51
|
Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-020-2476-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Luo H, Jie T, Zheng L, Huang C, Chen G, Cui W. Electrospun Nanofibers for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:163-190. [PMID: 33543460 DOI: 10.1007/978-3-030-58174-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lately, a remarkable progress has been recorded in the field of electrospinning for the preparation of numerous types of nanofiber scaffolds. These scaffolds present some remarkable features including high loading capacity and encapsulation efficiency, superficial area and porosity, potential for modification, structure for the co-delivery of various therapies, and cost-effectiveness. Their present and future applications for cancer diagnosis and treatment are promising and pioneering. In this chapter we provide a comprehensive overview of electrospun nanofibers (ESNFs) applications in cancer diagnosis and treatment, covering diverse types of drug-loaded electrospun nanofibers.
Collapse
Affiliation(s)
- Huanhuan Luo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tianyang Jie
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- The central laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
53
|
Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04159b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the process of preparation of nanofibers via Es, the design and setup of the instrument, critical parameter optimization, preferable polymers, solvents, characterization techniques, and recent development and biomedical applications of nanofibers.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra, 431136, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| |
Collapse
|
54
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
55
|
Watanabe M, Li H, Yamamoto M, Horinaka JI, Tabata Y, Flake AW. Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 109:921-931. [PMID: 33166052 DOI: 10.1002/jbm.b.34756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 11/10/2022]
Abstract
Gelatin hydrogels are naturally derived scaffolds useful for tissue engineering because of their cytocompatibility and controllable degradability. However, they are brittle and inflexible when dry, which limits their use for in utero tissue engineering in large animal models. Therefore, in this study, we attempted to generate flexible gelatin sheets by adding various plasticizers with different molecular weights (MW). We systematically evaluated the flexibility, sustainability, and potential clinical utility of the resulting flexible gelatin sheets. Gelatin sheets with low-MW plasticizers, such as monosaccharides or sugar alcohols, showed a reduced tensile modulus in dynamic viscoelasticity, which reflected their actual flexibility. Wet gelatin sheets containing plasticizers showed higher tensile strength than the nonplasticizer control, although wet gelatin sheets under all conditions had a much lower tensile strength than dry gelatin sheets. In a functional study, gelatin sheets containing glycerol, which has the lowest MW among sugar alcohols, showed encouraging results, such as good fit to the curvature of the experimental animal, biocompatibility, and suitability for endoscopic approaches. The findings of this study should enable the expansion of future applications for flexible gelatin sheets.
Collapse
Affiliation(s)
- Miho Watanabe
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Department of Pediatric Surgery, Osaka University graduate School of Medicine, Osaka, Japan
| | - Haiying Li
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Masaya Yamamoto
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Ma rial Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun-Ichi Horinaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan W Flake
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
56
|
<i>In Vitro</i> Characterization of Polyurethane-Carbon Nanotube Drug Eluting Composite Scaffold for Dental Tissue Engineering Application. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.47.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tooth loss due to periodontal disease, dental caries, trauma or a variety of genetic disorders causes an adverse inability in adult’s lives. It is proved that biodegradable composite scaffolds in dental tissue engineering could play crucial role. To inhibit bacterial colonization in dental structure noticeable research concerning the drug delivery approach has been administrated. Nanostructures retain and release drug molecules more efficiently and continuously than other microstructure. In the present research, composite electrospun nanofibers of polyurethane-Single-walled carbon nanotube (SWNT) by the different mass ratios of metronidazole benzoate were prepared. Physico-chemical characterization of scaffolds including Scanning electron microscopy (SEM), uniaxial tensile testing and Ultraviolet-Visible (UV-Vis) spectroscopy analysis was operated. Culture of dental pulp stem cells (DPSCs) to evaluate cells behavior was carried out. The role of nanofiber diameters and drug content on releasing profile of the scaffolds was investigated. The median diameter of the nanofibrous scaffold was reduced from 330 ± 4 to 120 ± 4 nm. Ultimate stress and Young modulus of the scaffolds by enhancement of drug content increased from 0.28 ± 0.05 up to the 1.8 ± 0.05 MPa and 0.87 ± 0.05 up to the 4.4 ± 0.05 Mpa respectively. According to the result, prolonged and continuous releasing profile of the drug molecules was achieved. As the content of the drug increased, the drug was released continuously. It means that two parameters of fiber's diameter and drug ratio affected the releasing behavior of composite structures. Polyurethane-SWNT scaffolds contained metronidazole benzoate presented appropriate support of DPSCs adhesion and proliferation and biomimetic architecture like the structure of dental ECM.
Collapse
|
57
|
Zhang W, He Z, Han Y, Jiang Q, Zhan C, Zhang K, Li Z, Zhang R. Structural design and environmental applications of electrospun nanofibers. COMPOSITES. PART A, APPLIED SCIENCE AND MANUFACTURING 2020; 137:106009. [PMID: 32834735 PMCID: PMC7291996 DOI: 10.1016/j.compositesa.2020.106009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 05/06/2023]
Abstract
Nanofibers have attracted extensive attention and been applied in various fields due to their high aspect ratio, high specific surface area, flexibility, structural abundance, etc. The electrospinning method is one of the most promising and effective ways to produce nanofibers. The electrospun nanofibers-based films and membranes have already been demonstrated to possess small pore sizes, larges specific surface area, and can be grafted with different functionalities to adapt to various purposes. The environmental applications of nanofibers are one of the essential application fields, and great achievements have been made in this field. To well summarize the development of nanofibers and their environmental applications, we review the nanofiber fabrication methods, advanced fiber structures, and their applications in the field of air filtration, heavy metal removal, and self-cleaning surface. We hope this review and summary can provide readers a comprehensive understanding of the structural design and environmental applications of electrospun nanofibers.
