51
|
Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 2005; 58:480-94. [PMID: 16194234 DOI: 10.1111/j.1365-2958.2005.04836.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a recent study, the putative regulatory gene cg0012 was shown to belong to the regulon of McbR, a global transcriptional regulator of sulphur metabolism in Corynebacterium glutamicum ATCC 13032. A deletion of cg0012, now designated ssuR (sulphonate sulphur utilization regulator), led to the mutant strain C. glutamicum DK100, which was shown to be blocked in the utilization of sulphonates as sulphur sources. According to DNA microarray hybridizations, transcription of the ssu and seu genes, encoding the sulphonate utilization system of C. glutamicum, was considerably decreased in C. glutamicum DK100 when compared with the wild-type strain. Electrophoretic mobility shift assays with purified SsuR protein demonstrated that the upstream regions of ssuI, seuABC, ssuD2 and ssuD1CBA contain SsuR binding sites. A nucleotide sequence alignment of the four DNA fragments containing the SsuR binding sites revealed a common 21 bp motif consisting of T-, GC- and A-rich domains. Mapping of the transcriptional start sites in front of ssuI, seuABC, ssuD2 and ssuD1CBA indicated that the SsuR binding sites are located directly upstream of identified promoter sequences and that the ssu genes are expressed by leaderless transcripts. Binding of the SsuR protein to its operator was shown to be diminished in vitro by the effector substance sulphate and its direct assimilation products adenosine 5'-phosphosulphate, sulphite and sulphide. Real-time reverse transcription polymerase chain reaction experiments verified that the expression of the ssu and seu genes was also repressed in vivo by the presence of sulphate or sulphite. Therefore, the regulatory protein SsuR activates the expression of the ssu and seu genes in C. glutamicum in the absence of the preferred sulphur source sulphate.
Collapse
Affiliation(s)
- Daniel J Koch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Gophna U, Bapteste E, Doolittle WF, Biran D, Ron EZ. Evolutionary plasticity of methionine biosynthesis. Gene 2005; 355:48-57. [PMID: 16046084 DOI: 10.1016/j.gene.2005.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 05/17/2005] [Indexed: 11/25/2022]
Abstract
Methionine is an essential cellular constituent, the initiator of protein synthesis and a precursor in many metabolic activities, such as methylation and formylation. Here we investigate the genomic distribution of the methionine biosynthetic pathway and analyze its evolutionary history by reconstructing the phylogeny of its enzymatic components. We demonstrate the evolutionary complexity of methionine synthesis and describe the various mechanisms that have shaped this biosynthetic pathway: gene duplication, functional reassignment, lateral acquisition and gene loss. Lateral gene transfer within and between domains and gene recruitment have played an important role in the evolution of this pathway, especially in its first and third enzymatic steps--homoserine activation and homocysteine methylation. These analyses are also the basis of predictions regarding methionine synthesis in Archaea, where the pathway is yet to be characterized. This study illustrates how diverse molecular solutions can fulfill a conserved function in living beings.
Collapse
Affiliation(s)
- Uri Gophna
- Genome Atlantic and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | | | | | |
Collapse
|
53
|
Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 2005; 71:6104-14. [PMID: 16204527 PMCID: PMC1265983 DOI: 10.1128/aem.71.10.6104-6114.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins resembling Ssu proteins from Escherichia coli or Bacillus subtilis, the seu gene products exhibited similarity to the dibenzothiophene-degrading Dsz monooxygenases of Rhodococcus strain IGTS8. Growth tests with the C. glutamicum wild-type and appropriate mutant strains showed that the clustered genes ssuC, ssuB, and ssuA, putatively encoding the components of an ABC-type transporter system, are required for the utilization of aliphatic sulfonates. In C. glutamicum sulfonates are apparently degraded by sulfonatases encoded by ssuD1 and ssuD2. It was also found that the seu genes seuA, seuB, and seuC can effectively replace ssuD1 and ssuD2 for the degradation of sulfonate esters. The utilization of all sulfonates and sulfonate esters tested is dependent on a novel putative reductase encoded by ssuI. Obviously, all monooxygenases encoded by the ssu and seu genes, including SsuD1, SsuD2, SeuA, SeuB, and SeuC, which are reduced flavin mononucleotide dependent according to sequence similarity, have SsuI as an essential component. Using real-time reverse transcription-PCR, the ssu and seu gene cluster was found to be expressed considerably more strongly during growth on sulfonates and sulfonate esters than during growth on sulfate.
