51
|
Antognoni F, Ovidi E, Taddei AR, Gambellini G, Speranza A. In Vitro Pollen Tube Growth Reveals the Cytotoxic Potential of the Flavonols, Quercetin and Rutin. Altern Lab Anim 2019; 32:79-90. [PMID: 15601236 DOI: 10.1177/026119290403200205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flavonols are phytochemicals widely found in commonly consumed foods. In spite of their beneficial effects on human health, however, cytotoxicity and even suspected genotoxicity have also been reported for the flavonol, quercetin. This points to the need for preventive studies to identify any cytotoxic effects associated with pure flavonol intake. This work was performed with the aim of verifying whether a plant-based in vitro system, the pollen tube, could be used to evaluate the cytotoxic potential of exogenous flavonols. Increasing concentrations of the aglycone, quercetin, and its glycoside, rutin, were assayed with regard to tube growth of kiwifruit pollen, determined by applying the pollen tube growth test protocol. This test, based on the photometric quantification of pollen tube mass production in suspension cultures, has already been applied in the sensitive and reliable toxicological evaluation of a wide range of chemicals. Whereas 60-800 microM rutin promoted kiwifruit pollen tube elongation, 10-50 microM quercetin strongly inhibited growth, and also produced irreversible malformations, such as screw-like tube growth, abnormal vacuolation, alteration of organelle streaming, and nuclear positioning. Thus, the cytotoxic potentials of the two flavonols have been confirmed to differ. Pollen tubes seem to afford a promising test system for a preventive, rapid in vitro biosafety assessment of antioxidant nutritional supplements, without using laboratory animals.
Collapse
Affiliation(s)
- Fabiana Antognoni
- Dipartimento di Biologia, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
52
|
Abstract
Flavonoids are not essential nutrients in that their absence from the diet does not produce deficiency conditions in animals and man. However, many have important similarities to pharmacological agents used in the treatment of disease. Their role as dietary components in disease prevention is less clear. Many potentially anti-carcinogenic and anti-atherogenic effects observed in cell cultures will not be of nutritional relevance unless flavonoids gain access to appropriate cellular sites. The bioavailability of flavonoids will depend on numerous factors including molecular structure, the amount consumed, the food matrix, degree of bioconversion in the gut and tissues, the nutrient status of the host and genetic factors. Moreover, extensive and rapid intestinal and hepatic metabolism of flavonoids suggests that the body may treat them as xenobiotic and potentially toxic compounds requiring rapid elimination. Consequently, in addition to potential health benefits, possible adverse effects of flavonoids in the diet also need to be considered when assessing their roles in the prevention of degenerative diseases.
Collapse
Affiliation(s)
- Janet Kyle
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| | - Garry Duthie
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| |
Collapse
|
53
|
Chemical characterization, antihyperlipidaemic and antihyperglycemic effects of Brazilian bitter quina species in mice consuming a high-refined carbohydrate diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
54
|
Sansone F, Mencherini T, Picerno P, Lauro MR, Cerrato M, Aquino RP. Development of Health Products from Natural Sources. Curr Med Chem 2019; 26:4606-4630. [PMID: 30259806 DOI: 10.2174/0929867325666180926152139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.
Collapse
Affiliation(s)
| | | | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | - Michele Cerrato
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
55
|
Alshehri SM, Shakeel F, Ibrahim MA, Elzayat EM, Altamimi M, Mohsin K, Almeanazel OT, Alkholief M, Alshetaili A, Alsulays B, Alanazi FK, Alsarra IA. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm J 2018; 27:264-273. [PMID: 30766439 PMCID: PMC6362180 DOI: 10.1016/j.jsps.2018.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/13/2018] [Indexed: 10/31/2022] Open
Abstract
Apigenin (APG) is a poorly soluble bioactive compound/nutraceutical which shows poor bioavailability upon oral administration. Hence, the objective of this research work was to develop APG solid dispersions (SDs) using different techniques with the expectation to obtain improvement in its in vitro dissolution rate and in vivo bioavailability upon oral administration. Different SDs of APG were prepared by microwave, melted and kneaded technology using pluronic-F127 (PL) as a carrier. Prepared SDs were characterized using "thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) spectrometer, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM)". After characterization, prepared SDs of APG were studied for in vitro drug release/dissolution profile and in vivo pharmacokinetic studies. The results of TGA, DSC, FTIR, PXRD and SEM indicated successful formation of APG SDs. In vitro dissolution experiments suggested significant release of APG from all SDs (67.39-84.13%) in comparison with control (32.74%). Optimized SD of APG from each technology was subjected to in vivo pharmacokinetic study in rats. The results indicated significant improvement in oral absorption of APG from SD prepared using microwave and melted technology in comparison with pure drug and commercial capsule. The enhancement in oral bioavailability of APG from microwave SD (319.19%) was 3.19 fold as compared with marketed capsule (100.00%). Significant enhancement in the dissolution rate and oral absorption of APG from SD suggested that developed SD systems can be successfully used for oral drug delivery system of APG.
Collapse
Affiliation(s)
- Sultan M Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ehab M Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Osaid T Almeanazel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
56
|
Dietary supplementation with orange pulp (Citrus sinensis) improves egg yolk oxidative stability in laying hens. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
57
|
Zema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM. Valorisation of citrus processing waste: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:252-273. [PMID: 30455006 DOI: 10.1016/j.wasman.2018.09.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/28/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
This study analyses the quantitative and qualitative characteristics of citrus peel waste and discusses the systems for its valorisation. Citrus peel waste (CPW) is the main residue of the citrus processing industries and is characterised by a seasonal production (which often requires biomass storage) as well as high water content and concentration of essential oils. The disposal of CPW has considerable constraints due to both economic and environmental factors. Currently this residue is mainly used as food for animals, thanks to its nutritional capacity. If enough agricultural land is available close to the processing industries, the use of CPW as organic soil conditioner or as substrate for compost production is also possible, thus improving the organic matter content of the soil. Recently, the possibility of its valorisation for biomethane or bioethanol production has been evaluated by several studies, but currently more research is needed to overcome the toxic effects of the essential oils on the microbial community. Considering the high added value of the compounds that can be recovered from CPW, it has promising potential uses: in the food industry (for production of pectin, dietary fibres, etc.), and in the cosmetic and pharmaceutic industries (extraction of flavonoids, flavouring agents and citric acid). However, in many cases, these uses are still not economically sustainable.