Collapse
|
58
|
Fabrication and Characterization of Polylactic Acid Electrospun Scaffolds Modified with Multi-Walled Carbon Nanotubes and Hydroxyapatite Nanoparticles. Biomimetics (Basel) 2020; 5:biomimetics5030043. [PMID: 32887424 PMCID: PMC7559704 DOI: 10.3390/biomimetics5030043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
The solution electrospinning process (SEP) is a cost-effective technique in which a wide range of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication, and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP) nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber diameter), the surface properties (in terms of contact angle) and the mechanical properties under the tensile mode of the fabricated scaffolds have been investigated and further compared against pristine PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as the candidate material for potential future cell culturing.
Collapse
|
59
|
Weerasinghe VT, Dissanayake DGK, Perera WPTD, Tissera ND, Wijesena RN, Wanasekara ND. All-organic, conductive and biodegradable yarns from core-shell nanofibers through electrospinning. RSC Adv 2020; 10:32875-32884. [PMID: 35516473 PMCID: PMC9056639 DOI: 10.1039/d0ra05430e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Electrically conductive and biodegradable materials are desired for a range of applications in wearable electronics to address the growing ecological problem of e-waste. Herein, we report on the design and fabrication of all-organic, conductive and biodegradable nanofibrous core-shell yarn produced by in situ polymerization of aniline on the surface of electrospun poly(ε-caprolactone) nanofibers. The effect of concentration of aniline monomer on the morphology and resistivity of deposited polyaniline layer was investigated. The electrical resistance changed almost instantaneously with the strain for multiple stretch and recovery cycles. This rapid and sensitive response to mechanical loading and unloading is promising to validate the possibility of using the conductive yarns as strain sensors for monitoring human motion. Increasing the number of plies of yarn to three resulted in a three-fold reduction of the resistance. The twisted plied yarns were incorporated into fabric by stitching to demonstrate their use as a wearable electrode for capacitive sensors. This approach presents an early step in realizing all-organic conductive biodegradable nanofibrous yarns for biodegradable smart textiles.
Collapse
Affiliation(s)
| | | | - W Pamoda T D Perera
- Sri Lanka Institute of Nanotechnology (SLINTEC) Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10200 Sri Lanka
| | - Nadeeka D Tissera
- Sri Lanka Institute of Nanotechnology (SLINTEC) Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10200 Sri Lanka
| | - Ruchira N Wijesena
- Sri Lanka Institute of Nanotechnology (SLINTEC) Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10200 Sri Lanka
| | | |
Collapse
|
60
|
Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020; 8:4887-4905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
61
|
Wang W, Zhao J, Yao Z, Liu J, Shi Z, Li Y, Zou J, Ruan H. Oriented inner fabrication of bi-layer biomimetic tendon sheath for anti-adhesion and tendon healing. Ther Adv Chronic Dis 2020; 11:2040622320944779. [PMID: 32821363 PMCID: PMC7412925 DOI: 10.1177/2040622320944779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Synthetic fibrous membranes unveil a promising field in anti-adhesion of tendons. Meanwhile, oriented nanofiber structures have been widely studied and used in the application of biomedical engineering, particularly in repairing and strengthening effects. METHODS In this study, a bi-layer poly(L-lactic acid) (PLLA) electrospun membrane was fabricated, in which the inner oriented fibrous layer was designed to promote tendon healing while outer random aligned layer was designed to prevent peritendinous adhesion. RESULTS It was found that fibroblasts were aligned along the oriented fiber of membranes in vitro and in a Leghorn chicken model. In biomechanical tests of repaired tendons, no significant difference was found between oriented fibrous membrane and blank control in maximum tensile strength; both oriented fibrous membranes and random fibrous membranes showed lower work of flexion than blank control, which was consistent with gross assessment. CONCLUSION It was practicable to promote tendon healing while preventing adhesion via bi-layer PLLA membranes with an inner-oriented-fiber fabricated structure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
- Department of Orthopedics, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
| | - Jiazhi Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
| | - Zhongmin Shi
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jian Zou
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233, P. R. China
| | - Hongjiang Ruan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233, P. R. China
| |
Collapse
|
62
|
Pérez-González GL, Villarreal-Gómez LJ, Olivas-Sarabia A, Valdez R, Cornejo-Bravo JM. Development, characterization, and in vitro assessment of multilayer mucoadhesive system containing dexamethasone sodium phosphate. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Autónoma de México, Ensenada, México
| | - Ricardo Valdez
- Centro de Nanociencias y Nanotecnología, Universidad Autónoma de México, Ensenada, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| |
Collapse
|
63
|
Duygulu NE, Ciftci F, Ustundag CB. Electrospun drug blended poly(lactic acid) (PLA) nanofibers and their antimicrobial activities. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02215-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
64
|
Niknezhad S, Jana SC. Bicomponent nanofibers from core–shell nozzle in gas jet spinning process. J Appl Polym Sci 2020. [DOI: 10.1002/app.48901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sepideh Niknezhad
- Department of Polymer EngineeringUniversity of Akron Akron Ohio 44325
| | - Sadhan C. Jana
- Department of Polymer EngineeringUniversity of Akron Akron Ohio 44325
| |
Collapse
|
65
|
Milosevic M, Stojanovic DB, Simic V, Grkovic M, Bjelovic M, Uskokovic PS, Kojic M. Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep 2020; 10:11126. [PMID: 32636450 PMCID: PMC7341868 DOI: 10.1038/s41598-020-68117-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The authors present the preparation procedure and a computational model of a three‐layered fibrous scaffold for prolonged drug release. The scaffold, produced by emulsion/sequential electrospinning, consists of a poly(d,l-lactic-co-glycolic acid) (PLGA) fiber layer sandwiched between two poly(ε-caprolactone) (PCL) layers. Experimental results of drug release rates from the scaffold are compared with the results of the recently introduced computational finite element (FE) models for diffusive drug release from nanofibers to the three-dimensional (3D) surrounding medium. Two different FE models are used: (1) a 3D discretized continuum and fibers represented by a simple radial one-dimensional (1D) finite elements, and (2) a 3D continuum discretized by composite smeared finite elements (CSFEs) containing the fiber smeared and surrounding domains. Both models include the effects of polymer degradation and hydrophobicity (as partitioning) of the drug at the fiber/surrounding interface. The CSFE model includes a volumetric fraction of fibers and diameter distribution, and is additionally enhanced by using correction function to improve the accuracy of the model. The computational results are validated on Rhodamine B (fluorescent drug l) and other hydrophilic drugs. Agreement with experimental results proves that numerical models can serve as efficient tools for drug release to the surrounding porous medium or biological tissue. It is demonstrated that the introduced three-layered scaffold delays the drug release process and can be used for the time-controlled release of drugs in postoperative therapy.
