51
|
Gu J, Gribskov M, Bourne PE. Wiggle-predicting functionally flexible regions from primary sequence. PLoS Comput Biol 2006; 2:e90. [PMID: 16839194 PMCID: PMC1500818 DOI: 10.1371/journal.pcbi.0020090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 06/02/2006] [Indexed: 11/18/2022] Open
Abstract
The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity.
Collapse
Affiliation(s)
- Jenny Gu
- Department of Pharmacology and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
52
|
Lee M, Chan CW, Mitchell Guss J, Christopherson RI, Maher MJ. Dihydroorotase from Escherichia coli: Loop Movement and Cooperativity between Subunits. J Mol Biol 2005; 348:523-33. [PMID: 15826651 DOI: 10.1016/j.jmb.2005.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 11/29/2022]
Abstract
Escherichia coli dihydroorotase has been crystallized in the presence of the product, L-dihydroorotate (L-DHO), and the structure refined at 1.9A resolution. The structure confirms that previously reported (PDB entry 1J79), crystallized in the presence of the substrate N-carbamyl-D,L-aspartate (D, L-CA-asp), which had a dimer in the asymmetric unit, with one subunit having the substrate, L-CA-asp bound at the active site and the other having L-DHO. Importantly, no explanation for the unusual structure was given. Our results now show that a loop comprised of residues 105-115 has different conformations in the two subunits. In the case of the L-CA-asp-bound subunit, this loop reaches in toward the active site and makes hydrogen-bonding contact with the bound substrate molecule. For the L-DHO-bound subunit, the loop faces in the opposite direction and forms part of the surface of the protein. Analysis of the kinetics for conversion of L-DHO to L-CA-asp at low concentrations of L-DHO shows positive cooperativity with a Hill coefficient n=1.57(+/-0.13). Communication between subunits in the dimer may occur via cooperative conformational changes of the side-chains of a tripeptide from each subunit: Arg256-His257-Arg258, near the subunit interface.
Collapse
Affiliation(s)
- Mihwa Lee
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
53
|
Lockman JW, Paul NM, Parquette JR. The role of dynamically correlated conformational equilibria in the folding of macromolecular structures. A model for the design of folded dendrimers. Prog Polym Sci 2005. [DOI: 10.1016/j.progpolymsci.2005.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
Hofacker AL, Parquette JR. Dendrimer Folding in Aqueous Media: An Example of Solvent‐Mediated Chirality Switching. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200460943] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amanda L. Hofacker
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA
| | - Jon R. Parquette
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA
| |
Collapse
|
55
|
Hofacker AL, Parquette JR. Dendrimer Folding in Aqueous Media: An Example of Solvent‐Mediated Chirality Switching. Angew Chem Int Ed Engl 2005; 44:1053-1057. [PMID: 15635711 DOI: 10.1002/anie.200460943] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amanda L Hofacker
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA
| | - Jon R Parquette
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA
| |
Collapse
|
56
|
Abstract
The biomolecular conformational changes often associated with allostery are, by definition, dynamic processes. Recent publications have disclosed the role of pre-existing equilibria of conformational substates in this process. In addition, the role of dynamics as an entropic carrier of free energy of allostery has been investigated. Recent work thus shows that dynamics is pivotal to allostery, and that it constitutes much more than just the move from the 'T'-state to the 'R'-state. Emerging computational studies have described the actual pathways of allosteric change.
Collapse
Affiliation(s)
- Dorothee Kern
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
57
|
Gunasekaran K, Nussinov R. Modulating Functional Loop Movements: The Role of Highly Conserved Residues in the Correlated Loop Motions. Chembiochem 2004; 5:224-30. [PMID: 14760744 DOI: 10.1002/cbic.200300732] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loop flexibility in enzymes plays a vital role in correctly positioning catalytically important residues. This strong relationship between enzyme flexibility and function provides an opportunity to engineer new substrates and inhibitors. It further allows the design of site-directed mutagenesis experiments to explore enzymatic activity through the control of flexibility of a functional loop. Earlier, we described a novel mechanism in which a small loop triggers the motions of a functional loop in three enzymes (beta-1,4-galactosyltransferase, lipase, and enolase) unrelated in sequence, structure, or function. Here, we further address the question of how the interactions between various flexible loops modulate the movements of the functional loop. We examine beta-1,4-galactosyltransferase as a model system in which a Long loop undergoes a large conformational change (moves in space up to 20 A) upon substrate binding in addition to a small loop (Trp loop) that shows a considerably smaller conformational change. Our molecular-dynamics simulations carried out in implicit and explicit solvent show that, in addition to these two loops, two other neighboring loops are also highly flexible. These loops are in contact with either the Long loop or the Trp loop. Analysis of the covariance of the spatial displacement of the residues reveals that coupled motions occur only in one of these two loops. Sequence analysis indicates that loops correlated in their motions also have highly conserved residues involved in the loop-loop interactions. Further, analysis of crystal structures and simulations in explicit water open the possibility that the Trp loop that triggers the movement of the Long loop in the unbound conformation may also play the same role in the substrate-bound conformation through its contact with the conserved and correlated third loop. Our proposition is supported by the observation that four of the five conserved positions in the third loop are at the interface with the Trp loop. Evolution appears to select residues that drive the functional Long loop to a large conformational change. These observations suggest that altering selected loop-loop interactions might modulate the movements of the functional loop.