Collapse
Affiliation(s)
- D A Zema
- Department AGRARIA, Università Mediterranea di Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - P S Calabrò
- Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy.
| | - A Folino
- Department AGRARIA, Università Mediterranea di Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - V Tamburino
- Department AGRARIA, Università Mediterranea di Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - G Zappia
- Department AGRARIA, Università Mediterranea di Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - S M Zimbone
- Department AGRARIA, Università Mediterranea di Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| |
Collapse
|
58
|
|
59
|
Li ZP, Liu HB, Zhang QW, Li LF, Bao WR, Ma DL, Leung CH, Bian ZX, Lu AP, Han QB. Interference of Quercetin on Astragalus Polysaccharide-Induced Macrophage Activation. Molecules 2018; 23:E1563. [PMID: 29958399 PMCID: PMC6100010 DOI: 10.3390/molecules23071563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023] Open
Abstract
Polysaccharides, which exert immunoregulatory effects, are becoming more and more popular as food supplements; however, certain components of ordinary foods could be reducing the polysaccharides beneficial effects. Quercetin, a flavonoid found in common fruits and vegetables, is one such component. This study investigated the effects of quercetin on Astragalus polysaccharide RAP induced-macrophage activation. The results show quercetin decreases the NO production and iNOS gene expression in RAW264.7 cells, and it inhibits the production of cytokines in RAW264.7 cells and peritoneal macrophages. Western blot analysis results suggest that quercetin inhibits the phosphorylation of Akt/mTORC1, MAPKs, and TBK1, but has no effect on NF-κB in RAP-induced RAW264.7 cells. Taken together, the results show that quercetin partly inhibits macrophage activation by the Astragalus polysaccharide RAP. This study demonstrates that quercetin-containing foods may interfere with the immune-enhancing effects of Astragalus polysaccharide RAP to a certain extent.
Collapse
Affiliation(s)
- Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hong-Bing Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
60
|
Yin S, Zhang X, Lai F, Liang T, Wen J, Lin W, Qiu J, Liu S, Li L. Trilobatin as an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope. FEBS Lett 2018; 592:2361-2377. [PMID: 29802645 DOI: 10.1002/1873-3468.13113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 transmembrane protein gp41 plays a crucial role by forming a stable six-helix bundle during HIV entry. Due to highly conserved sequence of gp41, the development of an effective and safe small-molecule compound targeting gp41 is a good choice. Currently, natural polyanionic ingredients with anti-HIV activities have aroused concern. Here, we first discovered that a glycosylated dihydrochalcone, trilobatin, exhibited broad anti-HIV-1 activity and low cytotoxicity in vitro. Site-directed mutagenesis analysis suggested that the hydrophobic residue (I564) located in gp41 pocket-forming site is pivotal for anti-HIV activity of trilobatin. Furthermore, trilobatin displayed synergistic anti-HIV activities combined with other antiretroviral agents. Trilobatin has a good potential to be developed as a small-molecule HIV-1 entry inhibitor for clinical combination therapy.
Collapse
Affiliation(s)
- Shuwen Yin
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fangyuan Lai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayong Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wanying Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayin Qiu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
61
|
Mallepu R, Potlapally L, Gollapalli VL. Photo-oxidation of some flavonoids with photochemically generated t-BuO •radicals in a t-BuOH water system using a kinetic approach. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Radhika Mallepu
- Department of Chemistry, University College of Science; Osmania University; Hyderabad India
| | - Laxmi Potlapally
- Department of Pharmacy, University College of Technology; Osmania University; Hyderabad India
| | | |
Collapse
|
62
|
Uylaş MU, Şahin A, Şahintürk V, Alataş İÖ. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: An experimental research. Int J Surg 2018; 53:117-121. [PMID: 29578092 DOI: 10.1016/j.ijsu.2018.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quercetin found in fruits and vegetables has an antioxidative effect. We aimed to investigate the protective effects of quercetin according to different doses on hepatic and ischemia-reperfusion (I/R) injury. METHODS Fifty mature male Sprague-Dawley rats were randomly divided into five groups (n = 10 for each). All the animal groups underwent laparotomy. Group 1 rats served as a sham-operated group. Groups 2-5 underwent 1 h hepatic ischemia and were followed by 2 h reperfusion. Group 3-5 animals received an additional intraperitoneal dose of 25, 50 or 100 mg/kg quercetin respectively before I/R operation. Blood samples were collected for determining serum aspartate transaminase (AST), alanine transaminase (ALT) and malondialdehyde (MDA) levels. Also, liver tissue samples were taken for measuring of liver MDA concentration and for histopathology assessment. RESULTS The highest levels of biochemical parameters were observed in group 2. In quercetin-treated groups, serum AST, ALT, MDA levels, and tissue MDA concentration were decreased as inversely with increasing quercetin dose. Microscopic evaluation revealed that most conspicuous histological improvement was observed in 50 mg/kg quercetin co-treated rats. 25 and 100 mg/kg quercetin co-treatment could not protect completely against hepatic I/R injury. CONCLUSION Quercetin can be effective in preventing of hepatic I/R injury when the correct dose was used.
