51
|
Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: A review. J Pharm Biomed Anal 2016; 130:141-168. [PMID: 27451335 DOI: 10.1016/j.jpba.2016.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain
| |
Collapse
|
52
|
Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions. Mol Neurobiol 2016; 54:3825-3842. [PMID: 27324791 DOI: 10.1007/s12035-016-9906-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na+-glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.
Collapse
|
53
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
54
|
Bagga P, Chugani AN, Patel AB. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A 13 C NMR study. Neurochem Int 2016; 92:25-34. [DOI: 10.1016/j.neuint.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022]
|
55
|
Ambrus A, Nemeria NS, Torocsik B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Free Radic Biol Med 2015; 89:642-50. [PMID: 26456061 PMCID: PMC4684775 DOI: 10.1016/j.freeradbiomed.2015.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/18/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023]
Abstract
Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess 'moonlighting' activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Laszlo Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Mattias Nilsson
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
56
|
Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 2014; 9:2032-48. [PMID: 24937102 PMCID: PMC4168797 DOI: 10.1021/cb400894a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Parkinson’s
disease (PD) is a multifactorial disorder with
a complex etiology including genetic risk factors, environmental exposures,
and aging. While energy failure and oxidative stress have largely
been associated with the loss of dopaminergic cells in PD and the
toxicity induced by mitochondrial/environmental toxins, very little
is known regarding the alterations in energy metabolism associated
with mitochondrial dysfunction and their causative role in cell death
progression. In this study, we investigated the alterations in the
energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial
toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or
different mechanisms of toxicity. A combined metabolomics approach
using nuclear magnetic resonance (NMR) and direct-infusion electrospray
ionization mass spectrometry (DI-ESI-MS) was used to identify unique
metabolic profile changes in response to these neurotoxins. Paraquat
exposure induced the most profound alterations in the pentose phosphate
pathway (PPP) metabolome. 13C-glucose flux analysis corroborated
that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate,
glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat
treatment, which was paralleled by inhibition of glycolysis and the
TCA cycle. Proteomic analysis also found an increase in the expression
of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing
equivalents by regenerating nicotinamide adenine dinucleotide phosphate
(NADPH) levels. Overexpression of G6PD selectively increased paraquat
toxicity, while its inhibition with 6-aminonicotinamide inhibited
paraquat-induced oxidative stress and cell death. These results suggest
that paraquat “hijacks” the PPP to increase NADPH reducing
equivalents and stimulate paraquat redox cycling, oxidative stress,
and cell death. Our study clearly demonstrates that alterations in
energy metabolism, which are specific for distinct mitochondiral/environmental
toxins, are not bystanders to energy failure but also contribute significant
to cell death progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert C. Stanton
- Research
Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
57
|
Sertbaş M, Ülgen K, Çakır T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 2014; 4:542-53. [PMID: 25061554 PMCID: PMC4104795 DOI: 10.1016/j.fob.2014.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023] Open
Abstract
Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia) with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.
