51
|
Zhou C, Chen X, Huang Y, Zhang Q, Zhu S, Fu W. Nanomaterial Technology and Soft Tissue Sarcomas. Front Oncol 2022; 12:921983. [PMID: 35814363 PMCID: PMC9257037 DOI: 10.3389/fonc.2022.921983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Soft tissue sarcomas (STSs) are relatively rare heterogeneous solid tumors of the mesenchymal origin. They account for approximately 1% of all malignant tumors in adults and have more than 70 histological subtypes. Consequently, the rarity and heterogeneity of STSs make their diagnosis and treatment very challenging. Nanotechnology has attracted increasing attention from researchers due to the unique physicochemical and biological properties of nanomaterials with potential medical applications as nanoprobes, drug delivery systems, photosensitizers, radioenhancers, antitumor agents, and their combinations for cancer diagnosis and treatment. This review discusses the progress made in the use of nanotechnology for the diagnosis and treatment of STSs and highlights future prospects of the STS multimodality therapy.
Collapse
Affiliation(s)
- Changkai Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, China
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Operation Room, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wei Fu, ; Shu Zhu, ; Qi Zhang,
| | - Shu Zhu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wei Fu, ; Shu Zhu, ; Qi Zhang,
| | - Wei Fu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wei Fu, ; Shu Zhu, ; Qi Zhang,
| |
Collapse
|
52
|
Theoretical investigation of functionalized fullerene nano carrier drug delivery of fluoxetine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Singlet Oxygen In Vivo: It Is All about Intensity. J Pers Med 2022; 12:jpm12060891. [PMID: 35743675 PMCID: PMC9224567 DOI: 10.3390/jpm12060891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The presented work addresses the influence of illumination intensity on the amount and locations of singlet oxygen generation in tumor tissue. We used time-resolved optical detection at the typical emission wavelength around 1270 nm and at 1200 nm where there is no singlet oxygen phosphorescence to determine the phosphorescence kinetics. The discussed data comprise in vivo measurements in tumor-laden HET-CAM and mice. The results show that illumination that is too intense is a major issue, affecting many PDT treatments and all singlet oxygen measurements in vivo so far. In such cases, photosensitization and oxygen consumption exceed oxygen supply, limiting singlet oxygen generation to the blood vessels and walls, while photosensitizers in the surrounding tissue will likely not participate. Being a limitation for the treatment, on one hand, on the other, this finding offers a new method for tumor diagnosis when using photosensitizers exploiting the EPR effect. In contrast to high-intensity PDT, some papers reported successful treatment with nanoparticular drugs using much lower illumination intensity. The question of whether, with such illumination, singlet oxygen is indeed generated in areas apart from vessels and walls, is addressed by numerical analysis. In addition, we discuss how to perform measurements at such low intensities.
Collapse
|
54
|
Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022; 27:molecules27092981. [PMID: 35566331 PMCID: PMC9099628 DOI: 10.3390/molecules27092981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.
Collapse
|
55
|
Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022; 346:110-135. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The current medical reality of cancer gene therapy is reflected by more than ten approved products on the global market, including oncolytic and other viral vectors and CAR T-cells as ex vivo gene-modified cell therapeutics. The development of synthetic antitumoral nucleic acid therapeutics has been proceeding at a lower but steady pace, fueled by a plethora of alternative nucleic acid platforms (from various antisense oligonucleotides, siRNA, microRNA, lncRNA, sgRNA, to larger mRNA and DNA) and several classes of physical and chemical delivery technologies. This review summarizes the challenges and strategies for tumor-targeted nucleic acid delivery. Focusing primarily on polyplexes (polycation complexes) as nanocarriers, delivery options across multiple barriers into tumor cells are illustrated.
Collapse
Affiliation(s)
- Victoria C Vetter
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
56
|
Biancacci I, De Lorenzi F, Theek B, Bai X, May J, Consolino L, Baues M, Moeckel D, Gremse F, von Stillfried S, El Shafei A, Benderski K, Azadkhah Shalmani A, Wang A, Momoh J, Peña Q, Buhl EM, Buyel J, Hennink W, Kiessling F, Metselaar J, Shi Y, Lammers T. Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103745. [PMID: 35072358 PMCID: PMC8981450 DOI: 10.1002/advs.202103745] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g-1 ) upon the first administration to 15% ID g-1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation.
Collapse
Affiliation(s)
- Ilaria Biancacci
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Benjamin Theek
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Xiangyang Bai
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Jan‐Niklas May
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Lorena Consolino
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Maike Baues
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Diana Moeckel
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Felix Gremse
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
- Gremse‐IT GmbHAachen52068Germany
| | - Saskia von Stillfried
- Institute of PathologyMedical FacultyRWTH Aachen University ClinicAachen52074Germany
| | - Asmaa El Shafei
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Karina Benderski
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Alec Wang
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Quim Peña
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH University HospitalAachen52074Germany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen52074Germany
- Institute of Molecular BiotechnologyRWTH Aachen UniversityAachen52074Germany
| | - Wim Hennink
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrecht3584 CGThe Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
- Fraunhofer Institute for Medical Image Computing MEVISBremen28359Germany
| | - Josbert Metselaar
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Yang Shi
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Twan Lammers
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| |
Collapse
|
57
|
Kheiri K, Sohrabi N, Mohammadi R, Amini-Fazl MS. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. Int J Biol Macromol 2022; 202:191-198. [PMID: 35033524 DOI: 10.1016/j.ijbiomac.2022.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy is currently used for most cancer treatments, but one of the significant problems of this treatment is that it affects the healthy tissues of the body. Therefore, designing new systems for the intelligent and controlled release of these drugs in cancer tissues is one of the major challenges in the world. Hence, today, huge costs are spent designing appropriate new drug delivery systems (DDS) with controlled drug release. In this study, chitosan-polyacrylic acid encapsulated Fe3O4 magnetic nanogelic core-shell (Fe3O4@CS-PAA) was synthesized in the presence of glutaraldehyde used for loaded anticancer 5-fluorouracil (5-FU) drug. Also, the prepared Fe3O4@CS-PAA was characterized by using FT-IR, SEM, XRD, and VSM analysis. Then, drug delivery tests were carried out in the in-vitro conditions that are the simulated physiological environment and tumor tissue conditions. The drug release tests indicated that the Fe3O4@CS-PAA upgraded the rate of 5-FU release from nanogelic core-shell under tumor tissue conditions (pH 4.5) than physiological environments (pH 7.4). In addition, various models were used to investigate the drug release mechanism. Results of modeling studies of drug release showed the mechanism of 5-FU release from Fe3O4@CS-PAA controlled by Fickian diffusion.