Collapse
Affiliation(s)
- D J Koch
- Institut für Genomforschung, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 2005; 6:121. [PMID: 16159395 PMCID: PMC1266029 DOI: 10.1186/1471-2164-6-121] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/13/2005] [Indexed: 11/11/2022] Open
Abstract
Background Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. Results The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of the extended cluster are conserved in 11 of 17 completely sequenced members of the Actinomycetales. Conclusion The set of C. glutamicum genes involved in assimilatory sulphate reduction was identified and four novel genes involved in this pathway were found. The high degree of conservation of this cluster among the Actinomycetales supports the hypothesis that a different metabolic pathway for the reduction of inorganic sulphur compounds than that known from the well-studied model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies.
Collapse
Affiliation(s)
- Christian Rückert
- International NRW Graduate School in Bioinformatics & Genome Research, Universität Bielefeld, D-33594 Bielefeld, Germany
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Daniel J Koch
- International NRW Graduate School in Bioinformatics & Genome Research, Universität Bielefeld, D-33594 Bielefeld, Germany
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Daniel A Rey
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Andreas Albersmeier
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Sascha Mormann
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Jörn Kalinowski
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| |
Collapse
|
55
|
Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 2005; 71:3255-68. [PMID: 15933028 PMCID: PMC1151861 DOI: 10.1128/aem.71.6.3255-3268.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A "second-generation" production strain was derived from a Corynebacterium glutamicum pantothenate producer by rational design to assess its potential to synthesize and accumulate the vitamin pantothenate by batch cultivation. The new pantothenate production strain carries a deletion of the ilvA gene to abolish isoleucine synthesis, the promoter down-mutation P-ilvEM3 to attenuate ilvE gene expression and thereby increase ketoisovalerate availability, and two compatible plasmids to overexpress the ilvBNCD genes and duplicated copies of the panBC operon. Production assays in shake flasks revealed that the P-ilvEM3 mutation and the duplication of the panBC operon had cumulative effects on pantothenate production. During pH-regulated batch cultivation, accumulation of 8 mM pantothenate was achieved, which is the highest value reported for C. glutamicum. Metabolic flux analysis during the fermentation demonstrated that the P-ilvEM3 mutation successfully reoriented the carbon flux towards pantothenate biosynthesis. Despite this repartition of the carbon flux, ketoisovalerate not converted to pantothenate was excreted by the cell and dissipated as by-products (ketoisocaproate, DL-2,3,-dihydroxy-isovalerate, ketopantoate, pantoate), which are indicative of saturation of the pantothenate biosynthetic pathway. Genome-wide expression analysis of the production strain during batch cultivation was performed by whole-genome DNA microarray hybridization and agglomerative hierarchical clustering, which detected the enhanced expression of genes involved in leucine biosynthesis, in serine and glycine formation, in regeneration of methylenetetrahydrofolate, in de novo synthesis of nicotinic acid mononucleotide, and in a complete pathway of acyl coenzyme A conversion. Our strategy not only successfully improved pantothenate production by genetically modified C. glutamicum strains but also revealed new constraints in attaining high productivity.
Collapse
Affiliation(s)
- Andrea T Hüser
- Lehrstuhl für Genetik, Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lee SY, Lee DY, Kim TY. Systems biotechnology for strain improvement. Trends Biotechnol 2005; 23:349-58. [PMID: 15923052 DOI: 10.1016/j.tibtech.2005.05.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 02/28/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Various high-throughput experimental techniques are routinely used for generating large amounts of omics data. In parallel, in silico modelling and simulation approaches are being developed for quantitatively analyzing cellular metabolism at the systems level. Thus informative high-throughput analysis and predictive computational modelling or simulation can be combined to generate new knowledge through iterative modification of an in silico model and experimental design. On the basis of such global cellular information we can design cells that have improved metabolic properties for industrial applications. This article highlights the recent developments in these systems approaches, which we call systems biotechnology, and discusses future prospects.