Collapse
Key Words
- AD, Alzheimer’s disease
- ALS, amyotrophic lateral sclerosis
- Brain metabolic network
- Computational systems biology
- FBA, flux balance analysis
- GABA, gamma-aminobutyric acid
- HD, Huntington’s disease
- KIV, ketoisovalerate
- KLF, Krüppel-like factor
- KMV, alpha-keto-beta-methylvalerate
- MS, multiple sclerosis
- Neurodegenerative diseases
- Neurometabolism
- PCA, principal component analysis
- PD, Parkinson’s disease
- RMA, reporter metabolite analysis
- RPA, reporter pathway analysis
- Reporter metabolite
- SCHZ, schizophrenia
- TCA, tricarboxylic acid
- Transcriptome
- USF, upstream stimulatory factor
Collapse
Affiliation(s)
- Mustafa Sertbaş
- Department of Bioengineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - Kutlu Ülgen
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey
| |
Collapse
|
58
|
Phillipson OT. Management of the aging risk factor for Parkinson's disease. Neurobiol Aging 2013; 35:847-57. [PMID: 24246717 DOI: 10.1016/j.neurobiolaging.2013.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023]
Abstract
The aging risk factor for Parkinson's disease is described in terms of specific disease markers including mitochondrial and gene dysfunctions relevant to energy metabolism. This review details evidence for the ability of nutritional agents to manage these aging risk factors. The combination of alpha lipoic acid, acetyl-l-carnitine, coenzyme Q10, and melatonin supports energy metabolism via carbohydrate and fatty acid utilization, assists electron transport and adenosine triphosphate synthesis, counters oxidative and nitrosative stress, and raises defenses against protein misfolding, inflammatory stimuli, iron, and other endogenous or xenobiotic toxins. These effects are supported by gene expression via the antioxidant response element (ARE; Keap/Nrf2 pathway), and by peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), a transcription coactivator, which regulates gene expression for energy metabolism and mitochondrial biogenesis, and maintains the structural integrity of mitochondria. The effectiveness and synergies of the combination against disease risks are discussed in relation to gene action, dopamine cell loss, and the accumulation and spread of pathology via misfolded alpha-synuclein. In addition there are potential synergies to support a neurorestorative role via glial derived neurotrophic factor expression.
Collapse
Affiliation(s)
- Oliver T Phillipson
- School of Medical Sciences, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
59
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
60
|
Berndt N, Holzhütter HG, Bulik S. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis. FEBS J 2013; 280:5080-93. [PMID: 23937586 DOI: 10.1111/febs.12480] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022]
Abstract
Steadily growing experimental evidence suggests that mitochondrial dysfunction plays a key role in the age-dependent impairment of nerve cells underlying several neurodegenerative diseases. In particular, the citric acid cycle enzyme complex α-ketoglutarate dehydrogenase (KGDHC) and respiratory chain complex I of the respiratory chain often show reduced activities in the dopaminergic neurons involved in Parkinson's disease, both giving rise to an impaired mitochondrial energy metabolism as demonstrated in a number of in vitro studies with cell lines as well as isolated mitochondria. To understand the metabolic regulation underlying these experimental findings we used a detailed kinetic model of mitochondrial energy metabolism. First, we investigated the effect of complex I inhibition on energy production and formation of reactive oxygen species (ROS). Next, we applied the model to a situation where both KGDHC and complex I exhibit reduced activities. These calculations reveal synergistic effects with respect to the energy metabolism but antagonistic effects with respect to ROS formation: the drop in the ATP production capacity is more pronounced than at inhibition of either enzyme complex alone. Interestingly, however, the reduction state of the ROS-generating sites of the impaired complex I becomes significantly lowered if additionally the activity of the KGDHC is reduced. We discuss the pathophysiological consequences of these intriguing findings.