Collapse
Affiliation(s)
- Mustafa Ufuk Uylaş
- Department of General Surgery, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey.
| | - Adnan Şahin
- Department of General Surgery, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Şahintürk
- Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - İbrahim Özkan Alataş
- Department of Medical Biochemistry, Eskisehir Osmangazi University, Eskisehir, Turkey.
| |
Collapse
|
63
|
Sandoval-Yañez C, Mascayano C, Martínez-Araya JI. A theoretical assessment of antioxidant capacity of flavonoids by means of local hyper–softness. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
64
|
Krüger S, Morlock GE. Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses. J Chromatogr A 2018; 1538:75-85. [DOI: 10.1016/j.chroma.2018.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 02/03/2023]
|
65
|
Dogan Z, Cetin A, Elibol E, Vardi N, Turkoz Y. Effects of ciprofloxacin and quercetin on fetal brain development: a biochemical and histopathological study. J Matern Fetal Neonatal Med 2018; 32:1783-1791. [PMID: 29241384 DOI: 10.1080/14767058.2017.1418222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Teratogens cause birth defects and malformations while human development is being completed. In pregnancy, urinary tract infection (UTI) is a common health problem caused by bacteria. The fluoroquinolones such as ciprofloxacin, levofloxacin, moxifloxacin, and gemifloxacin can treat various types of bacterial infections successfully. The aim of this study is to determine whether the use of ciprofloxacin during pregnancy causes oxidative stress on brain tissues of the fetus, and whether quercetin contributes to prevent this damage if stress has already occurred. MATERIALS AND METHODS In our study, 22 young female Wistar albino rats weighing 250 g were used. Rats were mated overnight in separate plastic cages. Female rats were regarded as pregnant when a vaginal plug was observed, and these were divided into four groups of control, ciprofloxacin, quercetin, and cipro + quercetin. Two daily i.p. 20 mg/kg doses of ciprofloxacin were administered to ciprofloxacin group between 7 and 17 d of pregnancy. Throughout the study, daily (20 d) 20 mg/kg quercetin was dissolved in corn oil and administered to the quercetin group by oral gavage. Rats were fed ad libitum throughout the study. Fetuses were taken by C-section on the 20th day of pregnancy. Thereafter, the brain tissues were subjected to histological assessments and biochemical analyzes. RESULTS The experimental groups were compared with the control group; ciprofloxacin affected fetal development, especially caused damage to neurons in brain tissue and cause hemorrhagic defects. And also, it was determined that many parameters were affected such as antioxidant parameters, enzyme levels and levels of malondialdehyde (MDA) (a marker of lipid peroxidation). Quercetin is a member of flavonoid with strong antioxidant properties, and our results indicate that the use of ciprofloxacin in pregnancy can result damage to fetal brain tissue. CONCLUSIONS Unlike these results when some parameters are evaluated it is understood that this harmful effects suppressed by quercetin.
Collapse
Affiliation(s)
- Zumrut Dogan
- a Department of Anatomy, Faculty of Medicine , Adiyaman University , Adiyaman , Turkey
| | - Aymelek Cetin
- b Department of Anatomy, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Ebru Elibol
- c Department of Histology and Embryology, Faculty of Medicine , Adiyaman University , Adiyaman , Turkey
| | - Nigar Vardi
- d Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Yusuf Turkoz
- e Department of Biochemistry, Faculty of Medicine , Inonu University , Malatya , Turkey
| |
Collapse
|
66
|
Sharma K, Mahato N, Lee YR. Extraction, characterization and biological activity of citrus flavonoids. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0027] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Citrus is one of the largest and most popular fruit crops commercially grown across the globe. It is not only important in terms of economy but is also popular for its nutritional benefits to human and farm animals. Citrus is available in several varieties, all with attractive colors. It is consumed either fresh or in processed form. After processing, approximately 50% of the fruit remains unconsumed and discarded as waste. The latter includes fruit pith residue, peels and seeds. Direct disposal of these wastes to the environment causes serious problems as these contain bioactive compounds. Release of these bioactive compounds to the open landfills cause bad odor and spread of diseases, and disposal to water bodies or seepage to the underground water table deteriorates water quality and harms aquatic life. In this regard, a number of research are being focused on the development of better reuse methods to obtain value-added phytochemicals as well as for safe disposal. The important phytochemicals obtained from citrus include essential oils, flavonoids, citric acid, pectin, etc., which have now become popular topics in industrial research, food and synthetic chemistry. The present article reviews recent advances in exploring the effects of flavonoids obtained from citrus wastes, the extraction procedure and their usage in view of various health benefits.
Collapse
Affiliation(s)
- Kavita Sharma
- School of Chemical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Neelima Mahato
- School of Chemical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
67
|
Apea-Bah FB, Serem JC, Bester MJ, Duodu KG. Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake. Food Chem 2017; 237:247-256. [PMID: 28763993 DOI: 10.1016/j.foodchem.2017.05.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Franklin B Apea-Bah
- Department of Food Science, Institute for Food, Nutrition and Well-being, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa; Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana.
| | - June C Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, Pretoria, South Africa.
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, Pretoria, South Africa.
| | - Kwaku G Duodu
- Department of Food Science, Institute for Food, Nutrition and Well-being, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
68
|
Xu JQ, Fan N, Yu BY, Wang QQ, Zhang J. Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chin J Nat Med 2017; 15:615-624. [PMID: 28939024 DOI: 10.1016/s1875-5364(17)30089-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/08/2023]
Abstract
With an attempt to synthesize high-value isoquercitrin (quercetin-3-O-β-D-glucopyranoside), we carried out the biotransformation of quercetin (1) by Gliocladium deliquescens NRRL 1086. Along with the aimed product quercetin 3-O-β-D-glycoside (2), three additional metabolites, 2-protocatechuoyl-phlorogucinol carboxylic acid (3), 2,4,6-trihydroxybenzoic acid (4), and protocatechuic acid (5), were also isolated. The time-course experiments revealed that there were two metabolic routes, regio-selectivity glycosylation and quercetin 2,3-dioxygenation, co-existing in the culture. Both glycosylation and oxidative cleavage rapidly took place after quercetin feeding; about 98% quercetin were consumed within the initial 8 h and the oxdized product (2-protocatechuoyl-phlorogucinol carboxylic acid) was hydrolyzed into two phenolic compounds (2,4,6-trihydroxybenzoic acid and protocatechuic acid). We also investigated the impact of glucose content and metal ions on the two reactions and found that high concentrations of glucose significantly inhibited the oxidative cleavage and improved the yield of isoquercitrin and that Ca2+, Fe2+, Mn2+, Mg2+, and Zn2+ inhibited glycosylation. To test the promiscuity of this culture, we selected other four flavonols as substrates; the results demonstrated its high regio-selectivity glycosylation ability towards flavonols at C-3 hydroxyl. In conclusion, our findings indicated that the versatile microbe of G. deliquescens NRRL 1086 maitained abundant enzymes, deserving further research.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Fan
- Institute of Biotechnology for TCM Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Qian-Qian Wang
- Institute of Biotechnology for TCM Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Zhang
- Institute of Biotechnology for TCM Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
69
|
Flavonoids from persimmon (Diospyros kaki L.) leaves inhibit proliferation and induce apoptosis in PC-3 cells by activation of oxidative stress and mitochondrial apoptosis. Chem Biol Interact 2017; 275:210-217. [PMID: 28811126 DOI: 10.1016/j.cbi.2017.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
Abstract
Persimmon (Diospyros kaki L.) leaves are extensively used in Chinese medicine and are also excellent source of dietary polyphenols. Here we investigated the antiproliferative and pro-apoptotic activity of the total flavonoids extracted from persimmon leaves (FPL) in PC-3 cells. After treating cells with different concentration of FPL, Quercetin or Rutin for 24 h, MTT and flow cytometry were used to measure the cytotoxicity, apoptotic rate and cell cycle arrest. Compared with Quercetin and Rutin, FPL showed higher cytotoxicity at 12.5 and 25 μg/ml concentrations and also presented lower IC50 in PC-3 cells. In addition, FPL induced PC-3 cells apoptosis by activation of oxidative stress, as detected by ROS, MDA, nitrite and iNOS activity, and increased mitochondrial membrane permeability. Morphological changes, inactivation of Bcl-2, upregulation of BAX, release of cytochrome c and activation of downstream apoptotic signaling in FPL-treated PC-3 cells also suggested apoptotic death. Meanwhile, FPL significantly inhibited migration of PC-3 cells. Therefore, FPL inhibited proliferation, migration and induced apoptosis of PC-3 cells by activation of oxidative stress and mitochondrial-related apoptosis.