Collapse
Affiliation(s)
- Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia.,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, 11000, Serbia
| | - Dusica B Stojanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia
| | - Mirjana Grkovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Milos Bjelovic
- Department for Minimally Invasive Upper Digestive Surgery, Clinical Center of Serbia, Hospital for Digestive Surgery - First Surgical Hospital, Dr Koste Todorovica 66, Belgrade, 11000, Serbia
| | - Petar S Uskokovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Milos Kojic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia. .,The Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA. .,Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, 11000, Serbia.
| |
Collapse
|
66
|
Toledo ALMM, Ramalho BS, Picciani PHS, Baptista L, Martinez AMB, Dias ML. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. L. M. M. Toledo
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Neurodegeneração e Reparo. R. Prof. Rodolpho Paulo Rocco, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - B. S. Ramalho
- Laboratório de Neurodegeneração e Reparo. R. Prof. Rodolpho Paulo Rocco, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - P. H. S. Picciani
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L.S. Baptista
- Núcleo Multidisciplinar de Pesquisa em Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, Brazil
| | - A. M. B. Martinez
- Laboratório de Neurodegeneração e Reparo. R. Prof. Rodolpho Paulo Rocco, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - M. L. Dias
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
67
|
Polat HK, Bozdağ Pehlivan S, Özkul C, Çalamak S, Öztürk N, Aytekin E, Fırat A, Ulubayram K, Kocabeyoğlu S, İrkeç M, Çalış S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585:119552. [DOI: 10.1016/j.ijpharm.2020.119552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
|
68
|
Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00157-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Creighton RL, Phan J, Woodrow KA. In situ 3D-patterning of electrospun fibers using two-layer composite materials. Sci Rep 2020; 10:7949. [PMID: 32409667 PMCID: PMC7224382 DOI: 10.1038/s41598-020-64846-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/20/2020] [Indexed: 11/24/2022] Open
Abstract
Polymeric electrospun nanofibers have extensive applications in filtration, sensing, drug delivery, and tissue engineering that often require the fibers to be patterned or integrated with a larger device. Here, we describe a highly versatile in situ strategy for three-dimensional electrospun fiber patterning using collectors with an insulative surface layer and conductive recessed patterns. We show that two-layer collectors with pattern dimensions down to 100-micrometers are easily fabricated using available laboratory equipment. We use finite element method simulation and experimental validation to demonstrate that the fiber patterning strategy is effective for a variety of pattern dimensions and fiber materials. Finally, the potential for this strategy to enable new applications of electrospun fibers is demonstrated by incorporating electrospun fibers into dissolving microneedles for the first time. These studies provide a framework for the adaptation of this fiber patterning strategy to many different applications of electrospun fibers.
Collapse
Affiliation(s)
- R L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - J Phan
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - K A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
70
|
Wang W, He N, Yao Z, Wang X, Wang H, He M, Li Y, Qian Y. An Integrative Dual-Layer Poly-L-Lactic Acid Fibrous Membrane Prevents Peritendinous Adhesions. Front Bioeng Biotechnol 2020; 8:387. [PMID: 32478044 PMCID: PMC7232555 DOI: 10.3389/fbioe.2020.00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Anti-adhesion membranes are prospective scaffolds for preventing peritendinous adhesion after injury. However, currently available scaffolds have some limitations, such as low efficacy for anti-adhesion, low quality of tendon healing, and unknown drug interactions. Thus, in this study, we designed an innovative structure involving an integrated dual-layer poly(L-lactic acid) (PLLA) electrospun membrane for preventing peritendonous adhesion by promoting tendon gliding. We investigated the surface morphology and wettability of the fiber scaffold. The adhesion and proliferation of fibroblasts were low on the PLLA fibrous membrane. Compared with single-layer membranes, the dual-layer PLLA fiber scaffold reduced adhesion to the tissues. The gliding space persisted until recovery in chicken extensor flexor tendons in vivo. Thus, this innovative PLLA membrane scaffold could prevent adhesion and promote gliding to facilitate tendon healing.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ning He
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
71
|
Gao F, Jiang M, Liang W, Fang X, Bai F, Zhou Y, Lang M. Co‐electrospun cellulose diacetate‐graft‐poly(ethylene terephthalate) and collagen composite nanofibrous mats for cells culture. J Appl Polym Sci 2020. [DOI: 10.1002/app.49350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feifei Gao
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai People's Republic of China
| | - Mingli Jiang
- State Key Laboratory of Bioreactor Engineering, School of biotechnologyEast China University of Science and Technology Shanghai People's Republic of China
| | - Wencheng Liang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai People's Republic of China
| | - Xiangchen Fang
- Fushun Research Institute of Petroleum and PetrochemicalsSINOPEC Liaoning People's Republic of China
| | - Fudong Bai
- Fushun Research Institute of Petroleum and PetrochemicalsSINOPEC Liaoning People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of biotechnologyEast China University of Science and Technology Shanghai People's Republic of China
| | - Meidong Lang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai People's Republic of China
| |
Collapse
|
72
|
Rasch F, Schmitt C, Saure LM, Meyer R, Adamski V, Dengiz D, Scherließ R, Lucius R, Synowitz M, Mishra YK, Hattermann K, Adelung R, Held-Feindt J, Schütt F. Macroscopic Silicone Microchannel Matrix for Tailored Drug Release and Localized Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3388-3397. [DOI: 10.1021/acsbiomaterials.0c00094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Florian Rasch
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Christina Schmitt
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Lena M. Saure