Collapse
Affiliation(s)
- Nikolaus Berndt
- Institute of Biochemistry, University Medicine Berlin - Charité, Germany
| | | | | |
Collapse
|
61
|
Starkov AA. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci 2012; 55:13-6. [PMID: 22820180 DOI: 10.1016/j.mcn.2012.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/22/2012] [Accepted: 07/10/2012] [Indexed: 01/06/2023] Open
Abstract
The activity of mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC) is severely reduced in human pathologies where oxidative stress is traditionally thought to play an important role, such as familial and sporadic forms of Alzheimer's disease and other age-related neurodegenerative diseases. This minireview is focused on substantial data that were accumulated over the last 2 decades to support the concept that KGDHC can be a primary mitochondrial target of oxidative stress and at the same time a key contributor to it by producing reactive oxygen species. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
62
|
Shi Q, Gibson GE. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem 2011; 118:440-8. [PMID: 21623795 DOI: 10.1111/j.1471-4159.2011.07333.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
These experiments reveal for the first time that microRNAs (miRNAs) mediate oxidant regulated expression of a mitochondrial tricarboxylic acid cycle gene (mdh2). mdh2 encoded malate dehydrogenase (MDH) is elevated by an unknown mechanism in brains of patients that died with Alzheimer's disease. Oxidative stress, an early and pervasive event in Alzheimer's disease, increased MDH activity and mRNA level of mdh2 by 19% and 22%, respectively, in a mouse hippocampal cell line (HT22). Post-transcriptional events underlie the change in mRNA because actinomycin D did not block the elevated mdh2 mRNA. Since miRNAs regulate gene expression post-transcriptionally, the expression of miR-743a, a miRNA predicted to target mdh2, was determined and showed a 52% reduction after oxidant treatment. Direct interaction of miR-743a with mdh2 was demonstrated with a luciferase based assay. Over-expression or inhibition of miR-743a led to a respective reduction or increase in endogenous mRNA and MDH activity. The results demonstrate that miR-743a negatively regulates mdh2 at post-transcriptional level by directly targeting the mdh2 3'UTR. The findings are consistent with the suggestion that oxidative stress can elevate the activity of MDH through miR-743a, and provide new insights into possible roles of miRNA in oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology & Neuroscience, Weill Cornell Medical College/Burke Medical Research Institute, White Plains, New York, USA.
| | | |
Collapse
|
63
|
Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 2011; 286:17640-8. [PMID: 21454586 DOI: 10.1074/jbc.m110.203018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology & Neuroscience, Weill Cornell Medical College/Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Trofimova L, Lovat M, Groznaya A, Efimova E, Dunaeva T, Maslova M, Graf A, Bunik V. Behavioral impact of the regulation of the brain 2-oxoglutarate dehydrogenase complex by synthetic phosphonate analog of 2-oxoglutarate: implications into the role of the complex in neurodegenerative diseases. Int J Alzheimers Dis 2010; 2010:749061. [PMID: 21049004 PMCID: PMC2964918 DOI: 10.4061/2010/749061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/05/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022] Open
Abstract
Decreased activity of the mitochondrial 2-oxoglutarate dehydrogenase complex (OGDHC) in brain accompanies neurodegenerative diseases. To reveal molecular mechanisms of this association, we treated rats with a specific inhibitor of OGDHC, succinyl phosphonate, or exposed them to hypoxic stress. In males treated with succinyl phosphonate and in pregnancy-sensitized females experiencing acute hypobaric hypoxia, we revealed upregulation of brain OGDHC (within 24 hours), with the activity increase presumably representing the compensatory response of brain to the OGDHC inhibition. This up-regulation of brain OGDHC was accompanied by an increase in exploratory activity and a decrease in anxiety of the experimental animals. Remarkably, the hypoxia-induced elevation of brain OGDHC and most of the associated behavioral changes were abrogated by succinyl phosphonate. The antagonistic action of hypoxia and succinyl phosphonate demonstrates potential therapeutic significance of the OGDHC regulation by the phosphonate analogs of 2-oxoglutarate.
