51
|
Ugarte M, Grime GW, Lord G, Geraki K, Collingwood JF, Finnegan ME, Farnfield H, Merchant M, Bailey MJ, Ward NI, Foster PJ, Bishop PN, Osborne NN. Concentration of various trace elements in the rat retina and their distribution in different structures. Metallomics 2013; 4:1245-54. [PMID: 23093062 DOI: 10.1039/c2mt20157g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total amount of trace elements in retina from adult male Sprague-Dawley rats (n = 6). Concentration of trace elements within individual retinal areas in frozen sections of the fellow eye was established with the use of two methodologies: (1) particle-induced X-ray emission (PIXE) in combination with 3D depth profiling with Rutherford backscattering spectrometry (RBS) and (2) synchrotron X-ray fluorescence (SXRF) microscopy. The most abundant metal in the retina was zinc, followed by iron and copper. Nickel, manganese, chromium, cobalt, selenium and cadmium were present in very small amounts. The PIXE and SXRF analysis yielded a non-homogenous pattern distribution of metals in the retina. Relatively high levels of zinc were found in the inner part of the photoreceptor inner segments (RIS)/outer limiting membrane (OLM), inner nuclear layer and plexiform layers. Iron was found to accumulate in the retinal pigment epithelium/choroid layer and RIS/OLM. Copper in turn, was localised primarily in the RIS/OLM and plexiform layers. The trace elements iron, copper, and zinc exist in different amounts and locations in the rat retina.
Collapse
Affiliation(s)
- Marta Ugarte
- Centre for Advanced Discovery and Experimental Therapeutics, Institute of Human Development, University of Manchester and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Summers KL, Sutherland DEK, Stillman MJ. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a. Biochemistry 2013; 52:2461-71. [PMID: 23506369 DOI: 10.1021/bi400021b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Mammalian metallothioneins bind up to seven Zn(2+) ions in two distinct domains: an N-terminal β-domain that binds three Zn(2+) ions and a C-terminal α-domain that binds four Zn(2+) ions. Domain specificity has been invoked in the metalation mechanism with cluster formation and bridging of the 20 Cys residues taking place prior to saturation with seven Zn(2+) ions. We report a novel experiment that examines Zn(2+) metalation by exploiting the expected decrease in K(F) at the onset of clustering using electrospray ionization mass spectrometry (ESI-MS). During the titration with Zn(2+), the ESI-MS data show that several metalated species coexist until the fully saturated proteins are formed. The relative Zn binding affinities of the seven total sites in the α- and β-fragments were determined through direct competition for added Zn(2+). The K(F) values for each Zn(2+) are expected to decrease as a function of the remaining available sites and the onset of clustering. Analysis shows that Zn(2+) binds to β-rhMT with a greater affinity than α-rhMT. The incremental distribution of Zn(2+) between the competing fragments and apo-βα-rhMT (essentially three and four sites competing with seven sites) identifies the exact point at which clustering begins in the full protein. Analysis of the speciation data shows that Zn(5)-MT forms before clustering begins. This means that all 20 Cys residues of apo-βα-rhMT are bound terminally to Zn(2+) as [Zn(Cys)(4)](2-) units before clustering begins; there is no domain preference in this first metalation stage. Preferential binding of Zn(2+) to β- and α-rhMT at the point where βα-rhMT must form clusters is caused by a significant decrease in the affinity of βα-rhMT for further Zn(2+). The single-domain Zn(5)-rhMT, in which there are no exposed cysteine sulfurs, is a key component of the metalation pathway because the lower affinities of the two clustered Zn(2+) ions allow donation to apoenzymes.
Collapse
Affiliation(s)
- Kelly L Summers
- Department of Chemistry, The University of Western Ontario, London, Canada N6A 5B7
| | | | | |
Collapse
|
53
|
Jünemann AGM, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, Schlötzer-Schrehardt U, Kruse FE, Zrenner E, Rejdak R. Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS One 2013; 8:e56734. [PMID: 23457607 PMCID: PMC3574106 DOI: 10.1371/journal.pone.0056734] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Trace elements might play a role in the complex multifactorial pathogenesis of age-related macular degeneration (AMD). The aim of this study was to measure alterations of trace elements levels in aqueous humor of patients with non-exsudative (dry) AMD. For this pilot study, aqueous humor samples were collected from patients undergoing cataract surgery. 12 patients with dry AMD (age 77.9±6.62, female 8, male 4) and 11 patients without AMD (age 66.6±16.7, female 7, male 4) were included. Aqueous levels of cadmium, cobalt, copper, iron, manganese, selenium, and zinc were measured by use of Flow-Injection-Inductively-Coupled-Plasma-Mass-Spectrometry (FI-ICP-MS), quality controlled with certified standards. Patients with AMD had significantly higher aqueous humor levels of cadmium (median: 0.70 µmol/L, IQR: 0.40–0.84 vs. 0.06 µmol/L; IQR: 0.01–.018; p = 0.002), cobalt (median: 3.1 µmol/L, IQR: 2.62–3.15 vs. 1.17 µmol/L; IQR: 0.95–1.27; p<0.001), iron (median: 311 µmol/L, IQR: 289–329 vs. 129 µmol/L; IQR: 111–145; p<0.001) and zinc (median: 23.1 µmol/L, IQR: 12.9–32.6 vs. 5.1 µmol/L; IQR: 4.4–9.4; p = 0.020) when compared with patients without AMD. Copper levels were significantly reduced in patients with AMD (median: 16.2 µmol/L, IQR: 11.4–31.3 vs. 49.9 µmol/L; IQR: 32.0–.142.0; p = 0.022) when compared to those without. No significant differences were observed in aqueous humor levels of manganese and selenium between patients with and without AMD. After an adjustment for multiple testing, cadmium, cobalt, copper and iron remained a significant factor in GLM models (adjusted for age and gender of the patients) for AMD. Alterations of trace element levels support the hypothesis that cadmium, cobalt, iron, and copper are involved in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anselm G M Jünemann
- Department of Ophthalmology, University Hospital of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The vast knowledge of the physiologic functions of zinc in at least 3000 proteins and the recent recognition of fundamental regulatory functions of zinc(II) ions released from cells or within cells links this nutritionally essential metal ion to numerous diseases. However, this knowledge so far has had remarkably limited impact on diagnosing, preventing, and treating human diseases. One major roadblock is a lack of suitable biomarkers that would detect changes in cellular zinc metabolism and relate them to specific disease outcomes. It is not only the right amount of zinc in the diet that maintains health. At least as important is the proper functioning of the dozens of proteins that control cellular zinc homeostasis, regulate intracellular traffic of zinc between the cytosol and vesicles/organelles, and determine the fluctuations of signaling zinc(II) ions. Cellular zinc deficiencies or overloads, a term referring to zinc concentrations exceeding the cellular zinc buffering capacity, compromise the redox balance. Zinc supplementation may not readily remedy zinc deficiency if other factors limit the capability of a cell to control zinc. The role of zinc in human diseases requires a general understanding of the wide spectrum of functions of zinc, how zinc is controlled, how it interacts with the metabolism of other metal ions, in particular copper and iron, and how perturbation of specific zinc-dependent molecular processes causes disease and influences the progression of disease.