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Rieke Meyer
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Duygu Dengiz
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Yogendra K. Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Kirsten Hattermann
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Rainer Adelung
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Fabian Schütt
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| |
Collapse
|
73
|
Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics 2020; 12:pharmaceutics12030274. [PMID: 32192007 PMCID: PMC7151120 DOI: 10.3390/pharmaceutics12030274] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Electrospun nanofibers are gaining interest as ocular drug delivery platforms that may adapt to the eye surface and provide sustained release. The aim of this work was to design an innovative ophthalmic insert composed of hyaluronan (HA) nanofibers for the dual delivery of an antioxidant (ferulic acid, FA) and an antimicrobial peptide (ε-polylysine, ε-PL). Polyvinylpyrrolidone (PVP) was added to facilitate the electrospinning process. Fibers with diameters of approx. 100 nm were obtained with PVP 5%-HA 0.8% w/v and PVP 10%-HA 0.5% w/v mixtures in ethanol:water 4:6 v/v. An increase in PVP concentration to 20% w/v in both presence and absence of HA rendered fibers of approx. 1 µm. PVP 5%-HA 0.8% w/v fibers were loaded with 83.3 ± 14.0 µg FA per mg. After nanofibers crosslinking with ε-PL, blank and FA-loaded inserts showed a mean thickness of 270 ± 21 µm and 273 ± 41 µm, respectively. Blank and FA-loaded inserts completely released ε-PL within 30 min under sink conditions, whereas FA-loaded inserts released the antioxidant within 20 min. Both blank and FA-loaded inserts were challenged against Pseudomonas aeruginosa and Staphylococcus aureus, demonstrating their efficacy against relevant microbial species.
Collapse
|
74
|
Baek S, Park H, Park Y, Kang H, Lee D. Development of a Lidocaine-Loaded Alginate/CMC/PEO Electrospun Nanofiber Film and Application as an Anti-Adhesion Barrier. Polymers (Basel) 2020; 12:E618. [PMID: 32182717 PMCID: PMC7182823 DOI: 10.3390/polym12030618] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023] Open
Abstract
Surgery, particularly open surgery, is known to cause tissue/organ adhesion during healing. These adhesions occur through contact between the surgical treatment site and other organ, bone, or abdominal sites. Fibrous bands can form in unnecessary contact areas and cause various complications. Consequently, film- and gel-type anti-adhesion agents have been developed. The development of sustained drug delivery systems is very important for disease treatment and prevention. In this study, the drug release behavior was controlled by crosslinking lidocaine-loaded alginate/carboxymethyl cellulose (CMC)/polyethylene oxide (PEO) nanofiber films prepared by electrospinning. Lidocaine is mainly used as an anesthetic and is known to have anti-adhesion effects. Our results show that drug release is regulated by the crosslinking degree of the lidocaine-loaded alginate/CMC/PEO film. The drug release behavior was confirmed by HPLC, and, as a result, an excellent anti-adhesion barrier was developed that can be applied to treat patients in the medical field.
Collapse
Affiliation(s)
- Seungho Baek
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; (S.B.); (H.P.); (Y.P.)
| | - Heekyung Park
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; (S.B.); (H.P.); (Y.P.)
| | - Youngah Park
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; (S.B.); (H.P.); (Y.P.)
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul 06973, Korea
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; (S.B.); (H.P.); (Y.P.)
| |
Collapse
|
75
|
Xu F, Gough I, Dorogin J, Sheardown H, Hoare T. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomater 2020; 104:135-146. [PMID: 31904560 DOI: 10.1016/j.actbio.2019.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 01/17/2023]
Abstract
Creating micro/nanostructured hydrogels with tunable morphologies under cell-friendly processing conditions would enable rational engineering of hydrogel scaffolds for targeted biomedical applications. Herein, an all-aqueous single-step reactive electrospinning method is applied to prepare hydrogel networks with controlled morphologies on both the nanoscale and the microscale. Hydrazide and aldehyde-functionalized poly(oligo ethylene glycol methacrylate) (POEGMA) are co-spun from a double barrel syringe together with poly(ethylene oxide) (PEO) as an electrospinning aid. By varying the concentrations and molecular weights of PEO and/or POEGMA, various morphologies from pure fibers to beaded fibers to bead network morphologies with tunable bead sizes can be fabricated, all of which remain monolithically stable in water due to the dynamic covalent crosslinks formed within the gel structure. The rates and magnitudes of swelling, degradation, and mechanics of the resulting scaffolds can be tuned by independently controlling gel morphologies on the nanoscale (i.e. crosslink density within the gel) and the microscale (i.e. the network structure formed), with an atypical independence of swelling relative to the mechanics and degradation rate observed. Furthermore, the internal morphology of the networks is demonstrated to systematically alter both the cell responses within the scaffolds and the rate of protein release from the scaffolds, with small fibers showing optimal cell proliferation, bead networks exhibiting the slowest protein release kinetics and very high maintained cell viabilities post-electrospinning, and beaded fibers showing intermediate properties. STATEMENT OF SIGNIFICANCE: Controlling the internal structure of hydrogels is critical to successfully applying hydrogels in biomedical applications such as tissue engineering or cell/drug delivery. However, current techniques to fabricate hydrogel scaffolds typically require additives or gelation processes that are poorly compatible with cells and/or require multi-step processes. In this paper, we describe the fabrication of hydrogel scaffolds with tunable feature sizes (from nanometer to micrometer scale) and structures (from all fibers to bead/fiber mixtures to a new "bead network" morphology) using a reactive electrospinning strategy leveraging dynamic hydrazone crosslinking. We show single-step cell/protein loading and systematic control over cell proliferation and protein release kinetics by systematically manipulating the scaffold morphologies and feature sizes, allowing facile customization of scaffold properties for targeted applications.