Collapse
Affiliation(s)
- L Trofimova
- Departments of Biophysics, Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2009; 1802:122-34. [PMID: 19715758 DOI: 10.1016/j.bbadis.2009.08.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 12/31/2022]
Abstract
Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sublethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post-transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the alpha-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhances ROS production in Alzheimer's Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington's Disease (HD), a movement disorder with cognitive features distinct form AD, complex II+III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium-activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a crosslinking enzymes that can modulate transcription, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic approaches in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College of Cornell University at Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | | | | | |
Collapse
|
66
|
Yang L, Shi Q, Ho DJ, Starkov AA, Wille EJ, Xu H, Chen HL, Zhang S, Stack CM, Calingasan NY, Gibson GE, Beal MF. Mice deficient in dihydrolipoyl succinyl transferase show increased vulnerability to mitochondrial toxins. Neurobiol Dis 2009; 36:320-30. [PMID: 19660549 DOI: 10.1016/j.nbd.2009.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022] Open
Abstract
The activity of a key mitochondrial tricarboxylic acid cycle enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), declines in many neurodegenerative diseases. KGDHC consists of three subunits. The dihydrolipoyl succinyl transferase (DLST) component is unique to KGDHC. DLST(+/-) mice showed reduced mRNA and protein levels and decreased brain mitochondrial KGDHC activity. Neurotoxic effects of mitochondrial toxins were exacerbated in DLST(+/-) mice. MPTP produced a significantly greater reduction of striatal dopamine and tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta of DLST(+/-) mice. DLST deficiency enhanced the severity of lipid peroxidation in the substantia nigra after MPTP treatment. Striatal lesions induced by either malonate or 3-nitropropionic acid (3-NP) were significantly larger in DLST(+/-) mice than in wildtype controls. DLST deficiency enhanced the 3-NP inhibition of mitochondria enzymes, and 3-NP induced protein and DNA oxidations. These observations support the hypothesis that reductions in KGDHC may impair the adaptability of the brain and contribute to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lichuan Yang
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shi Q, Xu H, Kleinman WA, Gibson GE. Novel functions of the alpha-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2007; 1782:229-38. [PMID: 18206986 DOI: 10.1016/j.bbadis.2007.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/13/2022]
Abstract
Measures in autopsied brains from Alzheimer's Disease (AD) patients reveal a decrease in the activity of alpha-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H(2)O(2) and to probe the mechanism underlying these changes. Since the response to H(2)O(2) is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one-hour treatment with H(2)O(2) decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H(2)O(2) inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H(2)O(2) converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H(2)O(2) diminished glutathione to a similar level after 24 h. However, H(2)O(2), but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H(2)O(2) together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University/Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | |
Collapse
|
68
|
Shi Q, Karuppagounder SS, Xu H, Pechman D, Chen H, Gibson GE. Responses of the mitochondrial alpha-ketoglutarate dehydrogenase complex to thiamine deficiency may contribute to regional selective vulnerability. Neurochem Int 2007; 50:921-31. [PMID: 17482317 PMCID: PMC2753422 DOI: 10.1016/j.neuint.2007.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/15/2007] [Accepted: 03/26/2007] [Indexed: 11/22/2022]
Abstract
Thiamine-dependent enzymes are diminished in multiple neurodegenerative diseases. Thiamine deficiency (TD) reduces the activity of thiamine dependent-enzymes [e.g., the alpha-ketoglutarate dehydrogenase complex (KGDHC)], induces regional selective neurodegeneration and serves as a model of a mild impairment of oxidative metabolism. The current experiments tested whether changes in KGDHC protein subunits (E1k, E2k and E3) or activity or message levels underlie the selective loss of neurons in particular brain regions. Thus, TD-induced changes in these variables in the brain region most vulnerable to TD [the sub-medial thalamic nucleus (SmTN)] were compared to those in a region that is relatively resistant to TD (cortex) at stages of TD when the neuron loss in SmTN is not present, minimal or severe. Impaired motor performance on rotarod was apparent by 8 days of TD (-32%) and was severe by 10 days of TD (-97%). At TD10, the overall KGDHC activity measured by an in situ histochemical staining method declined 52% in SmTN but only 20% in cortex. Reductions in the E2k and E3 mRNA in SmTN occurred as early as TD6 (-28 and -18%, respectively) and were more severe by TD10 (-61 and -66%, respectively). On the other hand, the level of E1k mRNA did not decline in SmTN until TD10 (-48%). In contrast, TD did not alter mRNA levels of the subunits in cortex at late stages. Western blots and immunocytochemistry revealed different aspects of the changes in protein levels. In SmTN, the immunoreactivity of E1k and E3 by Western blotting increased 34 and 40%, respectively, only at TD8. In cortex, the immunoreactivity of the three subunits was not altered. Immunocytochemical staining of brain sections from TD10 mice indicated a reduction in the immunoreactivity of all subunits in SmTN, but not in cortex. These findings demonstrate that the response of the KGDHC activity, mRNA and immunoreactivity of E1k, E2k and E3 to TD is region and time dependent. Loss of KGDHC activity in cortex is likely related to post-translational modification rather than a loss of protein, whereas in SmTN transcriptional and post-translational modifications may account for diminished KGDHC activity. Moreover, the earlier detection in TD induced-changes of the transcripts of KGDHC indicates that transcriptional modification of the two subunits (E2k and E3) of KGDHC may be one of the early events in the cascade leading to selective neuronal death.