Collapse
|
55
|
Bai S, Sheline CR, Zhou Y, Sheline CT. A reduced zinc diet or zinc transporter 3 knockout attenuate light induced zinc accumulation and retinal degeneration. Exp Eye Res 2012; 108:59-67. [PMID: 23274584 DOI: 10.1016/j.exer.2012.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023]
Abstract
Our previous study on retinal light exposure suggests the involvement of zinc (Zn(2+)) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD(+) levels. In the present study, we examined Zn(2+) toxicity, and the effects of NAD(+) restoration in primary retinal cultures. We then reduced Zn(2+) levels in rodents by reducing Zn(2+) levels in the diet, or by genetics and measured LD. Sprague Dawley albino rats were fed 2, or 61 mg Zn(2+)/kg of diet for 3 weeks, and exposed to 18 kLux of white light for 4 h. We light exposed (70 kLux of white light for 50 h) Zn(2+) transporter 3 knockout (ZnT3-KO, no synaptic Zn(2+)), or RPE65 knockout mice (RPE65-KO, lack rhodopsin cycling), or C57/BI6/J controls and determined light damage and Zn(2+) staining. Retinal Zn(2+) staining was examined at 1 h and 4 h after light exposure. Retinas were examined after 7 d by optical coherence tomography and histology. After LD, rats fed the reduced Zn(2+) diet showed less photoreceptor Zn(2+) staining and degeneration compared to a normal Zn(2+) diet. Similarly, ZnT3-KO and RPE65-KO mice showed less Zn(2+) staining, NAD(+) loss, and RPE or photoreceptor death than C57/BI6/J control mice. Dietary or ZnT3-dependent Zn(2+) stores, and intracellular Zn(2+) release from rhodopsin recycling are suggested to be involved in light-induced retinal degeneration. These results implicate novel rhodopsin-mediated mechanisms and therapeutic targets for LD. Our companion manuscript demonstrates that pharmacologic, circadian, or genetic manipulations which maintain NAD(+) levels reduce LD.
Collapse
Affiliation(s)
- Shi Bai
- Department of Ophthalmology and The Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
56
|
Alvarez L, Gonzalez-Iglesias H, Garcia M, Ghosh S, Sanz-Medel A, Coca-Prados M. The stoichiometric transition from Zn6Cu1-metallothionein to Zn7-metallothionein underlies the up-regulation of metallothionein (MT) expression: quantitative analysis of MT-metal load in eye cells. J Biol Chem 2012; 287:28456-69. [PMID: 22722935 DOI: 10.1074/jbc.m112.365015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
We examined the profiling of gene expression of metallothioneins (MTs) in human tissues from cadaver eyes with microarray-based analysis. All MT1 isoforms, with the exception of MT1B, were abundantly expressed in lens and corneal tissue. Along with MT1B, MT4 was not detected in any tissues. Antibodies to MT1/2 labeled the corneal epithelial and endothelial cells, whereas MT3 label the retinal ganglion cells. We studied the effects of zinc and cytokines on the gene expression of MT isoforms in a corneal epithelial cell line (HCEsv). Zinc exerted an up-regulation of the expression of MT isoforms, and this effect was further potentiated in the presence of IL1α or TNFα. Zinc also elicited a strong down-regulation of the expression of inflammatory cytokines, and this effect was blocked in the presence of TNFα or IL1α. The concentration of MTs, bound zinc, and the metal stoichiometry of MTs in cultured HCEsv were determined by mass spectrometry. The total concentration of MTs was 0.24 ± 0.03 μM and, after 24 h of zinc exposure, increased to 0.96 ± 0.01 μM. The combination of zinc and IL1α further enhanced the level of MTs to 1.13 ± 0.03 μM. The average metal stoichiometry of MTs was Zn(6)Cu(1)-MT, and after exposure to the different treatments, it changed to Zn(7)-MT. Actinomycin D blocked transcription, and cycloheximide attenuated synthesis of MTs in the presence or absence of zinc, suggesting transcriptional regulation. Overall the data provide molecular and analytical evidence on the interplay between zinc, MTs, and proinflammatory cytokines in HCEsv cells, with potential implications on cell-based inflammatory eye diseases.
Collapse
Affiliation(s)
- Lydia Alvarez
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, 33012 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, Khor CC, Goh LK, Li YJ, Lim W, Ho CEH, Hawthorne F, Zheng Y, Chua D, Inoko H, Yamashiro K, Ohno-Matsui K, Matsuo K, Matsuda F, Vithana E, Seielstad M, Mizuki N, Beuerman RW, Tai ES, Yoshimura N, Aung T, Young TL, Wong TY, Teo YY, Saw SM. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet 2012; 8:e1002753. [PMID: 22685421 PMCID: PMC3369958 DOI: 10.1371/journal.pgen.1002753] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = -0.16 mm per minor allele, P(meta) =2.69 × 10(-10)). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) =0.75, 95% CI: 0.68-0.84, P(meta) =4.38 × 10(-7)) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.
Collapse
Affiliation(s)
- Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Xin Zhou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Isao Nakata
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Liang-Kee Goh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, North Carolina, United States of America
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wan'e Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Candice E. H. Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Felicia Hawthorne
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yingfeng Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Daniel Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eranga Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Mark Seielstad
- Institute for Human Genetics and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - E.-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Terri L. Young
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tien-Yin Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| |
Collapse
|
58
|
Parnell M, Guo L, Abdi M, Cordeiro MF. Ocular manifestations of Alzheimer's disease in animal models. Int J Alzheimers Dis 2012; 2012:786494. [PMID: 22666623 PMCID: PMC3362039 DOI: 10.1155/2012/786494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2012] [Accepted: 03/11/2012] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and the pathological changes of senile plaques (SPs) and neurofibrillary tangles (NFTs) in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an extension of the brain; the retina. Due to the optically transparent nature of the eye, it is possible to image the retina at a cellular level noninvasively and thus potentially allow an earlier diagnosis as well as a way of monitoring progression and treatment effects. Transgenic animal models expressing amyloid precursor protein (APP) presenilin (PS) and tau mutations have been used successfully to recapitulate the pathological findings of AD in the brain. This paper will cover the ocular abnormalities that have been detected in these transgenic AD animal models.