Collapse
|
76
|
Wang P, Li M, Wei D, Ding M, Tao L, Liu X, Zhang F, Tao N, Wang X, Gao M, Zhong J. Electrosprayed Soft Capsules of Millimeter Size for Specifically Delivering Fish Oil/Nutrients to the Stomach and Intestines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6536-6545. [PMID: 31940164 DOI: 10.1021/acsami.9b23623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contrasting to the traditional centimeter-sized soft capsules that are difficult to swallow or micro/nanometer-sized soft capsules that suffer from limited loading capacity for fish oil/nutrients and lowered stability, the millimeter-sized soft capsules with good enough stability could be a potential solution in solving these problems. Herein, we report millimeter-sized soft core-shell capsules of 0.42-1.85 mm with an inner diameter of 0.36-1.75 mm, for fish oil/nutrients, obtained through an electrospray approach upon optimization of different fabrication parameters such as applied voltage, sodium alginate concentration, shell/core feeding rate ratio, times of feeding rate, and types of coaxial needles. Further in vitro and in vivo studies reveal that the resulting soft capsules were apparently weakened and became mechanically destructive in the simulated small intestine solution and were totally destroyed in the simulated small intestine solution if they were first treated in the simulated stomach solution but not in the simulated stomach solution, which makes the millimeter-sized capsules useful as containers for specific delivery of fish oils and lipophilic nutrients to the stomach and intestines with excellent in vivo bioavailability (>90%). The whole fabrication approach is very facile with no complicated polymer modification and formulations involved, which endows the resulting soft capsules with broad application prospect in food and drug industries.
Collapse
Affiliation(s)
- Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Min Li
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Daixu Wei
- College of Life Sciences and Medicine , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Lina Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xunwei Liu
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Fengping Zhang
- Sichuan Willtest Technology Co., Ltd., Chengdu, Sichuan Province, China,Key Laboratory of Nutritional and Healty Cultivation of Aquatic-Product and Livestock-Poultry, Ministry of Agriculture and Rural Affairs of the People's Republic of China , Tongwei Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| |
Collapse
|
77
|
Tyo KM, Lasnik AB, Zhang L, Mahmoud M, Jenson AB, Fuqua JL, Palmer KE, Steinbach-Rankins JM. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J Control Release 2020; 321:84-99. [PMID: 32035194 DOI: 10.1016/j.jconrel.2020.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2) affect hundreds of millions of people worldwide. The antiviral lectin, Griffithsin (GRFT), has been shown to be both safe and efficacious against HSV-2 and HIV-1 infections in vivo. The goal of this work was to develop a multilayered nanoparticle (NP)-electrospun fiber (EF) composite to provide sustained-release of GRFT, and to examine its safety and efficacy in a murine model of lethal HSV-2 infection. Composites were fabricated from polycaprolactone (PCL) fibers surrounding polyethylene oxide (PEO) fibers that incorporated methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) GRFT NPs. GRFT loading and release were determined via ELISA, showing that NP-EF composites achieved high GRFT loading, and provided sustained-release of GRFT for up to 90 d. The in vitro efficacy of GRFT NP-EFs was assessed using HIV-1 pseudovirus assays, demonstrating complete in vitro protection against HIV-1 infection. Additionally, sustained-release NP-EFs, administered 24 h prior to infection, prevented against a lethal dose of HSV-2 infection in a murine model. In parallel, histology and cytokine expression from murine reproductive tracts and vaginal lavages collected 24 and 72 h post-administration were similar to untreated mice, suggesting that NP-EF composites may be a promising and safe sustained-delivery platform to prevent HSV-2 infection. Future work will evaluate the ability to provide prolonged protection against multiple virus challenges, and different administration times with respect to infection.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Amanda B Lasnik
- Center for Predictive Medicine, Louisville, KY, United States
| | - Longyun Zhang
- Center for Predictive Medicine, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mohamed Mahmoud
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Joshua L Fuqua
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States.
| |
Collapse
|
78
|
Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110218. [DOI: 10.1016/j.msec.2019.110218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
79
|
Iqbal H, Khan BA, Khan ZU, Razzaq A, Khan NU, Menaa B, Menaa F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int J Biol Macromol 2020; 144:921-931. [DOI: 10.1016/j.ijbiomac.2019.09.169] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
80
|
A method to rapidly analyze the simultaneous release of multiple pharmaceuticals from electrospun fibers. Int J Pharm 2020; 574:118871. [PMID: 31765769 DOI: 10.1016/j.ijpharm.2019.118871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
Electrospun fibers are a commonly used cell scaffold and have also been used as pharmaceutical delivery devices. In this study, we developed a method to analyze the release of multiple pharmaceuticals from a single electrospun fiber scaffold and determine how each pharmaceutical's loading concentration affects the release rate of each pharmaceutical. Our analysis methods were tested on electrospun fibers loaded with two pharmaceuticals: 6-aminonicotinamide (6AN) and ibuprofen. Pharmaceutical concentration in electrospun fibers ranged from 1.5% to 8.5% by weight. We found that 6AN release was dependent on the concentration of 6AN and ibuprofen loaded into the fibers, while ibuprofen release was only dependent on the loading concentration of ibuprofen but not 6AN. Unexpectedly, ibuprofen release became dependent on both 6AN and ibuprofen loading concentrations when fibers were aged for 1-month post-fabrication at room temperature in the laboratory followed by a 4-hour incubation inside the cell culture incubator at 37 °C and 5% CO2. One additional discovery was an unknown signal that was attributed to the medical grade syringes used for electrospinning, which was easily removed using our method. These results demonstrate the utility of the methods developed here and indicate multiple agents can be released concomitantly from electrospun fibers to meet the demands of more complex tissue engineering approaches. Future work will focus on analysis of pharmaceutical release profiles to exploit the dependencies on pharmaceutical loading concentrations.