Collapse
|
70
|
Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807:91-101. [DOI: 10.1016/j.ejphar.2017.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
|
71
|
Britto SM, Shanthakumari D, Agilan B, Radhiga T, Kanimozhi G, Prasad NR. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts. Mutat Res 2017; 821:28-35. [PMID: 28735741 DOI: 10.1016/j.mrgentox.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022]
Abstract
Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm2); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages.
Collapse
Affiliation(s)
- S Mary Britto
- Department of Biochemistry, Idhaya College of Arts and Science for Women, Pakkamudayanpet, Puducherry 605 008, India; Department of Biochemistry, Research and Development, Bharathiyar University, Coimbatore- 641046, Tamil Nadu, India
| | - D Shanthakumari
- Department of Biochemistry, Indira Gandhi Jayanthi College of Arts and Science for Women, Kilgudalore, Tindivananm 604307, India.
| | - B Agilan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - T Radhiga
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - G Kanimozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| |
Collapse
|
72
|
Hughes SD, Ketheesan N, Haleagrahara N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr 2017; 57:3601-3613. [DOI: 10.1080/10408398.2016.1246413] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel D. Hughes
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
| | - Natkunam Ketheesan
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Australia
| | - Nagaraja Haleagrahara
- Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Australia
| |
Collapse
|
73
|
Santoro D, Ahrens K, Vesny R, Navarro C, Gatto H, Marsella R. Evaluation of the in vitro effect of Boldo and Meadowsweet plant extracts on the expression of antimicrobial peptides and inflammatory markers in canine keratinocytes. Res Vet Sci 2017; 115:255-262. [PMID: 28549300 DOI: 10.1016/j.rvsc.2017.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 01/09/2023]
Abstract
Dogs with allergies are prone to skin infections and treatments/preventatives to boost innate immune-defenses are beneficial. The aim of this study was to evaluate the effects of Boldo and Meadowsweet extracts on the expression of β-defensins (cBD), cathelicidin (cCath), and pro-inflammatory cytokines in canine keratinocyte. This study had two phases. Phase I evaluated mRNA expression of cBD103 and cCath, and secretion of cCath, IL-8 and TNF-α by keratinocytes harvested from healthy (n=5) and atopic (n=5) age-matched beagles exposed to Boldo (2% to 0.2%) and Meadowsweet (1% to 0.2%) extracts. Phase II focused on atopic keratinocytes (n=14) exposed to 0.2% Boldo, 0.2% Meadowsweet, and a mixture of 0.1% of both extracts. Phase I: cBD103 mRNA (all concentrations) and TNF-α secretion (2% Boldo) were increased in atopic compared with healthy keratinocytes. In atopic keratinocytes, cBD103 was increased after exposure to 1.5% and 0.2% Boldo. In healthy keratinocytes, 1% and 0.2% Meadowsweet, and 2% Boldo increased and decreased IL-8 secretion, respectively. In atopic keratinocytes, IL-8 increased after exposure to 1% and 0.4% Meadowsweet extract. Phase II: cBD103 mRNA increased after exposure to 0.2% Meadowsweet and to 0.1% mixture. cCath was increased after 0.2% Boldo, but decreased after 0.2% Meadowsweet or the 0.1% mixture. TNF-α secretion was decreased after 0.2% Boldo. It is concluded that low concentrations of both extracts and their combination may have some effects on cCath and cBD103 without stimulating an inflammatory response. However, more studies are needed to clarify the effects of these extracts on the local immunity.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Ryan Vesny
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | | | - Hugues Gatto
- Unlicensed Products Development Unit, Virbac, Carros, France
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
74
|
Shakeel F, Alshehri S, Ibrahim MA, Elzayat EM, Altamimi MA, Mohsin K, Alanazi FK, Alsarra IA. Solubility and thermodynamic parameters of apigenin in different neat solvents at different temperatures. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
75
|
Lee JA, Ha SK, Kim YC, Choi I. Effects of friedelin on the intestinal permeability and bioavailability of apigenin. Pharmacol Rep 2017; 69:1044-1048. [PMID: 28939344 DOI: 10.1016/j.pharep.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although apigenin possesses diverse pharmacological activities, its utilization as a bioactive substance is limited by poor oral bioavailability. The aim of this study was to improve the bioavailability of apigenin by co-administration of friedelin. METHODS To achieve this, the intestinal permeability of apigenin in the absence or presence of friedelin was investigated in both Caco-2 cells and single-pass rat intestinal perfusion models. RESULTS The apparent permeability coefficients (Papp) of apigenin in the presence of friedelin were substantially increased by 1.63- and 1.60-fold in Caco-2 cells and single-pass rat intestinal perfusion models, respectively. Such increases in the Papp indicated that friedelin could significantly enhance the absorption of apigenin into the body. The increased bioavailability of apigenin in rats following the oral administration of apigenin 50mg/kg body weight with friedelin 50mg/kg body weight was further confirmed by increases in the peak concentration of apigenin (Cmax), elimination half-life (T1/2) and area under the plasma concentration-time curve (AUC). CONCLUSIONS Friedelin suppressed ATPase activity of P-glycoprotein (P-gp) indicated that the improved bioavailability of apigenin may be ascribed to P-gp inhibition by the co-administered friedelin.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Sang Keun Ha
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Young-Chan Kim
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Inwook Choi
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea.