Collapse
Affiliation(s)
- Miles Parnell
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Sutton Eye Unit, Epsom and St. Helier NHS Trust, Cotswold Road, Sutton, Surry, London, UK
| | - Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mohamed Abdi
- St. Georges Healthcare NHS Trust, Blackshaw Road, Tooting, London, UK
| | - M. Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
59
|
Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 2012; 11:297-319. [PMID: 22322094 DOI: 10.1016/j.arr.2012.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity.
Collapse
|
60
|
Organisciak D, Wong P, Rapp C, Darrow R, Ziesel A, Rangarajan R, Lang J. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation. Photochem Photobiol 2012; 88:1396-407. [PMID: 22385127 DOI: 10.1111/j.1751-1097.2012.01134.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Mineral supplements are often included in multivitamin preparations because of their beneficial effects on metabolism. In this study, we used an animal model of light-induced retinal degeneration to test for photoreceptor cell protection by the essential trace element zinc. Rats were treated with various doses of zinc oxide and then exposed to intense visible light for as long as 8 h. Zinc treatment effectively prevented retinal light damage as determined by rhodopsin and retinal DNA recovery, histology and electrophoretic analysis of DNA damage and oxidized retinal proteins. Zinc oxide was particularly effective when given before light exposure and at doses two- to four-fold higher than recommended by the age-related eye disease study group. Treated rats exhibited higher serum and retinal pigment epithelial zinc levels and an altered retinal gene expression profile. Using an Ingenuity database, 512 genes with known functional annotations were found to be responsive to zinc supplementation, with 45% of these falling into a network related to cellular growth, proliferation, cell cycle and death. Although these data suggest an integrated and extensive regulatory response, zinc induced changes in gene expression also appear to enhance antioxidative capacity in retina and reduce oxidative damage arising from intense light exposure.
Collapse
Affiliation(s)
- Daniel Organisciak
- Petticrew Research Laboratory, Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Biesemeier A, Julien S, Kokkinou D, Schraermeyer U, Eibl O. A low zinc diet leads to loss of Zn in melanosomes of the RPE but not in melanosomes of the choroidal melanocytes. Metallomics 2012; 4:323-32. [DOI: 10.1039/c2mt00187j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
62
|
Afridi HI, Kazi TG, Kazi N, Kandhro GA, Baig JA, Shah AQ, Wadhwa SK, Khan S, Kolachi NF, Shah F, Jamali MK, Arain MB. Evaluation of essential trace and toxic elements in biological samples of normal and night blindness children of age groups 3-7 and 8-12 years. Biol Trace Elem Res 2011; 143:20-40. [PMID: 20820941 DOI: 10.1007/s12011-010-8834-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/01/2010] [Accepted: 08/20/2010] [Indexed: 01/11/2023]
Abstract
The most common cause of blindness in developing countries is vitamin A deficiency. The World Health Organization estimates 13.8 million children to have some degree of visual loss related to vitamin A deficiency. The causes of night blindness in children are multifactorial, and particular consideration has been given to childhood nutritional deficiency, which is the most common problem found in underdeveloped countries. Such deficiency can result in physiological and pathological processes that in turn influence biological samples composition. Vitamin and mineral deficiency prevents more than two billion people from achieving their full intellectual and physical potential. This study was designed to compare the levels of Zn, Mg, Ca, K, Na, As, Cd, and Pb in scalp hair, blood, and urine of night blindness children age ranged 3-7 and 8-12 years of both genders, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure was developed as a sample pretreatment, for the determination of As, Ca, Cd, K, Pb, Mg, Na, and Zn in biological samples of night blindness children. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood, and urine. The concentrations of trace and toxic elements were measured by atomic absorption spectrophotometer prior to microwave-assisted acid digestion. The results of this study showed that the mean values of As, Cd, Na, and Pb were significantly higher in scalp hair, blood, and urine samples of male and female night blindness children than in referents (p < 0.001), whereas the concentrations of Zn, Ca, K, and Mg were lower in the scalp hair and blood but higher in the urine samples of night blindness children. These data present guidance to clinicians and other professional investigating deficiency of essential mineral elements in biological samples (scalp hair and blood) of night blindness children.
Collapse
Affiliation(s)
- Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Afridi HI, Kazi TG, Kazi N, Kandhro GA, Baig JA, Shah AQ, Wadhwa SK, Khan S, Kolachi NF, Shah F, Jamali MK, Arain MB. Evaluation of status of zinc, copper, and iron levels in biological samples of normal children and children with night blindness with age groups of 3-7 and 8-12 years. Biol Trace Elem Res 2011; 142:323-34. [PMID: 20686870 DOI: 10.1007/s12011-010-8789-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 01/29/2023]
Abstract
The causes of night blindness in children are multifactorial, and particular consideration has been given to childhood nutritional deficiency, which is the most common problem found in underdeveloped countries. Such deficiency can result in physiological and pathological processes that in turn influence hair composition. This study was designed to compare the levels of zinc (Zn), copper (Cu), and iron (Fe) in scalp hair, blood, and urine of both genders of children with night blindness with age range of 3-7 and 8-12 years, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure was developed as a sample pretreatment, for the determination of zinc, copper, and iron in biological samples of children with night blindness. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood, and urine. The digests of all biological samples were analyzed for Cu, Fe, and Zn by flame atomic absorption spectrometry using an air/acetylene flame. The results indicated significantly lower levels of Fe, Cu, and Zn in the biological samples (blood and scalp hair) of male and female children with night blindness, compared with control subjects of both genders. These data present guidance to clinicians and other professionals investigating the deficiency of essential trace metals in biological samples (scalp hair and blood) of children with night blindness.
Collapse
Affiliation(s)
- Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
ZIP2 and ZIP4 mediate age-related zinc fluxes across the retinal pigment epithelium. J Mol Neurosci 2011; 46:122-37. [PMID: 21603979 DOI: 10.1007/s12031-011-9536-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/24/2023]
Abstract
Decreases in systemic and cellular levels of zinc (Zn(2+)) during normal aging correlate with several age-related pathologies including age-related macular degeneration. Zn(2+) homeostasis in tissues is not only dependent on dietary intake but also on optimal expression and function of its influx (ZIP) and efflux (ZnT) transporters. We recently showed that many of the Zn(2+) transporters are expressed by the retinal pigment epithelial (RPE) cells. In this study, we present evidence that RPE cells contain less endogenous Zn(2+) with increased aging and transport this ion vectorially with greater transport from the basal to apical direction. Expression of two Zn(2+) influx transporters, ZIP2 and ZIP4, is reduced as a function of RPE age. Gene silencing of ZIP2 and ZIP4 in RPE cells from young donors or their overexpression in cells from older donors confirms that these two transporters are essential in controlling Zn(2+) influx and sequestration in RPE cells. Both transporters are distributed on the basal surface of the RPE where they are likely to control Zn(2+) homeostasis in the outer retina.