Collapse
|
81
|
Evaluation of Polycaprolactone/Gelatin/Chitosan Electrospun Membrane for Peritoneal Adhesion Reduction. Ann Plast Surg 2020; 84:S116-S122. [DOI: 10.1097/sap.0000000000002199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Nazari K, Mehta P, Arshad MS, Ahmed S, Andriotis EG, Singh N, Qutachi O, Chang MW, Fatouros DG, Ahmad Z. Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches. Pharmaceutics 2019; 12:pharmaceutics12010002. [PMID: 31861296 PMCID: PMC7022274 DOI: 10.3390/pharmaceutics12010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.
Collapse
Affiliation(s)
- Kazem Nazari
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Prina Mehta
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Muhammad Sohail Arshad
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Shahabuddin Ahmed
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Eleftherios G. Andriotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Neenu Singh
- The School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Omar Qutachi
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, UK;
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Correspondence: (D.G.F.); (Z.A.)
| | - Zeeshan Ahmad
- The Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.N.); (P.M.); (M.S.A.); (S.A.); (O.Q.)
- Correspondence: (D.G.F.); (Z.A.)
| |
Collapse
|
83
|
Gao X, Han S, Zhang R, Liu G, Wu J. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B 2019; 7:7075-7089. [PMID: 31660575 DOI: 10.1039/c9tb01730e] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of novel methods to fabricate optimal scaffolds that mimic both mechanical and functional properties of the extracellular matrix (ECM) has always been the "holy grail" in tissue engineering. In recent years, electrospinning has emerged as an attractive material fabrication method and has been widely applied in tissue engineering due to its capability of producing non-woven and nanoscale fibers. However, from the perspective of biomimicry, it is difficult for single-component electrospun fiber membranes to achieve the biomimetic purposes of the multi-component extracellular matrix. Based on electrospinning, various functional components can be efficiently and expediently introduced into the membranes, and through the complementation and correlation of the properties of each component, composite materials with comprehensive and superior properties are obtained while maintaining the primitive merits of each component. In this review, we will provide an overview of the attempts made to fabricate electrospinning-based composite tissue engineering materials in the past few decades, which have been divided into organic additives, inorganic additives and organic-inorganic additives.
Collapse
Affiliation(s)
- Xize Gao
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China. and Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
84
|
Yang Y, Zhu T, Liu Z, Luo M, Yu DG, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019; 569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
|
85
|
Nangare S, Jadhav N, Ghagare P, Muthane T. Pharmaceutical applications of electrospinning. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 78:1-11. [PMID: 31564424 DOI: 10.1016/j.pharma.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Development of tailor-made pharmaceutical nanofibers has gained vital prominence due to ease of fabrication and versatility of electrospinning (ES). ES is one of the flexible and, wonderful strategies for the fabrication of nanofibers. ES unit comprises a supplier of high voltage current, a syringe (pump), spinneret and a metal plate collector. The obtained nanofibers are optimized by manipulating process and formulation variables Viz: polymer/drug resolution (viscosity, concentration, physical phenomenon, molecular mass) and the environmental conditions (humidity, temperature). The electrospun nanofibers can be used for loading of the drug, amorphization of a crystalline API and an increase in its physical storage stability. ES technique enables mixing of two or more API and may facilitate or inhibit the burst release of a drug, along with attainment of modified release. Additionally, nanofibers demonstrate a reduction in overall dose needed for the therapeutic activity, by improving dissolution and bioavailability of the drugs. The current review is an attempt to focus on ES method, the optimization parameters, and pharmaceutical applications of the electrospun nanofibers.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India.
| | - Pravin Ghagare
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| | - Tejashwini Muthane
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| |
Collapse
|
86
|
Da Silva GR, Lima TH, Fernandes-Cunha GM, Oréfice RL, Da Silva-Cunha A, Zhao M, Behar-Cohen F. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm 2019; 142:20-30. [DOI: 10.1016/j.ejpb.2019.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023]
|
87
|
Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration. Int J Pharm 2019; 570:118640. [PMID: 31446025 DOI: 10.1016/j.ijpharm.2019.118640] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Nanofiber-based wound dressings are currently being explored as delivery systems of different biomolecules for avoiding skin infections as well as improve/accelerate the healing process. In the present work, a nanofibrous membrane composed of poly(vinyl alcohol) (PVA) and lysine (Lys) was produced by using the electrospinning technique. Further, anti-inflammatory (ibuprofen (IBP)) and antibacterial (lavender oil (LO)) agents were incorporated within the electrospun membrane through blend electrospinning and surface physical adsorption methods, respectively. The obtained results demonstrated that the PVA_Lys electrospun membranes incorporating IBP or LO displayed the suitable morphological, mechanical and biological properties for enhancing the wound healing process. Moreover, the controlled and sustained release profile attained for IBP was appropriate for the duration of the wound healing inflammatory phase, whereas the initial burst release of LO is crucial to prevent wound bacterial contamination. Indeed, the PVA_Lys_LO electrospun membranes were able to mediate a strong antibacterial activity against both S. aureus and P. aeruginosa, without compromising human fibroblasts viability. Overall, the gathered data emphasizes the potential of the PVA_Lys electrospun membranes-based drug delivery systems to be used as wound dressings.