| |
Collapse
|
76
|
Biosynthesis of Oligomeric Anthocyanins from Grape Skin Extracts. Molecules 2017; 22:molecules22030497. [PMID: 28335581 PMCID: PMC6155250 DOI: 10.3390/molecules22030497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/30/2022] Open
Abstract
We synthesized oligomeric anthocyanins from grape skin-derived monomeric anthocyanins such as anthocyanidin and proanthocyanidin by a fermentation technique using Aspergillus niger, crude enzymes and glucosidase. The biosyntheses of the oligomeric anthocyanins carried out by the conventional method using Aspergillus niger and crude enzymes were confirmed by ESI-MS. The molecular weight of the synthesized anthocyanin oligomers was determined using MALDI-MS. The yield of anthocyanin oligomers using crude enzymes was higher than that of the synthesis using Aspergillus fermentation. Several studies have been demonstrated that oligomeric anthocyanins have higher antioxidant activity than monomeric anthocyanins. Fermentation-based synthesis of oligomeric anthocyanins is an alternative way of producing useful anthocyanins that could support the food industry.
Collapse
|
77
|
Protective impact of resveratrol in experimental rat model of hyperoxaluria. Int Urol Nephrol 2017; 49:769-775. [PMID: 28185107 DOI: 10.1007/s11255-017-1534-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Resveratrol (RES) is a polyphenol with antioxidant, anti-inflammatory, and many other physiological effects on tissues. In the present study, the effect of resveratrol in hyperoxaluria driven nephrolithiasis/nephrocalcinosis is investigated. METHODS Wistar-Albino rats of 250-300 g (male, n = 24) were included in the present study. The rats were randomized into three groups: Group 1 consisted of the controls (n = 8), Group 2 of hyperoxaluria (1% ethylene glycol (EG), n = 8), and Group 3 of the treatment (1% EG + 10 mg/kg of RES, n = 8) group. At the beginning and fifth week of the study, two rats from each group were placed in metabolic cages for 24 h and their urine was collected. At the end of the study, the rats were killed and their blood was collected from the vena cava inferior. The right kidneys of the rats were used for biochemical and the left ones for immunohistochemical analyzes. Malondialdehyde (MDA), catalase, urea, calcium, oxalate, and creatinine clearance were studied in the blood, urine, and kidney tissues. Moreover, routine histological evaluation, and p38-MAPK and NFkB immunohistochemical analyses were conducted. RESULTS In the hyperoxaluria group, urinary oxalate levels were higher than the control group; yet, lower in the treatment group compared to hyperoxaluria group (p < 0.05). Serum MDA levels in the hyperoxaluria group were higher than the control group; but in the treatment group it is lower than the hyperoxaluria group (p < 0.05). P38 MAPK activity was higher in the hyperoxaluria group compared to the control (p < 0.05). However, in terms of p38 MAPK activity, there were no statistically significant difference between hyperoxaluria and the treatment group (p < 0.069). Whereas NFkB activity in the hyperoxaluria group is higher than the control (p < 0.001), no statistically significant difference was observed with the treatment group. CONCLUSIONS In the present study, resveratrol was seen to prevent hyperoxaluria. With preventing oxidative stress factors and Randall plaque formation caused by free oxygen radicals, resveratrol can be an alternative treatment option that can increase the success rate in preventing stone recurrence in the future.
Collapse
|
78
|
Poór M, Boda G, Needs PW, Kroon PA, Lemli B, Bencsik T. Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme. Biomed Pharmacother 2017; 88:574-581. [PMID: 28135601 DOI: 10.1016/j.biopha.2017.01.092] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 11/30/2022] Open
Abstract
Flavonoids are ubiquitous molecules in nature with manifold pharmacological effects. Flavonoids interact with several proteins, and thus potentially interfere with the pharmacokinetics of various drugs. Though much is known about the protein binding characteristics of flavonoid aglycones, the behaviour of their metabolites, which are extensively formed in the human body has received little attention. In this study, the interactions of the flavonoid aglycone quercetin and its main metabolites with the albumin binding of the oral anticoagulant warfarin were investigated by fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory effects of these flavonoids on CYP2C9 enzyme were tested because the metabolic elimination of warfarin is catalysed principally by this enzyme. Herein, we demonstrate that each tested flavonoid metabolite can bind to human serum albumin (HSA) with high affinity, some with similar or even higher affinity than quercetin itself. Quercetin metabolites are able to strongly displace warfarin from HSA suggesting that high quercetin doses can strongly interfere with warfarin therapy. On the other hand, tested flavonoids showed no or weaker inhibition of CYP2C9 compared to warfarin, making it very unlikely that quercetin or its metabolites can significantly inhibit the CYP2C9-mediated inactivation of warfarin.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, Pécs, H-7624, Hungary.