Collapse
Affiliation(s)
- Karim Kheiri
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
58
|
Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022; 618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanotechnology has been a dynamic field for formulation scientists with multidisciplinary research being conducted worldwide. Advancements in development of functional nanosystems have led to evolution of breakthrough technologies. Lipidic nanosystems, in particular, are highly preferred owing to their non-immunogenic safety profiles along with a range of versatile intrinsic properties. Surface modification of lipid nanoparticles by anchoring carbohydrates to these systems is one such attractive drug delivery technology. Carbohydrates confer interesting properties to the nanosystems such as stealth, biostability, bioavailability, reduced toxicity due to decreased immunogenic response, targeting potential as well as ease of commercial availability. The carbohydrate anchored systems can be developed using methods such as adsorption, incorporation (nanoprecipitation or solvent displacement method), crosslinking and grafting. Current review provides a detailed overview of potential lipid based nanoparticulate systems with an emphasis on liposomes, solid lipid nanoparticles, nanostructures lipid carriers and micelles. Review further explores basics of surface modification, methods applied therein, advantages of carbohydrates as surface modifiers, their versatile applications, techniques for characterization of carbohydrate anchored systems and vital regulatory aspects concerned with these specialized systems.
Collapse
|
59
|
Wang BZ, Luo L, Vunjak-Novakovic G. RNA and Protein Delivery by Cell-Secreted and Bioengineered Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2101557. [PMID: 34706168 PMCID: PMC8891029 DOI: 10.1002/adhm.202101557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are carriers of biological signals through export and delivery of RNAs and proteins. Of increasing interest is the use of EVs as a platform for delivery of biomolecules. Preclinical studies have effectively used EVs to treat a number of diseases. Uniquely, endogenous machinery within cells can be manipulated in order to produce desirable loading of cargo within secreted EVs. In order to inform the development of such approaches, an understanding of the cellular mechanisms by which cargo is sorted to EVs is required. Here, the current knowledge of cargo sorting within EVs is reviewed. Here is given an overview of recent bioengineering approaches that leverage these advances. Methods of externally manipulating EV cargo are also discussed. Finally, a perspective on the current challenges of EVs as a drug delivery platform is offered. It is proposed that standardized bioengineering methods for therapeutic EV preparation will be required to create a well-defined clinical product.
Collapse
Affiliation(s)
- Bryan Z. Wang
- Department of Biomedical Engineering, 622 West 168th Street VC12-234, 10032, U.S.A
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| | - Lori Luo
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, 622 West 168th Street VC12-234, 10032, U.S.A
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| |
Collapse
|
60
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
61
|
Cheng Z, Huang Y, Shao P, Wang L, Zhu S, Yu J, Lu W. Hypoxia-Activated Albumin-Binding Exatecan Prodrug for Cancer Therapy. ACS OMEGA 2022; 7:1082-1089. [PMID: 35036771 PMCID: PMC8757358 DOI: 10.1021/acsomega.1c05671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
As an effective drug delivery strategy for traditional antitumor drugs, the stimulus-responsive albumin-based prodrugs are getting more and more attention. These prodrugs only release drugs in specific tumor microenvironments, which can prevent premature release of the drug in the circulation. Tumor hypoxia is a fundamental feature of the solid tumor microenvironment. As a hypoxia-activated linker, the 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole can be a trigger for albumin-based prodrugs. In this study, we report the synthesis and biological evaluation of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan. After intravenous administration, the maleimide on the side chain can rapidly bind to endogenous albumin, enabling the prodrugs to accumulate in tumors, where tumor-associated hypoxia microenvironments trigger the selective release of Exatecan. The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole as a cleavable linker has high plasma stability and does not cause Exatecan release from HSA-azo-Exatecan during circulation in vivo, avoiding systemic side effects caused by Exatecan.
Collapse
|
62
|
Cabeza L, El-Hammadi MM, Ortiz R, Cayero-Otero MD, Jiménez-López J, Perazzoli G, Martin-Banderas L, Baeyens JM, Melguizo C, Prados J. Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BIOIMPACTS : BI 2022; 12:515-531. [PMID: 36644541 PMCID: PMC9809141 DOI: 10.34172/bi.2022.23433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Maria D. Cayero-Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Lucia Martin-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Jose M. Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
,Corresponding author: Consolación Melguizo,
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
63
|
Peng T, Xu W, Li Q, Ding Y, Huang Y. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomater Sci 2022; 11:62-75. [DOI: 10.1039/d2bm01252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal technology can enhance drug solubility and stability, achieving codelivery for combination therapy, and modulate the in vivo fate (e.g., site-specific distribution and controlled release), thereby improving treatment outcomes.
Collapse
Affiliation(s)
- Taoxing Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Weihua Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Qianqian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China
| |
Collapse
|
64
|
Kar A, Rout SR, Singh V, Greish K, Sahebkar A, Abourehab MA, Kesharwani P, Dandela R. Triblock polymeric micelles as an emerging nanocarrier for drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:561-590. [DOI: 10.1016/b978-0-323-89868-3.00022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
65
|
Wang Q, Huang L, Zhu X, Zhou Y, Wang J, Su D, Liu L. MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent. Mol Pharm 2021; 18:4543-4552. [PMID: 34677979 DOI: 10.1021/acs.molpharmaceut.1c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early diagnosis and noninvasive detection of hepatocellular carcinoma have profound clinical implications for treatment quality and improved prognosis. To obtain high-resolution macroscopic anatomical information and high-sensitivity microscopic optical signals to detect tumors, it is highly desirable to develop dual-mode magnetic resonance imaging (MRI) and near-infrared fluorescent (NIRF) probes. An MR/NIRF dual-mode targeted contrast agent was created by encapsulating cyclic arginine-glycine-aspartate (cRGD) and Cy5.5 in liposomes and characterized by the particle size distribution, cytotoxicity, targeting, and MRI relaxivity. The MR T2 intensity and fluorescence intensity were evaluated in the tumors, livers, and muscles after the injection of cRGD-Liposome-Cy5.5 and Liposome-Cy5.5 at different time points. The average size of cRGD-Liposome-Cy5.5 was 62.33 ± 4.648 nm. The transverse relaxivity (R2) values had a negative correlation with the concentration of molecular probes. The MR signal intensity was enhanced in tumors after the cRGD-Liposome-Cy5.5 injection and not enhanced in liver parenchyma and muscles at the same time. The fluorescence intensity was enhanced in tumors after cRGD-Liposome-Cy5.5 injection in the targeted group. cRGD -Liposome-Cy5.5 as an entirely organic T2-positive dual-mode MR/NIRF targeted contrast agent is therefore able to detect early-stage hepatocellular carcinoma by targeting integrin αvβ3, providing advantages for potential clinical utility and ease of clinical transformation.
