automated measurements, slides stained with acridine orange were prepared and the number of micronuclei per 1000 reticulocytes was determined microscopically for each sample. The resulting data demonstrate that flow cytometry can effectively enumerate micronucleated reticulocytes in mouse bone marrow. The advantages associated with an objective, high throughput scoring methodology are also clearly indicated.
Collapse
|