Collapse
Affiliation(s)
| | | | | | | | | | - G. E. Gibson
- Address correspondence to: Gary E. Gibson, Dept. of Neurology and Neuroscience, Weill Medical College of Cornell University/Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, New York 10605, USA Tel: 914-597-2291; Fax: 914-597-2757
| |
Collapse
|
69
|
|
70
|
Vemuganti R, Kalluri H, Yi JH, Bowen KK, Hazell AS. Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. Eur J Neurosci 2006; 23:1172-88. [PMID: 16553781 DOI: 10.1111/j.1460-9568.2006.04651.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Identification of gene expression changes that promote focal neuronal death and neurological dysfunction can further our understanding of the pathophysiology of these disease states and could lead to new pharmacological and molecular therapies. Impairment of oxidative metabolism is a pathogenetic mechanism underlying neuronal death in many chronic neurodegenerative diseases as well as in Wernicke's encephalopathy (WE), a disorder induced by thiamine deficiency (TD). To identify functional pathways that lead to neuronal damage in this disorder, we have examined gene expression changes in the vulnerable thalamus and inferior colliculus of TD rats using Affymetrix Rat Genome GeneChip analysis in combination with gene ontology and functional categorization assessment utilizing the NetAffx GO Mining Tool. Of the 15 927 transcripts analysed, 125 in thalamus and 141 in inferior colliculus were more abundantly expressed in TD rats compared with control animals. In both regions, the major functional categories of transcripts that were increased in abundance after TD were those associated with inflammation (approximately 33%), stress (approximately 20%), cell death and repair ( approximately 26%), and metabolic perturbation (approximately 19%), together constituting approximately 98% of all transcripts up-regulated. These changes occurred against a background of neuronal cell loss and reactive astro- and microgliosis in both structures. Our results indicate that (i) TD produces changes in gene expression that are consistent with the observed dysfunction and pathology, and (ii) similar alterations in expression occur in thalamus and inferior colliculus, brain regions previously considered to differ in pathology. These findings provide important new insight into processes responsible for lesion development in TD, and possibly WE.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | | | | | | | | |
Collapse
|
71
|
Huang HM, Ou HC, Chen HL, Hou RCW, Jeng KCG. Protective effect of alpha-keto-beta-methyl-n-valeric acid on BV-2 microglia under hypoxia or oxidative stress. Ann N Y Acad Sci 2006; 1042:272-8. [PMID: 15965072 DOI: 10.1196/annals.1338.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alpha-ketoglutarate dehydrogenase complex (KGDHC) is a mitochondrial enzyme in the TCA cycle. Inhibition of KGDHC activity by alpha-keto-beta-methyl-n-valeric acid (KMV) is associated with neuron death. However, the effect of KMV in microglia is unclear. Therefore, we investigated the effect of KMV on BV-2 microglial cells exposed to hypoxia or oxidative stress. The results showed that KMV (1-20 mM) enhanced the cell viability under hypoxia. KMV dose-dependently reduced ROS and LDH releases from hypoxic BV-2 cells. KMV also reduced ROS production and enhanced the cell viability under H2O2 but failed to reduce the SIN-1 and sodium nitroprusside (SNP) toxicity. KMV also reduced caspase-3 and -9 activation under stress. These results suggest that KMV protects BV-2 cells from stress and acts by reducing ROS production through inhibition of KDGHC.