Collapse
Affiliation(s)
- Qi Wang
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Lei Huang
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Xuna Zhu
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Yan Zhou
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Jialing Wang
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Danke Su
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Lidong Liu
- Medical Imaging Department; Guangxi Key Clinical Specialty (Medical Imaging Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical Imaging Department), Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| |
Collapse
|
66
|
Li Y, Tan Y, Wen L, Xing Z, Wang C, Zhang L, Wu K, Sun H, Li Y, Lei Q, Wu S. Overexpression of BIRC6 driven by EGF-JNK-HECTD1 signaling is a potential therapeutic target for triple-negative breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:798-812. [PMID: 34729249 PMCID: PMC8526501 DOI: 10.1016/j.omtn.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease. The lack of targeted therapies and poor patient outcome have fostered efforts to discover new molecular targets to treat patients with TNBC. Here, we showed that baculoviral IAP repeat containing 6 (BIRC6) is overexpressed and positively correlated with epidermal growth factor (EGF) receptor (EGFR) in TNBC cells and tissues and that BIRC6 overexpression is associated with poor patient survival. Mechanistic studies revealed that BIRC6 stability is increased by EGF-JNK signaling, which prevents ubiquitination and degradation of BIRC6 mediated by the E3 ubiquitin ligase HECTD1. BIRC6 in turn decreases SMAC expression by inducing the ubiquitin-proteasome pathway, thereby antagonizing apoptosis and promoting the proliferation, colony formation, tumorsphere formation, and tumor growth capacity of TNBC cells. Therapeutically, the PEGylated cationic lipid nanoparticle (pCLN)-assisted delivery of BIRC6 small interfering RNA (siRNA) efficiently silences BIRC6 expression in TNBC cells, thus suppressing TNBC cell growth in vitro and in vivo, and its antitumor activity is significantly superior to that of the EGFR inhibitor gefitinib. Our findings identify an important regulatory mechanism of BIRC6 overexpression and provide a potential therapeutic option for treating TNBC.
Collapse
Affiliation(s)
- Yongpeng Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhihao Xing
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518000, China
| | - Changxu Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liuhui Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haiyan Sun
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Yuqing Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Qifang Lei
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Song Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, China
- Corresponding author Prof. Song Wu, PhD, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China.
| |
Collapse
|
67
|
Zong W, Shao X, Chai Y, Wang X, Han S, Chu H, Zhu C, Zhang X. Liposomes encapsulating artificial cytosol as drug delivery system. Biophys Chem 2021; 281:106728. [PMID: 34864227 DOI: 10.1016/j.bpc.2021.106728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The fabrication of cell models containing artificial cytosol is challenging. Herein we constructed an artificial cytosol contained cell model by electroformation method. Agarose was selected as the main component of the artificial cytosol, and sucrose was added into the agarose to regulate the sol viscosity and the phase transition temperature. The viscosity of the sol with the mass ratio (agarose-sucrose) 1:9 was closest to the natural cytosol. DSPC/20 mol% cholesterol was used to form large unilamellar vesicles (LUVs) as cell model compartment. The rhodamine release experiment confirmed that the unique release profile of agarose-sucrose@LUVs is suitable as a drug carrier. Doxorubicin is loaded in the agarose-sucrose@LUVs, and their half maximum inhibition concentration on HeLa cells is 0.016 μmol L-1, which means 28.7 times increase in inhibition efficiency over free doxorubicin.
Collapse
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China.
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Xiuwen Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| | - Chuntao Zhu
- School of Chemistry Engineering, Northeast Electric Power University, No.169, ChangChun Road, Jilin 132012, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No.42 Wenhua Street, Qiqihar 161006, China
| |
Collapse
|
68
|
Llop J, Lammers T. Nanoparticles for Cancer Diagnosis, Radionuclide Therapy and Theranostics. ACS NANO 2021; 15:16974-16981. [PMID: 34748314 PMCID: PMC7612708 DOI: 10.1021/acsnano.1c09139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles have unique properties that can be exploited for cancer diagnosis and therapy. Intravenously injected nanoparticles accumulate predominantly in organs of the mononuclear phagocytic system, in addition to localizing in tumors and at sites of inflammation and infection. Accumulation in the liver and spleen lowers nanoparticles' ability to target pathological sites and compromises their use for radionuclide therapy. As described by Lee et al. in this issue of ACS Nano, radionuclide retention in liver and spleen can be greatly reduced by using liposomes that are surface-modified with esterase-cleavable radionuclide anchors. Because esterase activity is high in healthy tissues and low in tumors, the authors found that liposome-associated radioactivity rapidly cleared from the body and remained high only in tumors. The resulting images had high contrast-to-background ratios and remarkable tumor delineation. In this Perspective, we discuss these advances from early detection, cancer diagnosis, radionuclide therapy, and theranostics points of view. We outline the current clinical landscape of radionuclide targeting, imaging and therapy, and reflect on the roles that nanoparticles can play in these applications. We highlight the potential of nanoparticles that are responsive to endogenous stimuli for intraoperative imaging and, particularly, for individualized and improved radionuclide treatment. Taking these advances into account, future studies exploring the robustness and the clinical feasibility of nanomedicine-based radiotheranostic probes are eagerly awaited.