Collapse
Affiliation(s)
- Kannan Gunasekaran
- Basic Research Program, SAIC-Frederick, Inc Laboratory of Experimental and Computational Biology, NCI-Frederick, building 469, room 151, Frederick, MD 21702, USA
| | | |
Collapse
|
58
|
Abstract
Biosensors are hybrid analytical devices that amplify signals generated from the specific interaction between a receptor and the analyte, through a biochemical mechanism. Biosensors use tissues, whole cells, artificial membranes or cell components like proteins or nucleic acids as receptors, coupled to a physicochemical signal transducer. Allosteric enzymes exhibit a catalytic activity that is modulated by specific effectors, through binding to receptor sites that are distinct from the active site. Several enzymes, catalyzing easily measurable reactions, have been engineered to allosterically respond to specific ligands, being themselves the main constituent of new-generation biosensors. The molecular basis, robustness and application of allosteric enzymatic biosensing are revised here.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
59
|
Gunasekaran K, Ma B, Nussinov R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J Mol Biol 2003; 332:143-59. [PMID: 12946353 DOI: 10.1016/s0022-2836(03)00893-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme function often involves a conformational change. There is a general agreement that loops play a vital role in correctly positioning the catalytically important residues. Nevertheless, predicting the functional loops and most importantly their role in enzyme function remains a difficult task. A major reason for this difficulty is that loops that undergo conformational change are frequently not well conserved in their primary sequence. beta1,4-Galactosyltransferase is one such enzyme. There, the amino acid sequence of a long loop that undergoes a large conformational change upon substrate binding is not well conserved. Our molecular dynamics simulations show that the large conformational change in the long loop is brought about by a second, interacting loop. Interestingly, while the structural change of the second loop is much smaller than that of the long loop, its sequence (particularly glycine residues) is highly conserved. We further examine the generality of the proposition that there are loops that trigger movements but nevertheless show little or no structural changes in crystals. We focus on two other enzymes, enolase and lipase. We chose these enzymes, since they too undergo conformational change upon ligand binding, however, they have different folds and different functions. Through multiple sets of simulations we show that the conformational change of the functional loop(s) is brought about through communication of flexibility by triggering loops that have several glycine residues. We further propose that similar to the conservation of common favorable fold types and structural motifs, evolution has also conserved common "skillful" mechanisms. Mechanisms may be conserved across different folds, sequences and functions, with adaptation to specific enzymatic roles.
Collapse
Affiliation(s)
- K Gunasekaran
- Basic Research Program, SAIC-Frederick Inc., Laboratory of Experimental and Computational Biology, NCI-Frederick, Bldg. 469 Rm. 151, Frederick, MD 21702, USA
| | | | | |
Collapse
|
60
|
Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. J Mol Biol 2002; 315:131-40. [PMID: 11779234 DOI: 10.1006/jmbi.2001.5237] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.
Collapse
Affiliation(s)
- S Zgiby
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | |
Collapse
|
61
|
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen of great medical relevance. One of its major toxins, exoenzyme S (ExoS), is a dual function protein with a C-terminal Ras-ADP-ribosylation domain and an N-terminal GTPase activating protein (GAP) domain specific for Rho-family proteins. We report here the three-dimensional structure of the N-terminal domain of ExoS determined by X-ray crystallography to 2.4 A resolution. Its fold is all helical with a four helix bundle core capped by additional irregular helices. Loops that are known to interact with Rho-family proteins show very large mobility. Considering the importance of ExoS in Pseudomonas pathogenicity, this structure could be of interest for drug targeting.
Collapse
Affiliation(s)
- M Würtele
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
62
|
Tsai AM, Neumann DA, Bell LN. Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys J 2000; 79:2728-32. [PMID: 11053145 PMCID: PMC1301153 DOI: 10.1016/s0006-3495(00)76511-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glycerol has been shown to lower the heat denaturation temperature (T(m)) of dehydrated lysozyme while elevating the T(m) of hydrated lysozyme (. J. Pharm. Sci. 84:707-712). Here, we report an in situ elastic neutron scattering study of the effect of glycerol and hydration on the internal dynamics of lysozyme powder. Anharmonic motions associated with structural relaxation processes were not detected for dehydrated lysozyme in the temperature range of 40 to 450K. Dehydrated lysozyme was found to have the highest T(m) by. Upon the addition of glycerol or water, anharmonicity was recovered above a dynamic transition temperature (T(d)), which may contribute to the reduction of T(m) values for dehydrated lysozyme in the presence of glycerol. The greatest degree of anharmonicity, as well as the lowest T(d), was observed for lysozyme solvated with water. Hydrated lysozyme was also found to have the lowest T(m) by. In the regime above T(d), larger amounts of glycerol lead to a higher rate of change in anharmonic motions as a function of temperature, rendering the material more heat labile. Below T(d), where harmonic motions dominate, the addition of glycerol resulted in a lower amplitude of motions, correlating with a stabilizing effect of glycerol on the protein.