Collapse
Affiliation(s)
- Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea.
| | | | | |
Collapse
|
57
|
Trötschel C, Deutenberg D, Bathe B, Burkovski A, Krämer R. Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 2005; 187:3786-94. [PMID: 15901702 PMCID: PMC1112045 DOI: 10.1128/jb.187.11.3786-3794.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is known for its effective excretion of amino acids under particular metabolic conditions. Concomitant activities of uptake and excretion systems would create an energy-wasting futile cycle; amino acid export systems are therefore tightly regulated. We have used a DNA microarray approach to identify genes for membrane proteins which are overexpressed under conditions of elevated cytoplasmic concentrations of methionine. One of these genes was brnF, coding for the larger subunit of BrnFE, a previously identified two-component isoleucine export system. By deletion, complementation, and overexpression of the brnFE genes in a C. glutamicum strain, in which the two uptake systems for methionine were inactivated, we identified BrnFE as being responsible for methionine export. In the presence of both substrates in the cytoplasm, BrnFE was found to transport isoleucine and methionine at similar rates. The expression of the brnFE gene cluster depends on an Lrp-type transcription factor and was shown to be strongly induced by increasing cytoplasmic methionine concentration. Methionine was a better inducer than isoleucine, indicating that methionine rather than isoleucine might be the native substrate of BrnFE. When the synthesis of BrnFE was blocked by chloramphenicol, fast methionine export was still observed, but only at greatly increased cytoplasmic levels of this amino acid. This indicates the presence of at least one other methionine export system, presumably with low affinity but high capacity. Under conditions where cytoplasmic methionine does not exceed a concentration of 50 mM, BrnFE is the dominant export system for this amino acid.
Collapse
Affiliation(s)
- Christian Trötschel
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
58
|
Arai R, Nishimoto M, Toyama M, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. Conserved protein TTHA1554 from Thermus thermophilus HB8 binds to glutamine synthetase and cystathionine β-lyase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:40-7. [PMID: 15893507 DOI: 10.1016/j.bbapap.2005.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/18/2005] [Accepted: 04/05/2005] [Indexed: 11/24/2022]
Abstract
TTHA1554 was found as a hypothetical protein composed of 95 amino acids in the genome of the extremely thermophilic bacterium, Thermus thermophilus HB8. Proteins homologous to TTHA1554 are conserved in several bacteria and archaea, although their functions are unknown. To investigate the function of TTHA1554, we identified interacting proteins by using a pull-down assay and mass spectrometry. TTHA1329, which is glutamine synthetase, and TTHA1620, a putative aminotransferase, were identified as TTHA1554 binding proteins. The interactions with TTHA1329 and TTHA1620 were validated using in vitro pull-down assays and surface plasmon resonance biosensor assays with recombinant proteins. Since sequence homology analyses suggested that TTHA1620 was a pyridoxal 5'-phosphate-dependent enzyme, such as an aminotransferase, a cystathionine beta-lyase or a cystalysin, putative substrates were investigated. When cystathionine, cystine and S-methylcysteine were used as substrates, pyruvate was produced by TTHA1620. The data revealed that TTHA1620 has cystathionine beta-lyase enzymatic activity. When TTHA1554 was added to the reaction mixtures, the glutamine synthetase and cystathionine beta-lyase enzymatic activities both increased by approximately two-fold. These results indicated that TTHA1554 is a novel protein (we named it GCBP: glutamine synthetase and cystathionine beta-lyase binding protein) that binds to glutamine synthetase and cystathionine beta-lyase.