Collapse
Affiliation(s)
- Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
- Corresponding Authors
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, 52074 Aachen, Germany
| |
Collapse
|
69
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
70
|
Rad AT, Hargrove D, Daneshmandi L, Ramsdell A, Lu X, Nieh MP. Codelivery of Paclitaxel and Parthenolide in Discoidal Bicelles for a Synergistic Anticancer Effect: Structure Matters. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- Encapsulate, University of Connecticut Technology Incubation Program Farmington CT 06032
| | - Derek Hargrove
- School of Pharmacy University of Connecticut Storrs CT 06269 USA
| | - Leila Daneshmandi
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Encapsulate, University of Connecticut Technology Incubation Program Farmington CT 06032
| | - Amanda Ramsdell
- Department of Chemical and Bimolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Xiuling Lu
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- School of Pharmacy University of Connecticut Storrs CT 06269 USA
| | - Mu-Ping Nieh
- Department of Biomedical Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Sciences University of Connecticut 191 Auditorium Road Storrs CT 06269 USA
- Department of Chemical and Bimolecular Engineering University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
71
|
Amaral M, Cruz N, Rosa A, Nogueira B, Costa D, Santos F, Brazão M, Policarpo P, Mateus R, Kobozev Y, Reis CP. An update of advanced nanoplatforms for Glioblastoma Multiforme Management. EXCLI JOURNAL 2021; 20:1544-1570. [PMID: 34924904 PMCID: PMC8678060 DOI: 10.17179/excli2021-4393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and heterogeneous glioma. Currently, GBM is treated with a combination of surgery, radiotherapy, chemotherapy (e.g. temozolamide) and Tumour Treating Fields. Unfortunately, the mean survival is still around 15 months. This poor prognosis is associated with therapy resistance, tumor recurrence, and limited delivery of drugs due to the blood-brain barrier nature. Nanomedicine, the application of nanotechnology to medicine, has revolutionized many health fields, specifically cancer diagnosis and treatment. This review explores the particularities of different nanosystems (i.e., superparamagnetic, polymeric and gold nanoparticles, and liposomes) as well as how they can be applied to the treatment and diagnosis of GBM. As described, the most of the cited examples are on the preclinical phase; however, positive results were obtained and thus, the distance to achieve an effective treatment is shorter every day.
Collapse
Affiliation(s)
- Mariana Amaral
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Cruz
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Rosa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Beatriz Nogueira
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diana Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisco Santos
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana Brazão
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Pedro Policarpo
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Mateus
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Yan Kobozev
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
72
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
73
|
Jung S, Lee J, Kim WJ. Phenylboronic acid-based core-shell drug delivery platform clasping 1,3-dicarbonyl compounds by a coordinate interaction. Biomater Sci 2021; 9:6851-6864. [PMID: 34494051 DOI: 10.1039/d1bm01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Along with the successful commercialization of chemotherapeutics, such as doxorubicin and paclitaxel, numerous natural compounds have been investigated for clinical applications. Recently, curcumin (CUR), a natural compound with various therapeutic effects, has attracted attention for cancer immunotherapy. Most chemotherapeutics, however, have poor water solubility due to their hydrophobicity, which makes them less suited to biomedical applications; CUR is no exception because of its low bioavailability and extremely high hydrophobicity. In the present study, we developed an easy but effective strategy using the interaction between the 1,3-dicarbonyl groups of drugs and phenylboronic acid (PBA) to solubilize hydrophobic drugs. First, we verified the coordinate interaction between 1,3-dicarbonyl and PBA using 3,5-heptanedione as a model compound, followed by CUR as a model drug. A PBA-grafted hydrophilic polymer was used to form a nanoconstruct by coordination bonding with CUR, which then made direct administration of the nanoparticles possible. The nanoconstruct exhibited remarkable loading capability, uniform size, colloidal stability, and pH-responsive drug release, attributed to the formation of core-shell nanoconstructs by coordinate interaction. The therapeutic nanoconstructs successfully showed both chemotherapeutic and anti-PD-L1 anticancer effects in cellular and animal models. Furthermore, we demonstrated the applicability of this technique to other 1,3-dicarbonyl compounds. Overall, our findings suggest a facile, but expandable strategy by applying the coordinate interaction between 1,3-dicarbonyl and PBA, which enables high drug loading and stimuli-responsive drug release.
Collapse
Affiliation(s)
- Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junseok Lee
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. .,Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| |
Collapse
|
74
|
Chadha S, Kumar A, Srivastava SA, Behl T, Ranjan R. Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer. Curr Drug Deliv 2021; 17:651-674. [PMID: 32459607 DOI: 10.2174/1567201817666200527133719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.
Collapse
Affiliation(s)
- Swati Chadha
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Tapan Behl
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishu Ranjan
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
75
|
Li X, Xia S, Ji R, Zhan W, Zhou W. Evaluation of Microwave Ablation in 4T1 Breast Tumor by a Novel VEFGR2 Targeted Ultrasound Contrast Agents. Front Oncol 2021; 11:690152. [PMID: 34354946 PMCID: PMC8329532 DOI: 10.3389/fonc.2021.690152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023] Open
Abstract
Objectives A novel ultrasound contrast agent (UCA) VEGFR2-targeting iron-doped silica (SiO2) hollow nanoparticles (VEGFR2-PEG-HSNs-Fe NPs) was prepared and applied in microwave ablation for breast cancer to investigate its value in the evaluation of effectiveness after tumor ablation. Methods VEGFR2-PEG-HSNs-Fe NPs were prepared by using nano-SiO2, which was regarded as a substrate and etched by ferrous acetate, and then modified with anti-VEGFR2 antibody. Laser confocal microscope and flow cytometry were used to observe its main physicochemical properties, and biological safety was also investigated. After the xenograft tumor was treated with microwave ablation, the extent of perfusion defect was evaluated by ultrasound by injecting VEGFR2-PEG-HSNs-Fe NPs. Results The average particle size of VEGFR2-PEG-HSNs-Fe was 276.64 ± 30.31 nm, and the surface potential was −13.46 ± 2.83 mV. In vitro, the intensity of ultrasound signal increased with UCA concentration. Good biosafety was performed in in vivo and in vitro experiments. The enhanced ultrasound signal was detected in tumors after injection of VEGFR2-PEG-HSNs-Fe NPs, covering the whole tumor. The lesions, which were incompletely ablated, presented as contrast agent perfusion at the periphery of the tumor, and contrast enhanced ultrasound (CEUS) was performed again after complementary ablation. It was confirmed that all the lesions were completely ablated. Conclusion Nano-targeted UCAs VEGFR2-PEG-HSNs-Fe NPs had good biosafety and ability of specific imaging, which might be used as a contrast agent in CEUS to evaluate the efficacy of tumor ablation.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujun Xia
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ri Ji
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Ultrasound, RuiJin Hospital/Lu Wan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
76
|