Collapse
|
65
|
Nan R, Farabella I, Schumacher FF, Miller A, Gor J, Martin ACR, Jones DT, Lengyel I, Perkins SJ. Zinc binding to the Tyr402 and His402 allotypes of complement factor H: possible implications for age-related macular degeneration. J Mol Biol 2011; 408:714-35. [PMID: 21396937 PMCID: PMC3092982 DOI: 10.1016/j.jmb.2011.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 12/29/2022]
Abstract
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein–protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.
Collapse
Affiliation(s)
- Ruodan Nan
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Perkins SJ, Nan R, Okemefuna AI, Li K, Khan S, Miller A. Multiple interactions of complement Factor H with its ligands in solution: a progress report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 703:25-47. [PMID: 20711705 DOI: 10.1007/978-1-4419-5635-4_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/25/2023]
Abstract
Factor H (FH) is the major regulator of the central complement protein C3b in the alternative pathway of complement activation, and is comprised of 20 SCR domains. A FH Tyr402His polymorphism in SCR-7 is associated with age-related macular degeneration (AMD) and leads to deposition of complement in drusen. The unravelling of how FH interacts with five major physiological and patho-physiological ligands is complicated by the weak nature of these interactions, coupled with the multivalency of FH. Using multiple biophysical methods, we summarise our recent results for these five FH ligands: (1) FH by itself shows a folded-back SCR domain structure in solution, and self-associates in a manner dependent on electrostatic forces. (2) FH activity is inhibited by zinc, which causes FH to aggregate. The onset of FH-zinc aggregation for zinc concentrations above 20 muM appears to be enhanced with the His402 allotype, and may be relevant to AMD. (3) The FH and C-reactive protein (CRP) interaction has been controversial; however our new work resolves earlier discrepancies. The FH-CRP interaction is only observed when native CRP is at high acute-phase concentration levels, and CRP binds weakly to the His402 FH allotype to suggest a molecular mechanism that leads to AMD. (4) Heparin is an analogue of the polyanionic host cell surface, and FH forms higher oligomers with larger heparin fragments, suggesting a mechanism for more effective FH regulation. (5) The interaction of C3b with FH also depends on buffer, and FH forms multimers with the C3d fragment of C3b. This FH-C3d interaction at high FH concentration may also facilitate complement regulation. Overall, our results to date suggest that the FH interactions involving zinc and native CRP have the closest relevance for explaining the onset of AMD.
Collapse
Affiliation(s)
- Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
67
|
Zheng D, Kille P, Feeney GP, Cunningham P, Handy RD, Hogstrand C. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. BMC Genomics 2010; 11:553. [PMID: 20937081 PMCID: PMC3091702 DOI: 10.1186/1471-2164-11-553] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2010] [Accepted: 10/11/2010] [Indexed: 12/22/2022] Open
Abstract
Background Dietary zinc supplementation may help to promote growth, boost the immune system, protect against diabetes, and aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio) gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Results Fish were maintained with either zinc supplemented water (4.0 μM) and diet (2023 mg zinc kg-1) or water and diet containing Zn2+ at 0.25 μM and 233 mg zinc kg-1, respectively. Gill tissues were harvested at five time points (8 hours to 14 days) and transcriptome changes analysed in quintuplicate using a 16 K microarray with results anchored to gill Zn2+ influx and whole body nutrient composition (protein, carbohydrate, lipid, elements). The number of regulated genes increased up to day 7 but declined as the fish acclimated. In total 525 genes were regulated (having a fold-change more than 1.8 fold change and an adjusted P-value less than 0.1 which is controlling a 10% False discovery rate, FDR) by zinc supplementation, but little overlap was observed between genes regulated at successive time-points. Many genes displayed cyclic expression, typical for homeostatic control mechanisms. Annotation enrichment analysis revealed strong overrepresentation of "transcription factors", with specific association evident with "steroid hormone receptors". A suite of genes linked to "development" were also statistically overrepresented. More specifically, early regulation of genes was linked to a few key transcription factors (e.g. Mtf1, Jun, Stat1, Ppara, Gata3) and was followed by hedgehog and bone morphogenic protein signalling. Conclusions The results suggest that zinc supplementation reactivated developmental pathways in the gill and stimulated stem cell differentiation, a response likely reflecting gill remodelling in response to its altered environment. This provides insight to the role of zinc during cell differentiation and illustrates the critical nature of maintaining zinc status. The study also highlights the importance of temporal transcriptomics analysis in order resolve the discrete elements of biological processes, such as zinc acclimation.
Collapse
Affiliation(s)
- Dongling Zheng
- Mineral Metabolism Group, Nutritional Sciences Division, King's College London, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Background Taurine and zinc exert neurotrophic effects in the central nervous system. Current studies demonstrate that Na+/Cl- dependent neurotransmitter transporters, similar to that of taurine, are modulated by micromolar concentrations of zinc. This study examined the effect of zinc sulfate ex vivo on [3H]taurine transport in goldfish retina. Methods Isolated cells were incubated in Ringer with zinc (0.1–100 µM). Taurine transport was done with 50 nM [3H]taurine or by isotopic dilution with taurine (0.001–1 mM) and 50 nM [3H]taurine. Results Zinc reduced the capacity of taurine transport without changes in affinity, and caused a noncompetitive inhibition of high affinity taurine transport, with an EC50= 0.072 µM. The mechanism by which zinc affects taurine transport is unknown at the present. Conclusions There may be a binding site of zinc in the transporter that affects union or translocation of taurine, or possibly the formation of taurine-zinc complexes, rather than free zinc, could affect the operation of the transporter.