Collapse
|
88
|
Wei L, Wu S, Shi W, Aldrich AL, Kielian T, Carlson MA, Sun R, Qin X, Duan B. Large-Scale and Rapid Preparation of Nanofibrous Meshes and Their Application for Drug-Loaded Multilayer Mucoadhesive Patch Fabrication for Mouth Ulcer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28740-28751. [PMID: 31334627 PMCID: PMC7082812 DOI: 10.1021/acsami.9b10379] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrospinning provides a simple and convenient method to fabricate nanofibrous meshes. However, the nanofiber productivity is often limited to the laboratory scale, which cannot satisfy the requirements of practical application. In this study, we developed a novel needleless electrospinning spinneret based on a double-ring slit to fabricate drug-loaded nanofibrous meshes. In contrast to the conventional single-needle electrospinning spinneret, our needless spinneret can significantly improve nanofiber productivity due to the simultaneous formation of multiple jets during electrospinning. Curcumin-loaded poly(l-lactic acid) (PLLA) nanofiber meshes with various concentrations and on the large scale were manufactured by employing our developed needleless spinneret-based electrospinning device. We systematically investigated the drug release behaviors, antioxidant properties, anti-inflammatory attributes, and cytotoxicity of the curcumin-loaded PLLA nanofibrous meshes. Furthermore, a bilayer nanofibrous composite mesh was successfully generated by electrospinning curcumin-loaded PLLA solution and diclofenac sodium loaded poly(ethylene oxide) solution in a predetermined time sequence, which revealed potent antibacterial properties. Subsequently, novel mucoadhesive patches were assembled by combining the bilayer composite nanofibrous meshes with (hydroxypropyl)methyl cellulose based mucoadhesive film. The multilayered mucoadhesive patch has excellent adhesion properties on the porcine buccal mucosa. Overall, our double-ring slit spinneret can provide a novel method to rapidly produce large-scale drug-loaded nanofibrous meshes to fabricate mucoadhesive patches. The multiple-layered mucoadhesive patches enable the incorporation of multiple drugs with different targets of action, such as analgesic, anti-inflammatory, and antimicrobial compounds, for mouth ulcer or other oral disease treatments.
Collapse
Affiliation(s)
- Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amy L. Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68516, USA
| |
Collapse
|
89
|
Mirzaeei S, Mohammadi G, Fattahi N, Mohammadi P, Fattahi A, Nikbakht MR, Adibkia K. Formulation and Physicochemical Characterization of Cyclosporine Microfiber by Electrospinning. Adv Pharm Bull 2019; 9:249-254. [PMID: 31380250 PMCID: PMC6664123 DOI: 10.15171/apb.2019.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: The objective of this study was to improve the permeability and water solubility rate of a poor water soluble drug, cyclosporine A (CsA).
Methods: In order to improve the drug dissolution rate and oral bioavailability, electrospinning method was used as an approach to prepare. The fibers were evaluated for surface morphology, thermal characterizations, drug crystallinity, in vitro drug release and in vivo bioavailability studies.
Results: Scanning electron microscope (SEM) results confirmed that the fibers were in microsize range and the size of the fibers was in the rang of 0.2 to 2 micron. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRPD) analysis ensured that the crystalline lattice of drug were weakened or destroyed in the fibers. The drug release was 15.28%, 20.67%, and 32.84% from pure drug, fibers of formulation B, and formulation A, respectively. In vivo study results indicated that the bioavailability parameters of the optimized fiber formulation were improved and the maximum concentration (Cmax) were significantly higher for fibers (3001 ng/mL) than for pure drug (2550 ng/mL). The dissolution rate of the formulations was dependent on the nature and ratio of drug to carriers.
Conclusion: The physicochemical properties showed that the optimized mixture of polyethylene glycol (PEG) and povidone (PVP) fibers could be an effective carrier for CsA delivery. PEG and PVP fibers improved the absolute bioavailability and drug dissolution rate with appropriate physicochemical properties.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Navid Fattahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Nikbakht
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khosro Adibkia
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
90
|
Chen H, Wang C, Ali I, Li H, Chen X, Yang W, Han W, Liu H, Jiao D, Yin F. Uniform Distribution and Densification of Jets in Needleless Electrospinning Using Annular Tip Nozzle. Polymers (Basel) 2019; 11:polym11081301. [PMID: 31382528 PMCID: PMC6723264 DOI: 10.3390/polym11081301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Numerous jets can be generated simultaneously on a nozzle by needleless melt electrospinning technology which has the advantages of solvent-free residues and environmental friendliness; and potential industrial application prospects. In this paper, the linear annular tip nozzle was taken as the research object, and the high-speed image acquisition of the jets generation and distribution process of annular tip nozzle was carried out and compared with that of straight-line tip nozzle. The results showed that the repulsive force between the jets caused a slight adjustment in the position of the jets on the free surface, the force between the jets on the annular closed curve canceled each other and eventually reached the equilibrium state, making the position of the jets stable and the distance between the jets the same, and the distance between the jets was related to the intensity of the induced electric field at the tip of the nozzle. Relevant conclusions can provide scientific and practical guidance for the design of needleless electrospinning nozzles on free surface in order to achieve uniform and efficient preparation of ultrafine fibers.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Chuansheng Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Imdad Ali
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyi Li
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqing Chen
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenwen Han
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
| | - Haichao Liu
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Dongmei Jiao
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Fengfu Yin
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
91
|
Alves PE, Soares BG, Lins LC, Livi S, Santos EP. Controlled delivery of dexamethasone and betamethasone from PLA electrospun fibers: A comparative study. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
92
|
Production of a new platform based calixarene nanofiber for controlled release of the drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:466-474. [DOI: 10.1016/j.msec.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/12/2019] [Accepted: 03/10/2019] [Indexed: 01/18/2023]
|
93
|
Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractOver the past two decades, biodegradable polymers (BPs) have been widely used in biomedical applications such as drug carrier, gene delivery, tissue engineering, diagnosis, medical devices, and antibacterial/antifouling biomaterials. This can be attributed to numerous factors such as chemical, mechanical and physiochemical properties of BPs, their improved processibility, functionality and sensitivity towards stimuli. The present review intended to highlight main results of research on advances and improvements in terms of synthesis, physical properties, stimuli response, and/or applicability of biodegradable plastics (BPs) during last two decades, and its biomedical applications. Recent literature relevant to this study has been cited and their developing trends and challenges of BPs have also been discussed.