Itzhaki E, Hadad E, Moskovits N, Stemmer SM, Margel S. Tumor-Targeted Fluorescent Proteinoid Nanocapsules Encapsulating Synergistic Drugs for Personalized Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:648. [PMID: 34358074 PMCID: PMC8308547 DOI: 10.3390/ph14070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Personalized cancer treatment based on specific mutations offers targeted therapy and is preferred over "standard" chemotherapy. Proteinoid polymers produced by thermal step-growth polymerization of amino acids may form nanocapsules (NCs) that encapsulate drugs overcoming miscibility problems and allowing passive targeted delivery with reduced side effects. The arginine-glycine-glutamic acid (RGD) sequence is known for its preferential attraction to αvβ3 integrin, which is highly expressed on neovascular endothelial cells that support tumor growth. Here, tumor-targeted RGD-based proteinoid NCs entrapping a synergistic combination of Palbociclib (Pal) and Alpelisib (Alp) were synthesized by self-assembly to induce the reduction of tumor cell growth in different types of cancers. The diameters of the hollow and drug encapsulating poly(RGD) NCs were 34 ± 5 and 22 ± 3 nm, respectively; thereby, their drug targeted efficiency is due to both passive and active targeting. The encapsulation yield of Pal and Alp was 70 and 90%, respectively. In vitro experiments with A549, MCF7 and HCT116 human cancer cells demonstrate a synergistic effect of Pal and Alp, controlled release and dose dependence. Preliminary results in a 3D tumor spheroid model with cells derived from patient-derived xenografts of colon cancer illustrate disassembly of spheroids, indicating that the NCs have therapeutic potential.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Elad Hadad
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Neta Moskovits
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
| | - Salomon M. Stemmer
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| |
Collapse
|
77
|
Ando H, Murakami Y, Eshima K, Ishida T. A novel polyethylene glycol (PEG)-drug conjugate of Venetoclax, a Bcl-2 inhibitor, for treatment of acute myeloid leukemia (AML). Cancer Rep (Hoboken) 2021; 5:e1485. [PMID: 34173723 PMCID: PMC8955075 DOI: 10.1002/cnr2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Background Venetoclax (VTX) is an anticancer drug. It is a selective Bcl‐2 inhibitor that is clinically used for the treatment of patients with lymphomas and leukemias. Treatment with VTX, however, is accompanied by severe adverse events such as tumor lysis syndrome and neutropenia, because VTX readily binds to serum proteins, which results in poor pharmacokinetics and poor tumor tissue concentration. To avoid such adverse events, VTX is administered using a daily or weekly ramp‐up schedule that is cumbersome in clinical situations. Aims To overcome these shortcomings, we prepared a novel polyethylene glycol (PEG)‐drug conjugate of VTX (PEG‐VTX) and evaluated its cytotoxic effects on acute myeloid leukemia (AML) both in vitro and in vivo. Methods and results VTX and 4‐armed PEG derivatives were covalently attached through an amide bond linker. In a series of in vitro studies, PEG‐VTX selectively induced potent growth inhibition of MV4‐11 human AML cells via the inducement of Bcl‐2‐mediated apoptosis. PEG‐VTX had the effect of free VTX, presumably due to the protease‐mediated release of VTX from the conjugates. In in vivo studies with AML tumor‐xenograft mice models, intravenous PEG‐VTX promoted sufficient tumor growth suppression. Compared with a regimen of oral free VTX, the intravenous regimen in those studies used a VTX dosage that was 15–30 times smaller for an OCI‐AML‐2 xenograft model and a dosing regimen that was less frequent for an MV4‐11 xenograft model. The most important development, however, was the absence of weight loss related to severe side effects throughout the treatments. An increase in water solubility and the resultant hydrodynamic size of VTX via PEGylation improved the pharmacokinetics of VTX by avoiding protein interactions and lessening the extravasation from blood. The result was an increase in tumor accumulation and a decrease in the nonspecific distribution of VTX. Conclusion The results of this study suggest that PEG‐VTX could be an alternative therapeutic option for the safe and effective treatment of patients with AML.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuta Murakami
- Biotechnology & Medical Division, Planning Department, Sanyo Chemical Industries, Ltd, Kyoto, Japan
| | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
78
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
79
|
Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted Drug Delivery: Trends and Perspectives. Curr Drug Deliv 2021; 18:1435-1455. [PMID: 34151759 DOI: 10.2174/1567201818666210609161301] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to various limitations in conventional drug delivery system, it is important to focus on the target-specific drug delivery system where we can deliver the drug without any degradation. Among various challenges faced by a formulation scientist, delivering the drug to its right site, in its right dose, is also an important aim. A focused drug transport aims to extend, localize, target and have a safe drug interaction with the diseased tissue. OBJECTIVE The aim of targeted drug delivery is to make the required amount of the drug available at its desired site of action. Drug targeting can be accomplished in a number ways that include enzyme mediation, pH-dependent release, use of special vehicles, receptor targeting among other mechanisms. Intelligently designed targeted drug delivery systems also offer the advantages of a low dose of the drug along with reduced side effects which ultimately improves patient compliance. Incidences of dose dumping and dosage form failure are negligible. A focused drug transport aims to have a safe drug interaction with the diseased tissue. CONCLUSION This review focuses on the available targeting techniques for delivery to the colon, brain and other sites of interest. Overall, the article should make an excellent read for the researchers in this area. Newer drug targets may be identified and exploited for successful drug targeting.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot Kaur Sandhu
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
80
|
Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:95. [PMID: 34032937 PMCID: PMC8149564 DOI: 10.1186/s11671-021-03553-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents' administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
81
|
Li YL, Zhu XM, Liang H, Orvig C, Chen ZF. Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery. Curr Med Chem 2021; 28:1508-1534. [PMID: 32368967 DOI: 10.2174/0929867327666200505085756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) seriously affects human health, especially, it easily develops multi-drug resistance (MDR) which results in treatment failure. There is an urgent need to develop highly effective and low-toxicity therapeutic agents to treat HCC and to overcome its MDR. Targeted drug delivery systems (DDS) for cancer therapy, including nanoparticles, lipids, micelles and liposomes, have been studied for decades. Recently, more attention has been paid to multifunctional DDS containing various ligands such as polymer moieties, targeting moieties, and acid-labile linkages. The polymer moieties such as poly(ethylene glycol) (PEG), chitosan (CTS), hyaluronic acid, pullulan, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) protect DDS from degradation. Asialoglycoprotein receptor (ASGPR) and glycyrrhetinic acid receptor (GAR) are most often used as the targeting moieties, which are overexpressed on hepatocytes. Acid-labile linkage, catering for the pH difference between tumor cells and normal tissue, has been utilized to release drugs at tumor tissue. OBJECTIVES This review provides a summary of the recent progress in ASGPR and GAR-mediated and/or pH-responsive HCC-targeted drug delivery. CONCLUSION The multifunctional DDS may prolong systemic circulation, continuously release drugs, increase the accumulation of drugs at the targeted site, enhance the anticancer effect, and reduce side effects both in vitro and in vivo. But it is rarely used to investigate MDR of HCC; therefore, it needs to be further studied before going into clinical trials.