Collapse
Affiliation(s)
- Ryoichi Arai
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Kumar D, Gomes J. Methionine production by fermentation. Biotechnol Adv 2005; 23:41-61. [PMID: 15610965 DOI: 10.1016/j.biotechadv.2004.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 08/24/2004] [Accepted: 08/24/2004] [Indexed: 11/23/2022]
Abstract
Fermentation processes have been developed for producing most of the essential amino acids. Methionine is one exception. Although microbial production of methionine has been attempted, no commercial bioproduction exists. Here, we discuss the prospects of producing methionine by fermentation. A detailed account is given of methionine biosynthesis and its regulation in some potential producer microorganisms. Problems associated with isolation of methionine overproducing strains are discussed. Approaches to selecting microorganism having relaxed and complex regulatory control mechanisms for methionine biosynthesis are examined. The importance of fermentation media composition and culture conditions for methionine production is assessed and methods for recovering methionine from fermentation broth are considered.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Biotechnology, Sun Pharma Advanced Research Centre, Vadodara-390 020, India.
| | | |
Collapse
|
61
|
Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 2005; 56:871-87. [PMID: 15853877 DOI: 10.1111/j.1365-2958.2005.04586.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In a recent proteomics study we have shown that the mcbR gene of Corynebacterium glutamicum ATCC 13032 most probably encodes a transcriptional repressor of the TetR type, which regulates the expression of at least six genes involved in the synthesis of sulphur-containing amino acids. By means of DNA microarray hybridizations we detected 86 genes with enhanced transcription in an mcbR mutant when compared with the wild-type strain. Bioinformatic analysis identified the inverted repeat 5'-TAGAC-N6-GTCTA-3' as a consensus sequence within the upstream region of 22 genes and operons, suggesting that the transcription of at least 45 genes is directly controlled by the McbR repressor. These 45 genes encode a variety of functions in (S-adenosyl)methionine and cysteine biosynthesis, in sulphate reduction, in uptake and utilization of sulphur-containing compounds and in transcriptional regulation. The function of the inverted repeat motif as potential McbR binding site in front of the genes hom, cysI, cysK, metK and mcbR was verified experimentally by competitive electrophoretic mobility shift analysis. A systematic search for the potential effector substance modulating the function of McbR revealed that only S-adenosylhomocysteine prevented the binding of McbR to its target sequence. These results indicate that the transcriptional repressor McbR directly regulates a set of genes comprising all aspects of transport and metabolism of the macroelement sulphur in C. glutamicum. As the activity of McbR is modulated by S-adenosylhomocysteine, a major product of transmethylation reactions, the results point also to a novel regulatory mechanism in bacteria to control the biosynthesis of S-adenosylmethionine.
Collapse
Affiliation(s)
- Daniel A Rey
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Mampel J, Schröder H, Haefner S, Sauer U. Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2005; 68:228-36. [PMID: 15668756 DOI: 10.1007/s00253-005-1893-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/17/2004] [Accepted: 12/19/2004] [Indexed: 10/25/2022]
Abstract
Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite D,L-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of L-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase.
Collapse
Affiliation(s)
- Jörg Mampel
- Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), Zurich 8093, Switzerland.
| | | | | | | |
Collapse
|
63
|
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H. Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 2004; 70:7148-55. [PMID: 15574911 PMCID: PMC535176 DOI: 10.1128/aem.70.12.7148-7155.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 07/31/2004] [Indexed: 11/20/2022] Open
Abstract
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.
Collapse
Affiliation(s)
- Roman Netzer
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | |
Collapse
|
64
|
Goesmann A, Linke B, Rupp O, Krause L, Bartels D, Dondrup M, McHardy AC, Wilke A, Pühler A, Meyer F. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. J Biotechnol 2003; 106:157-67. [PMID: 14651858 DOI: 10.1016/j.jbiotec.2003.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The flood of data acquired from the increasing number of publicly available genomes has led to new demands for bioinformatics software. With the growing amount of information resulting from high throughput experiments new questions arise that often focus on the comparison of genes, genomes, and their expression profiles. Inferring new knowledge by combining different kinds of "post-genomics" data obviously necessitates the development of new approaches that allow the integration of variable data sources into a flexible framework. In this paper, we describe our concept for the integration of heterogeneous data into a platform for systems biology. We have implemented a Bioinformatics Resource for the Integration of heterogeneous Data from Genomic Explorations (BRIDGE) and illustrate the usability of our approach as a platform for systems biology for two sample applications.