Collapse
Affiliation(s)
- Sonia Nusetti
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | | | |
Collapse
|
69
|
Determinants of serum zinc concentrations in a population of French middle-age subjects (SU.VI.MAX cohort). Eur J Clin Nutr 2010; 64:1057-64. [PMID: 20664619 DOI: 10.1038/ejcn.2010.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Few studies have been conducted on determinants of serum zinc concentration, especially in France. The aim of this study was to investigate the relationships between serum zinc concentrations, and age, education, living area and life style in a large sample cohort of French adults. SUBJECTS/METHODS Blood samples were collected after 12-h fasting in French adults (7448 women, 35-65 years old and 4926 men, 45-65 years old) participating to the SUpplementation in AntioXidant VItamins and Minerals cohort at enrolment. Serum zinc was determined by flame atomic absorption. RESULTS Serum zinc concentration was lower in women (mean: 12.9 μmol/l, 95% confidence interval: 9.2-16.6 μmol/l) compared with men (mean: 13.4 μmol/l, 95% confidence interval: 9.7-17.1 μmol/l, P<0.0001). In total, 10% of the women showed serum zinc values <10.7 μmol/l and 10% of the men showed serum zinc values <11.3 μmol/l. Age was negatively associated with serum zinc only in men (P=0.001). In women, a positive association between smoking and serum zinc concentration (P=0.0003), and a negative relationship between highest education level and serum zinc concentration (P=0.01) were observed. With regard to geographical areas, the highest serum zinc concentrations were found in the Center, and the lowest in the Southwest of France for both men and women. The association between serum zinc concentrations and food categories or macronutrient intake disappeared after stratifying by gender. CONCLUSIONS Age, gender and geographic area seem the main determinants of serum zinc concentrations in this study.
Collapse
|
70
|
The mechanisms of Zn2+ effects on Ca2+-permeable AMPA receptors on carp retinal horizontal cells. Brain Res 2010; 1345:103-9. [DOI: 10.1016/j.brainres.2010.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/18/2022]
|
71
|
Sun Y, Jiang XD, Liu X, Gong HQ, Liang PJ. Synaptic contribution of Ca2+-permeable and Ca2+-impermeable AMPA receptors on isolated carp retinal horizontal cells and their modulation by Zn2+. Brain Res 2010; 1317:60-8. [PMID: 20045401 DOI: 10.1016/j.brainres.2009.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2009] [Revised: 12/02/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors are co-expressed on carp retinal horizontal cells. In the present study, we examined the synaptic contribution and Zn(2+) modulatory effect of these two AMPA receptor subtypes using whole-cell patch clamp technique. Specific Ca(2+)-permeable AMPA receptor antagonist (1-naphthyl acetyl spermine, NAS) and selective Ca(2+)-impermeable AMPA receptor blocker (pentobarbital, PB) were used to separate the glutamate-response in isolated H1 horizontal cell mediated by these two subtypes of AMPA receptors respectively. Application of 100 microM NAS substantially suppressed the current elicited by 3 mM glutamate and the remaining NAS-insensitive component was completely blocked by application of 100 microM PB. In addition, Zn(2+) had dual effects on Ca(2+)-permeable AMPA receptor-mediated current: at low concentration (10 microM), Zn(2+) potentiated the current, but at higher concentrations (100 and 1000 microM), Zn(2+) reduced the current in a dose-dependent manner. However, Zn(2+) (10, 100 and 1000 microM) failed to modulate the NAS-insensitive current mediated by Ca(2+)-impermeable AMPA receptors. Overall, our results suggest that Ca(2+)-permeable AMPA receptors contribute more to the cell's glutamate-response than Ca(2+)-impermeable AMPA receptors. Furthermore, Zn(2+) has dual effects on the Ca(2+)-permeable AMPA receptor activity without affecting Ca(2+)-impermeable AMPA receptors.
Collapse
Affiliation(s)
- Yan Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
72
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
73
|
Scientific Opinion on the substantiation of health claims related to zinc and function of the immune system (ID 291, 1757), DNA synthesis and cell division (ID 292, 1759), protection of DNA, proteins and lipids from oxidative damage (ID 294, 1758), mainte. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
|
74
|
Effects of zinc ex vivo and intracellular zinc chelator in vivo on taurine uptake in goldfish retina. Amino Acids 2009; 38:1429-37. [DOI: 10.1007/s00726-009-0357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2009] [Accepted: 09/15/2009] [Indexed: 11/27/2022]
|
75
|
Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells. Vis Neurosci 2009; 26:375-87. [PMID: 19678977 DOI: 10.1017/s0952523809990149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Glutamate is believed to be the primary excitatory neurotransmitter in the vertebrate retina, and its fast postsynaptic effects are elicited by activating NMDA-, kainate-, or AMPA-type glutamate receptors. We have characterized the ionotropic glutamate receptors present on retinal horizontal cells of the skate, which possess a unique all-rod retina simplifying synaptic circuitry within the outer plexiform layer (OPL). Isolated external horizontal cells were examined using whole-cell voltage-clamp techniques. Glutamate and its analogues kainate and AMPA, but not NMDA, elicited dose-dependent currents. The AMPA receptor antagonist GYKI 52466 at 100 microm abolished glutamate-elicited currents. Desensitization of glutamate currents was removed upon coapplication of cyclothiazide, known to potentiate AMPA receptor responses, but not by concanavalin A, which potentiates kainate receptor responses. The dose-response curve to glutamate was significantly broader in the presence of the desensitization inhibitor cyclothiazide. Polyclonal antibodies directed against AMPA receptor subunits revealed prominent labeling of isolated external horizontal cells with the GluR2/3 and GluR4 antibodies. 1-Naphthylacetyl spermine, known to block calcium-permeable AMPA receptors, significantly reduced glutamate-gated currents of horizontal cells. Downregulation of glutamate responses was induced by increasing extracellular ion concentrations of Zn2+ and H+. The present study suggests that Ca2+-permeable AMPA receptors likely play an important role in shaping the synaptic responses of skate horizontal cells and that alterations in extracellular concentrations of calcium, zinc, and hydrogen ions have the potential to regulate the strength of postsynaptic signals mediated by AMPA receptors within the OPL.