Collapse
Affiliation(s)
- Yu-Lan Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Xiao-Min Zhu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, The University of British Columbia, 2036 Main Mall Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen-Feng Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
82
|
Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Acta Biomater 2021; 126:372-383. [PMID: 33774199 DOI: 10.1016/j.actbio.2021.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Intralipid, a clinically used lipid emulsion, was reportedly utilized as one strategy to suppress off-target delivery of anticancer nanomedicines; Intralipid also effectively improved drug delivery to tumors and produced better therapeutic effects. However, the mechanisms involved-the why and how-in Intralipid's facilitation of delivery of nanomedicines to tumors have not yet been reported in detail. In this study, we investigated Intralipid and discovered the beneficial effects of Intralipid pretreatment when using three anticancer nanomedicines, including the clinically approved drug doxorubicin (Doxil). Intralipid pretreatment induced a 40% reduction in liver uptake of a polymeric nanoprobe used in photodynamic therapy as well as a 1.5-fold-increased nanomedicine accumulation in tumors. This increased accumulation consequently led to significantly better therapeutic effects, and this finding was validated by using Doxil. As an interesting result, Intralipid pretreatment significantly prolonged the plasma half-life of nanomedicines in normal healthy mice but not in tumor-bearing mice, which suggests that tumors become an alternative route of nanomedicine delivery when liver delivery is suppressed. Also, we found markedly increased tumor blood flow, as measured by fluorescence angiography, and significantly lower blood viscosity after Intralipid pretreatment. All our results together indicate that Intralipid treatment not only suppressed off-target nanomedicine delivery by the reticuloendothelial system, but more important, it enhanced nanomedicine delivery to tumors by improving tumor blood flow, which is key to satisfactory drug delivery via the enhanced permeability and retention effect. Significantly better therapeutic outcomes were thus achieved by the strategy of combining utilization of nanomedicines and Intralipid pretreatment. STATEMENT OF SIGNIFICANCE: Off-target delivery to organs such as the liver and obstructed tumor blood flow as is often seen in advanced cancers are major barriers to the therapeutic efficacy of anticancer nanomedicines. Intralipid has been shown effective for suppressing nanomedicine accumulation in the liver, resulting in improved anticancer effects. Unraveling the mechanisms involved in this process will be greatly helpful for the clinical application of anticancer nanomedicines. We reported here that Intralipid could also significantly increase tumor delivery of nanomedicine, which is beneficial for improving tumor blood flow and lowering blood viscosity. To our knowledge, this is the first study to investigate the role of Intralipid in this regard. This knowledge provides a solid rationale for the use of Intralipid in combination with anticancer nanomedicines.
Collapse
|
84
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
85
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
86
|
Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073571. [PMID: 33808235 PMCID: PMC8036762 DOI: 10.3390/ijms22073571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.
Collapse
|
87
|
Functionalized graphene oxide/Fe 3O 4 nanocomposite: A biocompatible and robust nanocarrier for targeted delivery and release of anticancer agents. J Biotechnol 2021; 331:26-36. [PMID: 33722630 DOI: 10.1016/j.jbiotec.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
The development of efficient drug nanocarriers has remained an important challenge in advanced drug delivery in human body. Combination of graphene-based nanomaterials and cyanuric chloride (CC), as a linker, may improve the success of drug delivery. Herein, a simple approach was used for the synthesis of superparamagnetic graphene oxide (SPMGO) nanocomposite through a chemical precipitation method. The nanocomposite was readily functionalized with cyanuric chloride as a linker for loading the drug. The FTIR spectroscopy confirmed the efficient synthesis of nanocarriers. So did the transmission electron microscopy, atomic force microscopy, and thermo-gravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. Subsequently, the synthesized nanocarriers were studied in terms of their potential for biomedical applications. Immobilization of methotrexate (MTX), as a drug for treatment of cancer was taken into action on the SPMGO and SPMGO/CC. The in vitro assays indicated that the drug nanocarrier systems, SPMGO/MTX and SPMGO/CC/MTX, are hemo-compatible and increase the efficiency of MTX against Caov-4, HeLa and MCF-7 cell lines. The MTX nanocarriers represented a considerably high drug loading and controlled drug release. The overall results indicated the great potential of SPMGO/CC/MTX nanocarrier for targeted drug delivery, particularly in MTX chemotherapy.