Collapse
Affiliation(s)
- Alexander Goesmann
- Center for Genome Research, Bielefeld University, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Pühler A, Wiegräbe I, Tauch A. Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 2003; 106:269-86. [PMID: 14651867 DOI: 10.1016/j.jbiotec.2003.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A DNA microarray was developed to analyse global gene expression of the amino acid-producing bacterium Corynebacterium glutamicum. PCR products representing 93.4% of the predicted C. glutamicum genes were prepared and spotted in quadruplicate onto 3-aminopropyltrimethoxysilane-coated glass slides. The applicability of the C. glutamicum DNA microarray was demonstrated by co-hybridisation with fluorescently labelled cDNA probes. Analysis of the technical variance revealed that C. glutamicum genes detected with different intensities resulting in ratios greater than 1.52 or smaller than -1.52 can be regarded as differentially expressed with a confidence level of greater than 95%. In a validation example, we measured changes of the mRNA levels during growth of C. glutamicum with acetate and propionate as carbon sources. Acetate-grown C. glutamicum cultures were used as reference. At the 95% confidence interval, 117 genes revealed increased transcript levels in the presence of propionate, while 43 genes showed a decreased expression compared with the acetate-grown culture. Global expression profiling confirmed the induction of the prpD2B2C2 gene cluster already known to be essential for propionate degradation via the 2-methylcitrate cycle. Besides many genes of unknown function, the paralogous prpD1B1C1 gene cluster as well as fasI-B (encoding fatty-acid synthase IB), dtsR1 and dtsR2 (components of acyl-CoA carboxylases), gluABCD (glutamate transport system), putP (proline transport system), and pyc (pyruvate carboxylase) showed significantly increased expression levels. Differential expression of these genes was confirmed by real-time reverse transcription (RT) PCR assays.
Collapse
Affiliation(s)
- Andrea T Hüser
- Lehrstuhl für Genetik, Universität Bielefeld, Universitätsstrasse 25, Bielefeld D-33615, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 2003; 104:5-25. [PMID: 12948626 DOI: 10.1016/s0168-1656(03)00154-8] [Citation(s) in RCA: 697] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.
Collapse
Affiliation(s)
- Jörn Kalinowski
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Rey DA, Pühler A, Kalinowski J. The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 2003; 103:51-65. [PMID: 12770504 DOI: 10.1016/s0168-1656(03)00073-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to isolate transcriptional regulatory proteins involved in L-methionine-dependent repression in Corynebacterium glutamicum, proteins binding to the putative promoter region upstream of the metY gene were isolated by DNA affinity chromatography. One of the isolated proteins was identified as a putative transcriptional repressor of the TetR-family by a mass spectrometry fingerprint technique based on the complete C. glutamicum genome sequence. The respective gene, designated mcbR, was deleted in the mutant strain C. glutamicum DR1. Using 2D-PAGE, the protein contents of the C. glutamicum wild type and the mutant strain DR1 grown in media with or without L-methionine supplementation were compared and a set of six proteins was identified. Their abundance was drastically enhanced in the mutant strain and no longer influenced by L-methionine added to the growth medium. The corresponding genes were identified by mass spectrometry fingerprint analysis. They included metY encoding O-acetyl-L-homoserine sulfhydrylase, metK encoding S-adenosyl-methionine synthethase, hom encoding homoserine dehydrogenase, cysK encoding L-cysteine synthase, cysI encoding an NADPH dependant sulfite reductase, and ssuD encoding an alkanesulfonate monooxygenase. Evidently, the putative transcriptional repressor McbR is involved in the regulation of the metabolic network directing the synthesis of L-methionine in C. glutamicum. The C. glutamicum mcbR mutant can be considered to represent a first step in the construction of an L-methionine production strain.
Collapse
Affiliation(s)
- Daniel Alexander Rey
- Lehrstuhl für Genetik, Universität Bielefeld, Universitätsstrasse 25, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|