| | - Gabriella Boda
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, Pécs, H-7624, Hungary
| | - Paul W Needs
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Paul A Kroon
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Beáta Lemli
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs, H-7624, Hungary; János Szentágothai Research Center, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Tímea Bencsik
- Institute of Pharmacognosy, University of Pécs, Faculty of Pharmacy, Rókus utca 2, Pécs, H-7624, Hungary
| |
Collapse
|
79
|
Mijowska K, Ochmian I, Oszmiański J. Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method. Molecules 2016; 21:molecules21121688. [PMID: 27973426 PMCID: PMC6274226 DOI: 10.3390/molecules21121688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022] Open
Abstract
Leaf removal is known to enhance light exposure of clusters and therefore may affect grape composition. Owing to the risk of decreasing grape quality or sunburn as a consequence of improper sun exposure, it is crucial to determine the optimum leaf removal techniques adequate for the particular climate conditions of a vineyard area. Defoliation experiments on vine cv. Regent were conducted in two consecutive years (2014 and 2015). The effect of leaf removal treatment on the qualitative and quantitative composition of the polyphenol compounds in the grapes, with reference to the basic weather conditions of the vineyard area, located in Szczecin in the North-Western part of Poland, was assessed. Defoliation was performed manually in the cluster zone at three phenological plant stages: pre-flowering, berry-set and véraison. Leaf removal, especially early defoliation (pre-flowering), enhanced total polyphenol content, including the amount of anthocyanins, flavonols and flavan-3-ols and furthermore, it increased the amount of soluble solids, decreasing the titratable acidity in grapes. On the other hand, the treatments had a reducing impact on the phenolic acids in berries. Defoliation at earlier stages of cluster development appears to be an efficient strategy for improving berry quality in cool climate areas, however, additionally further weather data control is required to determine the effects on berry components.
Collapse
Affiliation(s)
- Kamila Mijowska
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Jan Oszmiański
- Department of Fruit and Vegetable Processing, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630 Wrocław, Poland.
| |
Collapse
|
80
|
Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci 2016; 108:36-49. [PMID: 27939619 DOI: 10.1016/j.ejps.2016.12.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
Abstract
The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility.
Collapse
Affiliation(s)
- Darshan R Telange
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - Arun T Patil
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - Anil M Pethe
- SPP School of Pharmacy & Technology Management, Pharmaceutics Division, SVKM's NMIMS University, Mumbai, Maharashtra, India
| | - Harshal Fegade
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - Sridhar Anand
- St. John Fisher College, Wegmans School of Pharmacy, Rochester, NY, USA
| | - Vivek S Dave
- St. John Fisher College, Wegmans School of Pharmacy, Rochester, NY, USA.
| |
Collapse
|
81
|
Liu Y, Qian C, Ding S, Shang X, Yang W, Fang S. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices. BOTANICAL STUDIES 2016; 57:28. [PMID: 28597438 PMCID: PMC5432901 DOI: 10.1186/s40529-016-0145-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/11/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. RESULTS Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. CONCLUSIONS Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.
Collapse
Affiliation(s)
- Yang Liu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chenyun Qian
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Sihui Ding
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
82
|
Chaudhary PR, Bang H, Jayaprakasha GK, Patil BS. Variation in Key Flavonoid Biosynthetic Enzymes and Phytochemicals in 'Rio Red' Grapefruit (Citrus paradisi Macf.) during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9022-9032. [PMID: 27808514 DOI: 10.1021/acs.jafc.6b02975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the current study, the phytochemical contents and expression of genes involved in flavonoid biosynthesis in Rio Red grapefruit were studied at different developmental and maturity stages for the first time. Grapefruit were harvested in June, August, November, January, and April and analyzed for the levels of carotenoids, vitamin C, limonoids, flavonoids, and furocoumarins by HPLC. In addition, genes encoding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and 1,2-rhamnosyltransferase (2RT) were isolated, and their expression in grapefruit juice vesicles was studied. Fruit maturity had significant influence on the expression of the genes, with PAL, CHS, and CHI having higher expression in immature fruits (June), whereas 2RT expression was higher in mature fruits (November and January). The levels of flavonoids (except naringin and poncirin), vitamin C, and furocoumarins gradually decreased from June to April. Furthermore, limonin levels sharply decreased in January. Lycopene decreased whereas β-carotene gradually increased with fruit maturity. Naringin did not exactly follow the pattern of 2RT or of PAL, CHS, and CHI expression, indicating that the four genes may have complementary effects on the level of naringin. Nevertheless, of the marketable fruit stages, early-season grapefruits harvested in November contained more beneficial phytochemicals as compared to mid- and late-season fruits harvested in January and April, respectively.
Collapse
Affiliation(s)
- Priyanka R Chaudhary
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| | - Haejeen Bang
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| |
Collapse
|
83
|
Dietary Supplementation of Phoenix dactylifera Seeds Enhances Performance, Immune Response, and Antioxidant Status in Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5454963. [PMID: 28127417 PMCID: PMC5239971 DOI: 10.1155/2016/5454963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022]
Abstract
The date palm (Phoenix dactylifera) seeds were utilized in some traditional medical remedies and have been investigated for their possible health benefits. This proposed study wanted to assess the effect of date palm seeds (DPS) dietary supplementation in comparison to mannan-oligosaccharides (Bio-Mos®) and β-glucan over antioxidant and immunity events that have effect on growth and carcass performances of broilers. An aggregate of 180, one-day-old, chicks were raised in the wire-floored cages and allotted into control, Bio-Mos (0.1% Bio-Mos), β-glucan (0.1% β-glucan), DPS2 (2% date crushed seeds), DPS4 (4% date crushed seeds), and DPS6 (6% date crushed seeds) groups. Broilers in DPS2 and DPS4 groups showed significant variations (P < 0.05) in relative growth rate (RGR), feed conversion ratio (FCR), and efficiency of energy utilization in comparison to control group. Moreover, all DPS fed groups showed significant increases (P < 0.05) in serum reduced glutathione (GSH) values. Meanwhile, both serum interferon-gamma (IFN-γ) and interleukin-2 (IL-2) levels were significantly increased (P < 0.05) in DPS2. Consequently, obtained data revealed a substantial enhancement of performance, immunity, and antioxidant status by DPS supplementation in broiler that might be related to the antioxidant and immune-stimulant constituents of P. dactylifera seeds.