Collapse
|
88
|
Pinho JO, da Silva IV, Amaral JD, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int J Pharm 2021; 599:120463. [PMID: 33711474 DOI: 10.1016/j.ijpharm.2021.120463] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects. This is the case of the widely studied Cu(II) complexes featuring phenanthroline ligands, with potent antiproliferative effects in vitro, but often failing in vivo. Aiming to overcome these limitations and maximize its anticancer effects in vivo, the Cu(II) complex (Cu(1,10-phenanthroline)Cl2) (Cuphen), displaying IC50 values <6 μM against different tumor cell lines, was loaded in long circulating liposomes with pH-sensitive properties (F1, DMPC:CHEMS:DSPE-PEG; F2, DOPE:CHEMS:DMPC:DSPE-PEG). This enabled a pH-dependent Cuphen release, with F1 and F2 releasing 36/78% and 47/94% of Cuphen at pH 6/4.5, respectively. The so formed nanoformulations preserved Cuphen effects towards cancer cell lines, with F2 presenting IC50 of 2.7 μM and 4.9 μM towards colon cancer CT-26 and HCT-116 cells, respectively. Additional in vitro studies confirmed that Cuphen antiproliferative activity towards colon cancer cells does not rely on cell cycle effect. Furthermore, in these cells, Cuphen reduced glycerol permeation and impaired cell migration. At 24 h incubation, wound closure was reduced by Cuphen, with migration values of 29% vs 54% (control) and 45% (1,10-phenanthroline) in CT-26 cells, and 33% vs ~44% (control and 1,10-phenanthroline) in HCT-116 cells. These effects were probably due to inhibition of aquaglyceroporins, membrane water and glycerol channels that are often abnormally expressed in tumors. In a syngeneic murine colon cancer model, F2 significantly reduced tumor progression, compared to the control group and to mice treated with free Cuphen or with the ligand, 1,10-phenanthroline, without eliciting toxic side effects. F2 led to a tumor volume reduction of ca. 50%. This was confirmed by RTV analysis, where F2 reached a value of 1.3 vs 4.4 (Control), 5.8 (Phen) and 3.8 (free Cuphen). These results clearly demonstrated the important role of the Cu(II) for the observed biological activity that was maximized following the association to a lipid-based nanosystem. Overall, this study represents a step forward in the development of pH-sensitive nanotherapeutic strategies of metallodrugs for colon cancer management.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
89
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
90
|
Lin HL, Cheng WT, Chen LC, Ho HO, Lin SY, Hsieh CM. Honokiol/Magnolol-Loaded Self-Assembling Lecithin-Based Mixed Polymeric Micelles ( lbMPMs) for Improving Solubility to Enhance Oral Bioavailability. Int J Nanomedicine 2021; 16:651-665. [PMID: 33536753 PMCID: PMC7847769 DOI: 10.2147/ijn.s290444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study was intended to utilize lecithin-based mixed polymeric micelles (lbMPMs) for enhancing the solubility and bioavailability of honokiol and magnolol to resolve the hindrance of their extreme hydrophobicity on the clinical applications. METHODS Lecithin was selected to increase the volume of the core of lbMPMs, thereby providing a greater solubilization capacity. A series of amphiphilic polymers (sodium deoxycholate [NaDOC], Cremophor®, and Pluronic® series) were included with lecithin for screening and optimization. RESULTS After preliminary evaluation and subsequentially optimization, two lbMPMs formulations composed of honokiol/magnolol:lecithin:NaDOC (lbMPMs[NaDOC]) and honokiol/magnolol:lecithin:PP123 (lbMPMs[PP123]) in respective ratios of 6:2:5 and 1:1:10 were optimally obtained with the mean particle sizes of 80-150 nm, encapsulation efficacy (EEs) of >90%, and drug loading (DL) of >9.0%. These lbMPMs efficiently stabilized honokiol/magnolol in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C. PK study demonstrated that lbMPMs[NaDOC] showed much improvement in enhancing bioavailability than that by lbMPMs[PP123] for both honokiol and magnolol. The absolute bioavailability for honokiol and magnolol after intravenous administration of lbMPMs[NaDOC] exhibited 0.93- and 3.4-fold increases, respectively, compared to that of free honokiol and magnolol. For oral administration with lbMPMs[NaDOC], the absolute bioavailability of honokiol was 4.8%, and the absolute and relative bioavailability of magnolol were 20.1% and 2.9-fold increase, respectively. CONCLUSION Overall, honokiol/magnolol loaded in lbMPMs[NaDOC] showed an improvement of solubility with suitable physical characteristics leading to enhance honokiol and magnolol bioavailability and facilitating their wider application as therapeutic agents for treating human disorders.
Collapse
Affiliation(s)
- Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung80708, Taiwan, Republic of China
| | - Wen-Ting Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu30015, Taiwan, Republic of China
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei11696, Taiwan, Republic of China
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei11031, Taiwan, Republic of China
| |
Collapse
|
91
|
Hawryłkiewicz A, Ptaszyńska N. Gemcitabine Peptide-Based Conjugates and Their Application in Targeted Tumor Therapy. Molecules 2021; 26:E364. [PMID: 33445797 PMCID: PMC7828243 DOI: 10.3390/molecules26020364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
A major obstacle in tumor treatment is associated with the poor penetration of a therapeutic agent into the tumor tissue and with their adverse influence on healthy cells, which limits the dose of drug that can be safely administered to cancer patients. Gemcitabine is an anticancer drug used to treat a wide range of solid tumors and is a first-line treatment for pancreatic cancer. The effect of gemcitabine is significantly weakened by its rapid plasma degradation. In addition, the systemic toxicity and drug resistance significantly reduce its chemotherapeutic efficacy. Up to now, many approaches have been made to improve the therapeutic index of gemcitabine. One of the recently developed approaches to improve conventional chemotherapy is based on the direct targeting of chemotherapeutics to cancer cells using the drug-peptide conjugates. In this work, we summarize recently published gemcitabine peptide-based conjugates and their efficacy in anticancer therapy.
Collapse
Affiliation(s)
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| |
Collapse
|
92
|
Kumar V, Kumar R, Jain VK, Nagpal S. Preparation and characterization of nanocurcumin based hybrid virosomes as a drug delivery vehicle with enhanced anticancerous activity and reduced toxicity. Sci Rep 2021; 11:368. [PMID: 33432002 PMCID: PMC7801424 DOI: 10.1038/s41598-020-79631-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
The present study represents a formulation of nanocurcumin based hybrid virosomes (NC-virosome) to deliver drugs at targeted sites. Curcumin is a bioactive component derived from Curcuma longa and well-known for its medicinal property, but it exhibits poor solubility and rapid metabolism, which led to low bioavailability and hence limits its applications. Nanocurcumin was prepared to increase the aqueous solubility and to overcome all the limitations associated with curcumin. Influenza virosomes were prepared by solubilization of the viral membrane with 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC). During membrane reconstitution, the hydrophilic nanocurcumin was added to the solvent system, followed by overnight dialysis to obtain NC-virosomes. The same was characterized using a transmission electron microscope (TEM) and scanning electron microscope (SEM), MTT assay was used to evaluate it's in vitro-cytotoxicity using MDA-MB231 and Mesenchyme stem cells (MSCs). The results showed NC-virosomes has spherical morphology with size ranging between 60 and 90 nm. It showed 82.6% drug encapsulation efficiency. The viability of MDA-MB231 cells was significantly inhibited by NC-virosome in a concentration-dependent manner at a specific time. The IC50 for nanocurcumin and NC-virosome was 79.49 and 54.23 µg/ml, respectively. The site-specific drug-targeting, high efficacy and non- toxicity of NC-virosomes proves its future potential as drug delivery vehicles.