Collapse
|
76
|
Song J, Lee SC, Kim SS, Koh HJ, Kwon OW, Kang JJ, Kim EK, Shin SH, Lee JH. Zn2+ -induced cell death is mediated by the induction of intracellular ROS in ARPE-19 cells. Curr Eye Res 2009; 28:195-201. [PMID: 14977522 DOI: 10.1076/ceyr.28.3.195.26251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Recent studies have shown that Zn2+ induced cell death in retinal pigment epithelial cells. Here we sought to investigate the mode of Zn2+-induced cell death and the role of reactive oxygen species (ROS) in human retinal pigment epithelial cell line, ARPE-19 cells. METHODS Cell viability was measured by MTT assay. Cell death of ARPE-19 cells was measured by annexin V-fluorescein isothiocyanate (FITC) binding assay, TUNEL assay. The formation of intracellular ROS was measured using 2',7'-dichlorofluorescein diacetate (DCFH-DA). The activation of mitogen-activated protein kinase (MAPK) was examined by Western blot analysis. RESULTS This study demonstrated that Zn2+ treatment induced both necrosis and apoptosis in ARPE-19 cells. Exposure of ARPE-19 cells to Zn2+ led to the activation of ERK1/2, JNK1/2/3, and p38 MAPKs. The activation of these MAPKs was blocked by treatment with the antioxidant, N-acetylcystein (NAC). More importantly, inhibition of ROS production by NAC completely prevented Zn2+-induced cell death in RPE cells. CONCLUSIONS This study suggests that Zn2+ induces both apoptosis and necrosis in ARPE-19 cells and that its cytotoxicity may depend on the induction of intracellular ROS.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Balem F, Yanamala N, Klein-Seetharaman J. Additive Effects of Chlorin E6 and Metal Ion Binding on the Thermal Stability of RhodopsinIn Vitro. Photochem Photobiol 2009; 85:471-8. [DOI: 10.1111/j.1751-1097.2009.00539.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
78
|
Human retinal cadmium accumulation as a factor in the etiology of age-related macular degeneration. Exp Eye Res 2009; 89:79-87. [PMID: 19254715 DOI: 10.1016/j.exer.2009.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2008] [Revised: 02/05/2009] [Accepted: 02/19/2009] [Indexed: 11/22/2022]
Abstract
Cadmium is a naturally occurring, highly toxic, metallic element. It pollutes the environment as a result of industrial activity and accumulates in human tissues with a long biological half-life. Cadmium content has been demonstrated to increase in human retinal tissues as a function of age and tobacco smokers have approximately twice as much cadmium in retinal tissues than non-smokers. Smoking is also a key environmental risk factor for the retinal disease age-related macular degeneration (AMD). Recent studies have shown that urinary cadmium levels (a measure of Cd body burden) are higher in smokers who have AMD. We now report the Cd measurements in human retinal tissues from eyes afflicted with AMD compared to non-diseased eyes (controls) from age-matched donors. Human donor eyes frozen under argon gas were assessed for AMD severity using color stereoscopic fundus photographs and the Minnesota Grading System. Cadmium, zinc and, copper levels were measured in retinal tissues (neural retina, retinal pigment epithelium and choroid) using inductively coupled plasma mass spectrometry and graphite furnace spectrophotometry and values were normalized to tissue protein levels. Higher Cd levels were found in the neural retina and RPE for eyes afflicted with AMD compared to controls in males, differences were not statistically significant in females. The results indicate that higher retinal cadmium burdens are associated with the presence of AMD at least in males and suggest possible gender differences in the metabolism of metals in the human retina.
Collapse
|
79
|
Tamanini E, Katewa A, Sedger LM, Todd MH, Watkinson M. A synthetically simple, click-generated cyclam-based zinc(II) sensor. Inorg Chem 2009; 48:319-24. [PMID: 19053845 DOI: 10.1021/ic8017634] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
A cyclam-based macrocyclic sensor has been prepared using synthetically simple "click" chemistry to link a fluorophore to the macrocyclic receptor. This sensor shows high selectivity for Zn(II) over a range of other metals, providing a significant enhancement of fluorescence intensity over a wide pH range. As such, this is the first cyclam-based sensor demonstrated to be selective for Zn(II) and is the first example of a triazole being used as a coordinating ligand on an azamacrocycle. The sensor can access biologically available zinc in mammalian cells, sensing the Zn(II) flux that exists during apoptotic cell death.
Collapse
Affiliation(s)
- Emiliano Tamanini
- The Walter Besant Building, School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom
| | | | | | | | | |
Collapse
|
80
|
Abstract
The SLC39A (solute carrier 39A) [ZIP (Zrt-Irt-like protein)] family consists of 14 members which are thought to control zinc uptake into the cytoplasm. Among these, ZIP4 is known to be particularly important for zinc homoeostasis. Mutations in this gene cause acrodermatitis enteropathica, a rare recessive-lethal human genetic disorder. In the present paper, our studies of the regulation and function of the mouse Zip4 gene are briefly reviewed. Mouse Zip4 is expressed at highest levels in tissues involved in absorption of dietary or maternal zinc, and the gene and protein are dynamically regulated by multiple post-transcriptional mechanisms in response to zinc availability. ZIP4 accumulates at the apical surface of enterocytes and endoderm cells when zinc is deficient, because of increased stability of the mRNA and stabilization of the protein. In contrast, when zinc is replenished, the mRNA is destabilized and the protein is internalized and degraded rapidly. The critical importance of ZIP4 in zinc homoeostasis is revealed in mice with targeted deletions of this gene. Homozygous Zip4-knockout embryos die during early morphogenesis and heterozygous offspring are significantly underrepresented and display an array of developmental defects, including exencephalia, anophthalmia and severe growth retardation. Mice heterozygous for Zip4-knockout are hypersensitive to zinc deficiency, which suggests that humans heterozygous for this gene may also be very sensitive to zinc deficiency.
Collapse
|
81
|
Erie JC, Good JA, Butz JA, Pulido JS. Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am J Ophthalmol 2009; 147:276-282.e1. [PMID: 18848316 DOI: 10.1016/j.ajo.2008.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To measure zinc and copper levels in the retinal pigment epithelium (RPE) and choroid complex and in the neural retina in subjects with and without age-related macular degeneration (AMD). DESIGN Laboratory investigation. METHODS Eighty-eight donor eyes (44 subjects) were analyzed. After retinal dissection, the RPE and choroid complex was photographed. Using the Minnesota Grading System (MGS), the RPE and choroid complex was classified into 1 of 4 stages as defined by the Age-Related Eye Disease Study. Subjects without AMD were defined as both eyes having MGS stage 1; subjects with AMD were defined as both eyes having MGS stages 2 through 4. Zinc and copper levels were determined by using an inductively coupled plasma-mass spectrometer. Metal levels from two eyes of the same subject were averaged and treated as one observation. Differences in metal levels were examined by using Wilcoxon rank-sum tests. RESULTS The mean RPE and choroid complex zinc level in subjects with AMD (+/- standard deviation, 223.7 +/- 94.0 microg/g; n = 15) was reduced 24% when compared with that of subjects without AMD (292.1 +/- 98.5 microg/g; n = 29; P = .01). The mean RPE and choroid complex copper level in subjects with AMD (5.1 +/- 1.1 microg/g) was reduced 23% when compared with that of subjects without AMD (6.6 +/- 1.4 microg/g; P = .002). No difference was detected in retinal zinc and copper levels in subjects with and without AMD (P > .09). CONCLUSIONS Reduced RPE and choroid complex zinc and copper levels in AMD eyes combined with previous information that oral supplementation of zinc plus copper reduces the risk of progression of AMD suggests that metal homeostasis plays a role in AMD and in retinal health.