Collapse
Affiliation(s)
- A M Tsai
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | | | | |
Collapse
|
63
|
Dvorsky R, Sevcik J, Caves LSD, Hubbard RE, Verma CS. Temperature Effects on Protein Motions: A Molecular Dynamics Study of RNase-Sa. J Phys Chem B 2000. [DOI: 10.1021/jp001933k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Abstract
Several de novo designed ionic peptides that are able to undergo conformational change under the influence of temperature and pH were studied. These peptides have two distinct surfaces with regular repeats of alternating hydrophilic and hydrophobic side chains. This permits extensive ionic and hydrophobic interactions resulting in the formation of stable beta-sheet assemblies. The other defining characteristic of this type of peptide is a cluster of negatively charged aspartic or glutamic acid residues located toward the N-terminus and positively charged arginine or lysine residues located toward the C-terminus. This arrangement of charge balances the alpha-helical dipole moment (C --> N), resulting in a strong tendency to form stable alpha-helices as well. Therefore, these peptides can form both stable alpha-helices and beta-sheets. They are also able to undergo abrupt structural transformations between these structures induced by temperature and pH changes. The amino acid sequence of these peptides permits both stable beta-sheet and alpha-helix formation, resulting in a balance between these two forms as governed by the environment. Some segments in proteins may also undergo conformational changes in response to environmental changes. Analyzing the plasticity and dynamics of this type of peptide may provide insight into amyloid formation. Since these peptides have dynamic secondary structure, they will serve to refine our general understanding of protein structure.
Collapse
Affiliation(s)
- M Altman
- Center for Biomedical Engineering & Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
65
|
Ma B, Kumar S, Tsai CJ, Hu Z, Nussinov R. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J Theor Biol 2000; 203:383-97. [PMID: 10736215 DOI: 10.1006/jtbi.2000.1097] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are not rigid structures; they are dynamic entities, with numerous conformational isomers (substates). The dynamic nature of protein structures amplifies the structural variation of the transition state for chemical reactions performed by proteins. This suggests that utilizing a transition state ensemble to describe chemical reactions involving proteins may be a useful representation. Here we re-examine the nature of the transition state of protein chemical reactions (enzyme catalysis), considering both recent developments in chemical reaction theory (Marcus theory for SN2 reactions), and protein dynamics effects. The classical theory of chemical reactions relies on the assumption that a reaction must pass through an obligatory transition-state structure. The widely accepted view of enzymatic catalysis holds that there is tight binding of the substrate to the transition-state structure, lowering the activation energy. This picture, may, however, be oversimplified. The real meaning of a transition state is a surface, not a single saddle point on the potential energy surface. In a reaction with a "loose" transition-state structure, the entire transition-state region, rather than a single saddle point, contributes to reaction kinetics. Consequently, here we explore the validity of such a model, namely, the enzymatic modulation of the transition-state surface. We examine its utility in explaining enzyme catalysis. We analyse the possibility that instead of optimizing binding to a well-defined transition-state structure, enzymes are optimized by evolution to bind efficiently with a transition-state ensemble, with a broad range of activated conformations. For enzyme catalysis, the key issue is still transition state (ensemble) stabilization. The source of the catalytic power is the modulation of the transition state. However, our definition of the transition state is the entire transition-state surface rather just than a single well-defined structure. This view of the transition-state ensemble is consistent with the nature of the protein molecule, as embodied and depicted in the protein energy landscape of folding, and binding, funnels.
Collapse
Affiliation(s)
- B Ma
- Laboratory of Experimental and Computational Biology, NCI-FCRDC, Bldg 469, Rm 151, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
66
|
Evrard C, Fastrez J, Soumillion P. Histidine modification and mutagenesis point to the involvement of a large conformational change in the mechanism of action of phage lambda lysozyme. FEBS Lett 1999; 460:442-6. [PMID: 10556513 DOI: 10.1016/s0014-5793(99)01395-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phage lambda lysozyme (lambdaL) is structurally related to other known lysozymes but its mechanism of action is different from the classical lysozyme mechanism, acting as a transglycosidase rather than a hydrolase. As two conformations have been revealed by the crystal structure, we investigated the effect of mutating and modifying a histidine located near to or far from the active site in the respective closed and open conformations. Whereas its asparagine mutation has little or no effect on activity, its N-carbethoxylation inactivates the enzyme. This provide further evidence for the involvement of the closed conformation and for the need of conformational mobility in lambdaL function.
Collapse
Affiliation(s)
- C Evrard
- Université Catholique de Louvain, Laboratoire de Biochimie Physique et des Biopolymères, Place L. Pasteur 1-1B, B-1348, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|