Collapse
Affiliation(s)
- Varun Kumar
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India
| | - Ramesh Kumar
- Virology Section, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - V K Jain
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India
| | - Suman Nagpal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida-201303, UP, India.
| |
Collapse
|
93
|
Somaglino L, Mousnier L, Giron A, Urbach W, Tsapis N, Taulier N. In vitro evaluation of polymeric nanoparticles with a fluorine core for drug delivery triggered by focused ultrasound. Colloids Surf B Biointerfaces 2021; 200:111561. [PMID: 33465555 DOI: 10.1016/j.colsurfb.2021.111561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/06/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022]
Abstract
Polymeric nanoparticles are being intensively investigated as drug carriers. Their efficiency could be enhanced if the drug release can be triggered using an external stimulus such as ultrasound. This approach is possible using current commercial apparatus that combine focused ultrasound with MRI to perform ultrasonic surgery. In this approach, nanoparticles made of a perfluoro-octyl bromide core and a thick polymeric (PLGA-PEG) shell may represent suitable drug carriers. Indeed, their perfluorocarbon core are detectable by 19F MRI, while their polymeric shell can encapsulate drugs. However, their applicability in ultrasound-triggered drug delivery remains to be proven. To do so, we used Nile red as a model drug and we measured its release from the polymeric shell by spectrofluorometry. In the absence of ultrasound, only a small amount of Nile red release was measured (<5%). Insonations were performed in a controlled environment using a 1.1 MHz transducer emitting tone bursts for a few minutes, whereas a focused broadband hydrophone was used to detect the occurrence of cavitation. In the absence of detectable inertial cavitation, less than 5% of Nile red was released. In the presence of detectable inertial cavitation, Nile red release was ranging from 10% to 100%, depending of the duty cycle, acoustic pressure, and tank temperature (25 or 37 °C). Highest releases were obtained only for duty cycles of 25% at 37 °C and 50% at 25 °C and for a peak-to-peak acoustic pressure above 12.7 MPa. Electron microscopy and light scattering measurements showed a slight modification in the nanoparticle morphology only at high release contents. The occurrence of strong inertial cavitation is thus a prerequisite to induce drug release for these nanoparticles. Since strong inertial cavitation can lead to many unwanted biological effects, these nanoparticles may not be suitable for a therapeutic application using ultrasound-triggered drug delivery.
Collapse
Affiliation(s)
- L Somaglino
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France; IFREMER, La Seyne-sur-Mer, France
| | - L Mousnier
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - A Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| | - W Urbach
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - N Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - N Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| |
Collapse
|
94
|
CRISPR/Cas9-loaded stealth liposomes effectively cleared established HPV16-driven tumours in syngeneic mice. PLoS One 2021; 16:e0223288. [PMID: 33411765 PMCID: PMC7790238 DOI: 10.1371/journal.pone.0223288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/02/2020] [Indexed: 11/19/2022] Open
Abstract
Gene-editing has raised the possibility of being able to treat or cure cancers, but key challenges remain, including efficient delivery, in vivo efficacy, and its safety profile. Ideal targets for cancer therapy are oncogenes, that when edited, cause cell death. Here, we show, using the human papillomavirus (HPV) type 16 cancer cell line TC1, that CRISPR/Cas9 targeting the E7 oncogene and packaged in PEGylated liposomes cleared established tumours in immunocompetent mice. Treatment caused no significant toxicity in the spleen or liver. An ideal therapeutic outcome would be the induction of an immunogenic cell death (ICD), such that recurrent tumours would be eliminated by the host immune system. We show here for the first time that CRISPR/Cas9-mediated cell death via targeting E7 did not result in ICD. Overall, our data show that in vivo CRISPR/Cas targeting of oncogenes is an effective treatment approach for cancer.
Collapse
|
95
|
Fatima S, Quadri SN, Parveen S, Beg S, Rahman M, Ahmad FJ, Abdin M. Polymeric nanoparticles for potential drug delivery applications in cancer. NANOFORMULATION STRATEGIES FOR CANCER TREATMENT 2021:65-88. [DOI: 10.1016/b978-0-12-821095-6.00009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
96
|
Abstract
In the recent years, progress in nanotechnology has significantly contributed to the development of novel pharmaceutical formulations to overcome the drawbacks of conventional treatments and improve the therapeutic outcome in many diseases, especially cancer. Nanoparticle vectors have demonstrated the potential to concomitantly deliver diagnostic and therapeutic payloads to diseased tissue. Due to their special physical and chemical properties, the characteristics and function of nanoparticles are tunable based on biological molecular targets and specific desired features (e.g., surface chemistry and diagnostic radioisotope labeling). Within the past decade, several theranostic nanoparticles have been developed as a multifunctional nanosystems which combine the diagnostic and therapeutic functionalities into a single drug delivery platform. Theranostic nanosystems can provide useful information on a real-time systemic distribution of the developed nanosystem and simultaneously transport the therapeutic payload. In general, the diagnostic functionality of theranostic nanoparticles can be achieved through labeling gamma-emitted radioactive isotopes on the surface of nanoparticles which facilitates noninvasive detection using nuclear molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), meanwhile, the therapeutic effect arises from the potent drug released from the nanoparticle. Moreover, some radioisotopes can concurrently emit both gamma radiation and high-energy particles (e.g., alpha, beta, and Auger electrons), prompting the use either alone for radiotheranostics or synergistically with chemotherapy. This chapter provides an overview of the fundamentals of radiochemistry and relevant radiolabeling strategies for theranostic nanosystem development as well as the methods for the preclinical evaluation of radiolabeled nanoparticles. Furthermore, preclinical case studies of recently developed theranostic nanosystems will be highlighted.
Collapse
|
97
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
98
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
99
|
Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020; 5:924-937. [PMID: 32637755 PMCID: PMC7330434 DOI: 10.1016/j.bioactmat.2020.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023] Open
Abstract
A variety of engineered nanoparticles, including lipid nanoparticles, polymer nanoparticles, gold nanoparticles, and biomimetic nanoparticles, have been studied as delivery vehicles for biomedical applications. When assessing the efficacy of a nanoparticle-based delivery system, in vitro testing with a model delivery system is crucial because it allows for real-time, in situ quantitative transport analysis, which is often difficult with in vivo animal models. The advent of tissue engineering has offered methods to create experimental models that can closely mimic the 3D microenvironment in the human body. This review paper overviews the types of nanoparticle vehicles, their application areas, and the design strategies to improve delivery efficiency, followed by the uses of engineered microtissues and methods of analysis. In particular, this review highlights studies on multicellular spheroids and other 3D tissue engineering approaches for cancer drug development. The use of bio-engineered tissues can potentially provide low-cost, high-throughput, and quantitative experimental platforms for the development of nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| |
Collapse
|