Collapse
|
82
|
Sun Z, Zhang DQ, McMahon DG. Zinc modulation of hemi-gap-junction channel currents in retinal horizontal cells. J Neurophysiol 2009; 101:1774-80. [PMID: 19176613 DOI: 10.1152/jn.90581.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Hemi-gap-junction (HGJ) channels of retinal horizontal cells (HCs) function as transmembrane ion channels that are modulated by voltage and calcium. As an endogenous retinal neuromodulator, zinc, which is coreleased with glutamate at photoreceptor synapses, plays an important role in shaping visual signals by acting on postsynaptic HCs in vivo. To understand more fully the regulation and function of HC HGJ channels, we examined the effect of Zn(2+) on HGJ channel currents in bass retinal HCs. Hemichannel currents elicited by depolarization in Ca(2+)-free medium and in 1 mM Ca(2+) medium were significantly inhibited by extracellular Zn(2+). The inhibition by Zn(2+) of hemichannel currents was dose dependent with a half-maximum inhibitory concentration of 37 microM. Compared with other divalent cations, Zn(2+) exhibited higher inhibitory potency, with the order being Zn(2+) > Cd(2+) approximately Co(2+) > Ca(2+) > Ba(2+) > Mg(2+). Zn(2+) and Ca(2+) were found to modulate HGJ channels independently in additivity experiments. Modification of histidine residues with N-bromosuccinimide suppressed the inhibitory action of Zn(2+), whereas modification of cysteine residues had no significant effect on Zn(2+) inhibition. Taken together, these results suggest that zinc acts on HGJ channels in a calcium-independent way and that histidine residues on the extracellular domain of HGJ channels mediate the inhibitory action of zinc.
Collapse
Affiliation(s)
- Ziyi Sun
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
83
|
Nan R, Gor J, Lengyel I, Perkins SJ. Uncontrolled zinc- and copper-induced oligomerisation of the human complement regulator factor H and its possible implications for function and disease. J Mol Biol 2008; 384:1341-52. [PMID: 18976665 DOI: 10.1016/j.jmb.2008.10.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2008] [Revised: 10/02/2008] [Accepted: 10/08/2008] [Indexed: 12/21/2022]
Abstract
Polymorphisms in factor H (FH), a major regulator of complement activation, and the accumulation of high zinc concentrations in the outer retina are both associated with age-related macular degeneration. FH is inhibited by zinc, which causes FH to aggregate. To investigate this, we quantitatively studied zinc-induced FH self-association by X-ray scattering and analytical ultracentrifugation to demonstrate uncontrolled FH oligomerisation in conditions corresponding to physiological levels of FH and pathological levels of zinc in the outer retina. By scattering, FH at 2.8-7.0 microM was unaffected until [Zn] increased to 20 microM, whereupon the radius of gyration, RG, values increased from 9 to 15 nm at [Zn]=200 microM. The maximum dimension of FH increased from 32 to 50 nm, indicating that compact oligomers had formed. By ultracentrifugation, size-distribution analyses showed that monomeric FH at 5.57 S was the major species at [Zn] up to 60 microM. At [Zn] above 60 microM, a series of large oligomers were formed, ranging up to 100 S in size. Oligomerisation was reversed by ethylenediaminetetraacetic acid. Structurally distinct large oligomers were observed for Cu, while Ni, Cd and Fe showed low amounts of oligomers and Mg and Ca showed no change. Fluid-phase assays showed reduced FH activities that correlated with increased oligomer formation. The results were attributed to different degrees of stabilisation of weak self-dimerisation sites in FH by transition metals. The relevance of metal-induced FH oligomer formation to complement regulation and age-related macular degeneration is discussed.
Collapse
Affiliation(s)
- Ruodan Nan
- Institute of Structural and Molecular Biology, Division of Biosciences, and Department of Ocular Biology and Therapeutics, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
84
|
Copper and zinc distribution in the human retina: Relationship to cadmium accumulation, age, and gender. Exp Eye Res 2008; 87:80-8. [DOI: 10.1016/j.exer.2008.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2008] [Revised: 04/05/2008] [Accepted: 04/11/2008] [Indexed: 11/24/2022]
|
85
|
Müller DJ, Wu N, Palczewski K. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 2008; 60:43-78. [PMID: 18321962 DOI: 10.1124/pr.107.07111] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
Collapse
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
86
|
Permyakov SE, Permyakov EA. The use of the free metal-temperature 'phase diagrams' for studies of single site metal binding proteins. Protein J 2007; 26:1-12. [PMID: 17136617 DOI: 10.1007/s10930-006-9013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Typical physico-chemical studies of metal binding proteins are usually aimed at determination of the metal binding constant K for a native protein (Kn), while the significance of the K value for the thermally denatured protein (Ku) is usually underestimated. Meanwhile, metal binding induced shift of thermal denaturation transition of a single site metal binding protein is defined by Kn to Ku ratio, implying that knowledge of both K values is required for full characterization of the system. In the present work, the most universal approach to the studies of single site metal binding proteins, namely construction of a protein "phase diagram" in coordinates of free metal ion concentration - temperature, is considered in detail. The detailed algorithm of construction of the phase diagrams along with underlying mathematic procedures developed here may be of use for studies of other simple protein-target type systems, where target represents low molecular weight ligand. Analysis of the simplest protein-ligand system reveals that thermodynamic properties of apo-protein dictate the maximal possible increase of its affinity to any simple ligand upon thermal denaturation of the protein. Experimental and general problems coupled with the use of the phase diagrams are discussed.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | | |
Collapse
|
87
|
Redenti S, Ripps H, Chappell RL. Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res 2007; 85:580-4. [PMID: 17825289 DOI: 10.1016/j.exer.2007.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
The presence of reactive zinc (Zn2+) within photoreceptor terminals, and evidence that exogenous zinc affects the electrophysiological activity of the distal retina, led to the suggestion that its co-release with glutamate could play an essential role in the modulation of information at the first synapse in the visual pathway. Although we had shown previously that zinc release could be visualized in the region of the outer synaptic layer of a retinal slice preparation, it could not be ascertained with certainty that the release sites were at the presynaptic terminal rather than from the mitochondria-rich inner segment or from zinc within the distal processes of photoreceptors and Müller cells. Using membrane permeant and membrane impermeant forms of a fluorescent zinc indicator (Newport green), we show both the intracellular distribution of Zn2+ and its depolarization-dependent discharge from the terminals of isolated zebrafish photoreceptors in culture. Zinc release could be detected in the dark-adapted preparation, and was further enhanced by brief exposures to black widow spider venom or high K+. Synaptically released zinc may significantly influence neural processing in the vertebrate retina by modulating the activity of excitatory and/or inhibitory receptors as well as intracellular signaling proteins.