Collapse
Affiliation(s)
- Hsueh-Meei Huang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | | | | | | | | |
Collapse
|
72
|
Roses AD, Saunders AM. Perspective on a pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement 2006; 2:59-70. [DOI: 10.1016/j.jalz.2005.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 11/17/2022]
|
73
|
Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273:433-50. [PMID: 16420469 DOI: 10.1111/j.1742-4658.2005.05103.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Szentagothai Knowledge Center, Budapest, Hungary
| | | |
Collapse
|
74
|
Jeitner TM, Xu H, Gibson GE. Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem 2005; 92:302-10. [PMID: 15663478 DOI: 10.1111/j.1471-4159.2004.02868.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
75
|
Gibson GE, Huang HM. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases. J Bioenerg Biomembr 2005; 36:335-40. [PMID: 15377868 DOI: 10.1023/b:jobb.0000041764.45552.f3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.
Collapse
Affiliation(s)
- Gary E Gibson
- Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Avenue, White Plains, New York 10605, USA
| | | |
Collapse
|
76
|
Shi Q, Chen HL, Xu H, Gibson GE. Reduction in the E2k subunit of the alpha-ketoglutarate dehydrogenase complex has effects independent of complex activity. J Biol Chem 2005; 280:10888-96. [PMID: 15649899 DOI: 10.1074/jbc.m409064200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC) declines in brains of patients with several neurodegenerative diseases. KGDHC consists of multiple copies of E1k, E2k, and E3. E1k and E2k are unique to KGDHC and may have functions independent of the complex. The present study tested the consequences of different levels of diminished E2k mRNA on protein levels of the subunits, KGDHC activity, and physiological responses. Human embryonic kidney cells were stably transfected with an E2k sense or antisense expression vector. Sense control (E2k-mRNA-100) was compared with two clones in which the mRNA was reduced to 67% of control (E2k-mRNA-67) or to 30% of control (E2k-mRNA-30). The levels of the E2k protein in clones paralleled the reduction in mRNA, and E3 proteins were unaltered. Unexpectedly, the clone with the greatest reduction in E2k protein (E2k-mRNA-30) had a 40% increase in E1k protein. The activity of the complex was only 52% of normal in E2k-mRNA-67 clone, but was near normal (90%) in E2k-mRNA-30 clone. Subsequent experiments tested whether the physiological consequences of a reduction in E2k mRNA correlated more closely to E2k protein or to KGDHC activity. Growth rate, increased DCF-detectable reactive oxygen species, and cell death in response to added oxidant were proportional to E2k proteins, but not complex activity. These results were not predicted because subunits unique to KGDHC have never been manipulated in mammalian cells. These results suggest that in addition to its essential role in metabolism, the E2k component of KGDHC may have other novel roles.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | |
Collapse
|
77
|
Abstract
A critical role of mitochondrial dysfunction and oxidative damage has been hypothesized in both aging and neurodegenerative diseases. Much of the evidence has been correlative, but recent evidence has shown that the accumulation of mitochondrial DNA mutations accelerates normal aging, leads to oxidative damage to nuclear DNA, and impairs gene transcription. Furthermore, overexpression of the antioxidant enzyme catalase in mitochondria increases murine life span. There is strong evidence from genetics and transgenic mouse models that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, hereditary spastic paraplegia, and cerebellar degenerations. Therapeutic approaches targeting mitochondrial dysfunction and oxidative damage in these diseases therefore have great promise.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
78
|
Bubber P, Ke ZJ, Gibson GE. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int 2004; 45:1021-8. [PMID: 15337301 DOI: 10.1016/j.neuint.2004.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/12/2004] [Accepted: 05/18/2004] [Indexed: 11/26/2022]
Abstract
Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvesh Bubber
- Department of Neurology and Neuroscience, Burke Medical Research Institute, Weill Medical College, Cornell University, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | | | |
Collapse
|
79
|
Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol 2004; 30:77-89. [PMID: 15247489 DOI: 10.1385/mn:30:1:077] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 01/02/2004] [Indexed: 11/11/2022]
Abstract
The catecholamine-oxidizing enzyme monoamine oxidase-B (MAO-B) has been hypothesized to be an important determining factor in the etiology of both normal aging and age-related neurological disorders such as Parkinson's disease (PD). Catalysis of substrate by the enzyme produces H2O2 which is a primary originator of oxidative stress which in turn can lead to cellular damage. MAO-B increases with age as does predisposition towards PD which has also been linked to increased oxidative stress. Inhibition of MAO-B, along with supplementation of lost dopamine via L-DOPA, is one of the major antiparkinsonian therapies currently in use. In this review, we address several factors contributing to a possible role for MAO-B in normal brain aging and neurological disease and also discuss the use of MAO-B inhibitors as drug therapy for these conditions.