Collapse
|
84
|
Itoh N, Iwata C, Toda H. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa. BMC PLANT BIOLOGY 2016; 16:180. [PMID: 27549218 PMCID: PMC4994406 DOI: 10.1186/s12870-016-0870-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flavonoids are secondary metabolites that play significant roles in plant cells. In particular, polymethoxy flavonoids (PMFs), including nobiletin, have been reported to exhibit various health-supporting properties such as anticancer, anti-inflammatory, and anti-pathogenic properties. However, it is difficult to utilize PMFs for medicinal and dietary use because plant cells contain small amounts of these compounds. Biosynthesis of PMFs in plant cells is carried out by the methylation of hydroxyl groups of flavonoids by O-methyltransferases (FOMT), and many kinds of FOMTs with different levels of substrate specificity and regioselectivity are cooperatively involved in this biosynthesis. RESULTS In this study, we isolated five genes encoding FOMT (CdFOMT1, 3, 4, 5, and 6) from Citrus depressa, which is known to accumulate nobiletin in the peels of its fruits. The genes encoded Mg(2+)-independent O-methyltransferases and showed high amino acid sequence similarity (60-95 %) with higher plant flavonoid O-methyltransferases. One of these genes is CdFOMT5, which was successfully expressed as a soluble homodimer enzyme in Escherichia coli. The molecular mass of the recombinant CdFOMT5 subunit was 42.0 kDa including a 6× histidine tag. The enzyme exhibited O-methyltransferase activity for quercetin, naringenin, (-)-epicatechin, and equol using S-adenosyl-L-methionine (SAM) as a methyl donor, and its optimal pH and temperature were pH 7.0 and 45 °C, respectively. The recombinant CdFOMT5 demonstrated methylation activity for the 3-, 5-, 6-, and 7-hydroxyl groups of flavones, and 3,3',5,7-tetra-O-methylated quercetin was synthesized from quercetin as a final product of the whole cell reaction system. Thus, CdFOMT5 is a O-methyltransferase possessing a broad range of substrate specificity and regioselectivity for flavonoids. CONCLUSIONS Five FOMT genes were isolated from C. depressa, and their nucleotide sequences were determined. CdFOMT5 was successfully expressed in E. coli cells, and the enzymatic properties of the recombinant protein were characterized. Recombinant CdFOMT5 indicated O-methyltransferase activity for many flavonoids and a broad regioselectivity for quercetin as a substrate. Whole-cell biocatalysis using CdFOMT5 expressed in E. coli cells was performed using quercetin as a substrate, and 3,3',5,7-tetramethylated quercetin was obtained as the final product.
Collapse
Affiliation(s)
- Nobuya Itoh
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 Japan
| | - Chisa Iwata
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 Japan
| | - Hiroshi Toda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 Japan
| |
Collapse
|
85
|
Preparation, in-vitro release and antioxidant potential of formulation of apigenin with hydroxypropyl-β-cyclodextrin modified microemulsion. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0644-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
86
|
Ahmed A, Saeed F, Arshad MU, Ali SW, Imran A, Afzaal M, Khan AU. Evaluation and Sensorial Assesment of Date Pit-Based Functional Drink. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aftab Ahmed
- Institute of Home & Food Sciences; Government College University; Faisalabad Pakistan
- Institute of Agricultural Sciences; University of Punjab; Lahore Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences; Government College University; Faisalabad Pakistan
| | - Muhammad Umair Arshad
- Institute of Home & Food Sciences; Government College University; Faisalabad Pakistan
| | | | - Ali Imran
- Institute of Home & Food Sciences; Government College University; Faisalabad Pakistan
| | - Muhammad Afzaal
- Institute of Home & Food Sciences; Government College University; Faisalabad Pakistan
| | - Azmat Ullah Khan
- Department of Food Science and Human Nutrition; University of Veterinary and Animal Sciences; Lahore Pakistan
| |
Collapse
|
87
|
Pashai M, Seyed Toutounchi SN, Rameshrad M, Vaez H, Fathiazad F, Garjani A. The Effects of Hesperidin on Ischemia/Reperfusion Induced Arrhythmias and Infarct Size in Isolated Rat Heart. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
88
|
Rashidinejad A, Birch EJ, Everett DW. The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. Int J Food Sci Nutr 2016; 67:624-31. [DOI: 10.1080/09637486.2016.1195797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ali Rashidinejad
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - E. John Birch
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
89
|
Blair LM, Calvert MB, Sperry J. Flavoalkaloids-Isolation, Biological Activity, and Total Synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2016; 77:85-115. [PMID: 28212702 DOI: 10.1016/bs.alkal.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The flavoalkaloids possess unique molecular frameworks that contain both a flavonoid and alkaloid component. Flavoalkaloids result from the convergence of distinct biosynthetic pathways, affording natural products that display a wide range of interesting biological activities that would not be expected for flavonoids or alkaloids alone. This chapter collates all the known flavoalkaloids up until early 2016, detailing their isolation, bioactivity, and successful total syntheses.
Collapse
|
90
|
Alhidary I, Abdelrahman M. Effects of naringin supplementation on productive performance, antioxidant status and immune response in heat-stressed lambs. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
91
|
Chang YH, Seo J, Song E, Choi HJ, Shim E, Lee O, Hwang J. Bioconverted Jeju Hallabong tangor (Citrus kiyomi × ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells. Nutr Res Pract 2016; 10:131-8. [PMID: 27087895 PMCID: PMC4819122 DOI: 10.4162/nrp.2016.10.2.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi × ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells. MATERIALS/METHODS Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or 200 µg/ml of citrus peel extracts for 4 h, followed by stimulation with 1 µg/ml lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin E2 (PGE2) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively. RESULTS HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and PGE2 production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only 200 µg/ml of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and 200 µg/ml of CKP-C notably inhibited mRNA levels of interleukin-1β (IL-1β) and IL-6, whereas 200 µg/ml CKP-C significantly inhibited mRNA levels of TNF-α. CONCLUSIONS This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones of citrus peels and provide more potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by increasing radical scavenging activity and suppressing pro-inflammatory mediators and cytokines.