Collapse
Affiliation(s)
- Tejas V. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| |
Collapse
|
94
|
Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
95
|
Zhang K, Bai X, Yuan Z, Cao X, Jiao X, Li Y, Qin Y, Wen Y, Zhang X. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials 2019; 204:70-79. [DOI: 10.1016/j.biomaterials.2019.03.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/07/2023]
|
96
|
Jing X, Li H, Mi HY, Liu YJ, Tan YM. Fabrication of Three-Dimensional Fluffy Nanofibrous Scaffolds for Tissue Engineering via Electrospinning and CO2 Escaping Foaming. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan 412007, China
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Yue-Jun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yi-Min Tan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| |
Collapse
|
97
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [PMID: 30922946 DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
98
|
Ragusa J, Gonzalez D, Li S, Noriega S, Skotak M, Larsen G. Glucosamine/L-lactide copolymers as potential carriers for the development of a sustained rifampicin release system using Mycobacterium smegmatis as a tuberculosis model. Heliyon 2019; 5:e01539. [PMID: 31183418 PMCID: PMC6488545 DOI: 10.1016/j.heliyon.2019.e01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The present study aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (core building unit) and L-lactide (GluN-LLA). Particles were made via electrohydrodynamic atomization. Prolonged release (for up to 14 days) of RIF from these particles is reported. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism in vitro and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) particles (reference materials) did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated that cell death correlates with an increase of particle concentration but is not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. The uptake of GluN-LLA particles is higher than those of their PLA counterparts. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and showed favorable long-term drug release behavior, which facilitated the killing of intracellular bacteria when compared to free RIF. The present studies suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Collapse
Affiliation(s)
- Jorge Ragusa
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Daniela Gonzalez
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Sumin Li
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Sandra Noriega
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Maciej Skotak
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Gustavo Larsen
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| |
Collapse
|
99
|
Tyo KM, Minooei F, Curry KC, NeCamp SM, Graves DL, Fried JR, Steinbach-Rankins JM. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics 2019; 11:E160. [PMID: 30987206 PMCID: PMC6523330 DOI: 10.3390/pharmaceutics11040160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Electrospun fibers have emerged as a relatively new delivery platform to improve active agent retention and delivery for intravaginal applications. While uniaxial fibers have been explored in a variety of applications including intravaginal delivery, the consideration of more advanced fiber architectures may offer new options to improve delivery to the female reproductive tract. In this review, we summarize the advancements of electrospun coaxial, multilayered, and nanoparticle-fiber architectures utilized in other applications and discuss how different material combinations within these architectures provide varied durations of release, here categorized as either transient (within 24 h), short-term (24 h to one week), or sustained (beyond one week). We seek to systematically relate material type and fiber architecture to active agent release kinetics. Last, we explore how lessons derived from these architectures may be applied to address the needs of future intravaginal delivery platforms for a given prophylactic or therapeutic application. The overall goal of this review is to provide a summary of different fiber architectures that have been useful for active agent delivery and to provide guidelines for the development of new formulations that exhibit release kinetics relevant to the time frames and the diversity of active agents needed in next-generation multipurpose applications.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Keegan C Curry
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Sarah M NeCamp
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Danielle L Graves
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
100
|
Sordo F, Janecek ER, Qu Y, Michaud V, Stellacci F, Engmann J, Wooster TJ, Sorin F. Microstructured Fibers for the Production of Food. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807282. [PMID: 30767332 DOI: 10.1002/adma.201807282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Indexed: 05/27/2023]
Abstract
Food engineering faces the difficult challenge of combining taste, i.e., tailoring texture and rheology of food matrices with the balanced intake of healthy nutrients. In materials science, fiber suspensions and composites have been developed as a versatile and successful approach to tailor rheology while imparting materials with added functionalities. Structures based on such types of physical (micro)fibers are however rare in food production mainly due to a lack of food-grade materials and processes allowing for the fabrication of fibers with controlled sizes and microstructures. Here, the controlled fabrication of multi-material microstructured edible fibers is demonstrated using a food compatible process based on preform-to-fiber thermal drawing. It is shown that different material systems based on gelatin or casein, with plasticizers such as glycerol, can be thermally drawn into fibers with various geometries and cross-sectional structures. It is demonstrated that fibers can exhibit tailored mechanical properties post-drawing, and can encapsulate nutrients to control their release. The versatility of fiber materials is also exploited to demonstrate the fabrication of food-grade fabrics and scaffolds for food growth. The end results establish a new field in food production that relies on fiber-based simple and eco-friendly processes to realize enjoyable yet healthy and nutritious products.
Collapse
Affiliation(s)
- Federica Sordo
- Laboratory of Photonic Materials and Fiber Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Emma-Rose Janecek
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yunpeng Qu
- Laboratory of Photonic Materials and Fiber Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Véronique Michaud
- Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jan Engmann
- Nestlé Research Centre, Institute of Materials Science, 1000, Lausanne, Switzerland
| | - Tim J Wooster
- Nestlé Research Centre, Institute of Materials Science, 1000, Lausanne, Switzerland
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fiber Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|