Collapse
|
80
|
Klivenyi P, Starkov AA, Calingasan NY, Gardian G, Browne SE, Yang L, Bubber P, Gibson GE, Patel MS, Beal MF. Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem 2004; 88:1352-60. [PMID: 15009635 DOI: 10.1046/j.1471-4159.2003.02263.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altered energy metabolism, including reductions in activities of the key mitochondrial enzymes alpha-ketoglutarate dehydrogenase complex (KGDHC) and pyruvate dehydrogenase complex (PDHC), are characteristic of many neurodegenerative disorders including Alzheimer's Disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Dihydrolipoamide dehydrogenase is a critical subunit of KGDHC and PDHC. We tested whether mice that are deficient in dihydrolipoamide dehydrogenase (Dld+/-) show increased vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), malonate and 3-nitropropionic acid (3-NP), which have been proposed for use in models of PD and HD. Administration of MPTP resulted in significantly greater depletion of tyrosine hydroxylase-positive neurons in the substantia nigra of Dld+/- mice than that seen in wild-type littermate controls. Striatal lesion volumes produced by malonate and 3-NP were significantly increased in Dld+/- mice. Studies of isolated brain mitochondria treated with 3-NP showed that both succinate-supported respiration and membrane potential were suppressed to a greater extent in Dld+/- mice. KGDHC activity was also found to be reduced in putamen from patients with HD. These findings provide further evidence that mitochondrial defects may contribute to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Klivenyi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Huang HM, Ou HC, Xu H, Chen HL, Fowler C, Gibson GE. Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. J Neurosci Res 2003; 74:309-17. [PMID: 14515360 DOI: 10.1002/jnr.10756] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.
Collapse
Affiliation(s)
- Hsueh-Meei Huang
- Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Kumar MJ, Nicholls DG, Andersen JK. Oxidative alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson's disease. J Biol Chem 2003; 278:46432-9. [PMID: 12963742 DOI: 10.1074/jbc.m306378200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related increases in brain monoamine oxidase B (MAO-B) and its ability to produce reactive oxygen species as a by-product of catalysis could contribute to neurodegeneration associated with Parkinson's disease. This may be via increased oxidative stress and/or mitochondrial dysfunction either on its own or through its interaction with endogenous or exogenous neurotoxic species. We have created genetically engineered dopaminergic PC12 cell lines with subtly increased levels of MAO-B mimicking those observed during normal aging. In our cells, increased MAO-B activity was found to result in increased H2O2 production. This was found to correlate with a decrease in mitochondrial complex I activity which may involve both direct oxidative damage to the complex itself as well as oxidative effects on the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) which provides substrate for the complex. Both complex I and KGDH activities have been reported to be decreased in the Parkinsonian brain. These in vitro events are reversible by catalase addition. Importantly, MAO-B elevation was found to abolish the spare KGDH threshold capacity, which can normally be significantly inhibited before it affects maximal mitochondrial oxygen consumption rates. Our data suggest that H2O2 production via subtle elevations in MAO-B levels can result in oxidative effects on KGDH that can compromise the ability of dopaminergic neurons to cope with increased energetic stress.
Collapse
Affiliation(s)
- M Jyothi Kumar
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | |
Collapse
|