Collapse
Affiliation(s)
- Yun-Hee Chang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jieun Seo
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Eunju Song
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Hyuk-Joon Choi
- BK Bio Co. Ltd., Sangdaewon-dong, Jungwon-gu, Seongnam, Gyeonggi-do 13229, Korea
| | - Eugene Shim
- Department of Food and Nutrition, Soongeui Women's College, Seoul 04628, Korea
| | - Okhee Lee
- Department of Food Science and Nutrition, Yongin University, Yongin, Gyeonggi-do 17092, Korea
| | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| |
Collapse
|
92
|
Treml J, Šmejkal K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr Rev Food Sci Food Saf 2016; 15:720-738. [PMID: 33401843 DOI: 10.1111/1541-4337.12204] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/24/2023]
Abstract
Oxidative stress is a fundamental principle in the pathophysiology of many diseases. It occurs when the production of reactive oxygen species exceeds the capacity of the cell defense system. The hydroxyl radical is a reactive oxygen species that is commonly formed in vivo and can cause serious damage to biomolecules, such as lipids, proteins, and nucleic acids. It plays a role in inflammation-related diseases, like chronic inflammation, neurodegeneration, and cancer. To overcome excessive oxidative stress and thus to prevent or stop the progression of diseases connected to it, scientists try to combat oxidative stress and to find antioxidant molecules, including those that scavenge hydroxyl radical or diminish its production in inflamed tissues. This article reviews various methods of hydroxyl radical production and scavenging. Further, flavonoids, as natural plant antioxidants and essential component of the human diet, are reviewed as compounds interacting with the production of hydroxyl radicals. The relationship between hydroxyl radical scavenging and the structure of the flavonoids is discussed. The structural elements of the flavonoid molecule most important for hydroxyl radical scavenging are hydroxylation of ring B and a C2-C3 double bond connected with a C-3 hydroxyl group and a C-4 carbonyl group. Hydroxylation of ring A also enhances the activity, as does the presence of gallate and galactouronate moieties as substituents on the flavonoid skeleton.
Collapse
Affiliation(s)
- Jakub Treml
- Faculty of Pharmacy, Dept. of Molecular Biology and Pharmaceutical Biotechnology, Univ. of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Faculty of Pharmacy, Dept. of Molecular Biology and Pharmaceutical Biotechnology, Univ. of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1, 612 42, Brno, Czech Republic
| |
Collapse
|
93
|
Hisanaga A, Mukai R, Sakao K, Terao J, Hou DX. Anti-inflammatory effects and molecular mechanisms of 8-prenyl quercetin. Mol Nutr Food Res 2016; 60:1020-32. [PMID: 26872410 DOI: 10.1002/mnfr.201500871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/29/2022]
Abstract
SCOPE 8-prenyl quercetin (PQ) is a typical prenylflavonoid distributed in plant foods. It shows higher potential bioactivity than its parent quercetin (Q) although the mechanisms are not fully understood. This study aims to clarify the anti-inflammatory effects and molecular mechanisms of PQ in cell and animal models, compared to Q. METHODS AND RESULTS RAW264.7 cells were treated with PQ or Q to investigate the influence on the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and protein kinases by Western blotting. Nitric oxide (NO) and prostaglandin E2 (PGE2 ) were measured by the Griess method and ELISA, respectively. Cytokines were assayed by the multiplex technology. Mouse paw edema was induced by LPS. The results revealed that PQ had stronger inhibition on the production of iNOS, COX-2, NO, PGE2 , and 12 kinds of cytokines, than Q. PQ also showed in vivo anti-inflammatory effect by attenuating mouse paw edema. Molecular data revealed that PQ had no competitive binding to Toll-like receptor 4 with LPS, but directly targeted SEK1-JNK1/2 (where SEK is stress-activated protein kinase and JNK1/2 is Jun-N-terminal kinase 1/2) and MEK1-ERK1/2 (where ERK is extracellular signal regulated kinase). CONCLUSION PQ as a potential inhibitor revealed anti-inflammatory effect in both cell and animal models at least by targeting SEK1-JNK1/2 and MEK1-ERK1/2.
Collapse
Affiliation(s)
- Ayami Hisanaga
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Rie Mukai
- Department of Food Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kozue Sakao
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan.,Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Junji Terao
- Department of Food Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan.,Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
94
|
Ahmed A, Arshad MU, Saeed F, Ahmed RS, Chatha SAS. Nutritional Probing and HPLC Profiling of Roasted Date Pit Powder. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/pjn.2016.229.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
95
|
Costa CRR, Amorim BR, de Magalhães P, De Luca Canto G, Acevedo AC, Guerra ENS. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review. Phytother Res 2016; 30:519-31. [PMID: 26822584 DOI: 10.1002/ptr.5568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/05/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments.
Collapse
Affiliation(s)
| | - Bruna Rabelo Amorim
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Pérola de Magalhães
- Natural Products Laboratory, Health Sciences Faculty, University of Brasilia, Brasília, Brazil
| | - Graziela De Luca Canto
- Brazilian Centre for Evidence-Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil.,School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana Carolina Acevedo
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
96
|
Omura M, Shimada T. Citrus breeding, genetics and genomics in Japan. BREEDING SCIENCE 2016; 66:3-17. [PMID: 27069387 PMCID: PMC4780800 DOI: 10.1270/jsbbs.66.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/09/2015] [Indexed: 05/03/2023]
Abstract
Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering.
Collapse
Affiliation(s)
- Mitsuo Omura
- Faculty of Agriculture, Shizuoka University,
836 Ohya, Suruga, Shizuoka, Shizuoka 422-8529,
Japan
| | - Takehiko Shimada
- Citrus Research Division, NARO Institute of Fruit Tree Science,
485-6 Okitsunakacho, Shimizu, Shizuoka, Shizuoka 424-0292,
Japan
| |
Collapse
|
97
|
|
98
|
Guan Y, Zhong Q. The improved thermal stability of anthocyanins at pH 5.0 by gum arabic. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
99
|
Lim H, Yeo E, Song E, Chang YH, Han BK, Choi HJ, Hwang J. Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells. Nutr Res Pract 2015; 9:599-605. [PMID: 26634048 PMCID: PMC4667200 DOI: 10.4162/nrp.2015.9.6.599] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ) as well as the mRNA levels of CEBPα, PPARγ, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.
Collapse
Affiliation(s)
- Heejin Lim
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Eunju Yeo
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Eunju Song
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Yun-Hee Chang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | | | | | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| |
Collapse
|
100
|
Sharifi M, Bashtani M, Naserian A, Farhangfar H. The effect of feeding low quality date palm (Phoenix dactylifera L.) on the performance, antioxidant status and ruminal fermentation of mid-lactating Saanen dairy goats. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|