Collapse
|
88
|
Desmeules P, Penney SE, Desbat B, Salesse C. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Biophys J 2007; 93:2069-82. [PMID: 17526567 PMCID: PMC1959526 DOI: 10.1529/biophysj.106.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2006] [Accepted: 05/17/2007] [Indexed: 01/16/2023] Open
Abstract
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.
Collapse
Affiliation(s)
- Philippe Desmeules
- Unité de Recherche en Opthalmologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département d'Opthalmologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
89
|
Zhang XA, Lovejoy KS, Jasanoff A, Lippard SJ. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc Natl Acad Sci U S A 2007; 104:10780-5. [PMID: 17578918 PMCID: PMC1904115 DOI: 10.1073/pnas.0702393104] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
We report a molecular platform for dual-function fluorescence/MRI sensing of mobile zinc. Zinc-selective binding units were strategically attached to a water-soluble porphyrin template. The synthetic strategy for achieving the designed target ligand is flexible and convenient, and the key intermediates can be applied as general building blocks for the construction of other metal sensors based on a similar mechanism. The metal-free form, (DPA-C(2))(2)-TPPS(3) (1), where DPA is dipicolylamine and TPPS(3) is 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphine, is an excellent fluorescent sensor for zinc. It has certain superior physical properties compared with earlier-generation zinc sensors including emission in the red and near-IR regions [lambda(em) = 645 nm (s) and 715 nm (m)], with a large Stokes shift of >230 nm. The fluorescence intensity of 1 increases by >10-fold upon zinc binding. The fluorescence "turn-on" is highly selective for zinc versus other divalent metal ions and is relatively pH-insensitive within the biologically relevant pH window. The manganese derivative, [(DPA-C(2))(2)-TPPS(3)Mn(III)] (2), switches the function of the molecule to generate an MRI contrast agent. In the presence of zinc, the relaxivity of 2 in aqueous solution is significantly altered, which makes it a promising zinc MRI sensor. Both metal-free and Mn(III)-inserted forms are efficiently taken up by live cells, and the intracellular zinc can be imaged by either fluorescence or MR, respectively. We anticipate that in vivo applications of the probes will facilitate a deeper understanding of the physiological roles of zinc and allow detection of abnormal zinc homeostasis for pathological diagnoses.
Collapse
Affiliation(s)
| | | | - Alan Jasanoff
- Nuclear Science and Engineering
- Brain and Cognitive Sciences, and
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail: or
| | - Stephen J. Lippard
- Departments of *Chemistry
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
90
|
Dufner-Beattie J, Weaver BP, Geiser J, Bilgen M, Larson M, Xu W, Andrews GK. The mouse acrodermatitis enteropathica gene Slc39a4 ( Zip4 ) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 2007; 16:1391-9. [PMID: 17483098 DOI: 10.1093/hmg/ddm088] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The human Zip4 gene (Slc39a4) is mutated in the rare recessive genetic disorder of zinc metabolism acrodermatitis enteropathica, but the physiological functions of Zip4 are not well understood. Herein we demonstrate that homozygous Zip4-knockout mouse embryos die during early morphogenesis and heterozygous offspring are significantly underrepresented. At mid-gestation, an array of developmental defects including exencephalia, anophthalmia and severe growth retardation were noted in heterozygous embryos, and at weaning, many (63/280) heterozygous offspring were hydrocephalic, growth retarded and missing one or both eyes. Maternal dietary zinc deficiency during pregnancy exacerbated these effects, whereas zinc excess ameliorated these effects and protected embryonic development of heterozygotes but failed to rescue homozygous embryos. Heterozygous Zip4 embryos were not underrepresented in litters from wild-type mothers, but were approximately 10 times more likely to develop abnormally than were their wild-type littermates during zinc deficiency. Thus, both embryonic and maternal Zip4 gene expressions are critical for proper zinc homeostasis. These studies suggest that heterozygous mutations in the acrodermatitis gene Zip4 may be associated with a wider range of developmental defects than was previously appreciated, particularly when dietary zinc is limiting.
Collapse
Affiliation(s)
- Jodi Dufner-Beattie
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, PO Box 800734, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Park PSH, Sapra KT, Koliński M, Filipek S, Palczewski K, Muller DJ. Stabilizing effect of Zn2+ in native bovine rhodopsin. J Biol Chem 2007; 282:11377-85. [PMID: 17303564 PMCID: PMC2043472 DOI: 10.1074/jbc.m610341200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) is a powerful tool to dissect molecular interactions that govern the stability and function of proteins. We applied SMFS to understand the effect of Zn2+ on the molecular interactions underlying the structure of rhodopsin. Force-distance curves obtained from SMFS assays revealed the strength and location of molecular interactions that stabilize structural segments within this receptor. The inclusion of ZnCl2 in SMFS assay buffer increased the stability of most structural segments. This effect was not mimicked by CaCl2, CdCl2, or CoCl2. Thus, Zn2+ stabilizes the structure of rhodopsin in a specific manner.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Lengyel I, Flinn JM, Peto T, Linkous DH, Cano K, Bird AC, Lanzirotti A, Frederickson CJ, van Kuijk FJGM. High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res 2007; 84:772-80. [PMID: 17313944 DOI: 10.1016/j.exer.2006.12.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2006] [Revised: 12/20/2006] [Accepted: 12/26/2006] [Indexed: 10/23/2022]
Abstract
One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.
Collapse
Affiliation(s)
- Imre Lengyel
- Division of Pathology, Institute of Ophthalmology, 11-43 Bath Street, University College London, and Department of Research and Development, Moorfields Eye Hospital, London EC1V 9EL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Mochizuki K, Murase H, Imose M, Kawakami H, Sawada A. Improvement of scotopic electroretinograms and night blindness with recovery of serum zinc levels. Jpn J Ophthalmol 2006; 50:532-536. [PMID: 17180528 DOI: 10.1007/s10384-006-0376-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2006] [Accepted: 07/07/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND We sought to determine the cause of reduced scotopic and photopic electroretinograms (ERGs) and night blindness in a 46-year-old man with liver dysfunction but no history of alcoholism. CASE A 46-year-old Japanese man with a complaint of visual difficulties in dim light for 1 month. OBSERVATIONS By electrophysiological investigation, the patient was found to have low levels of serum zinc and vitamin A on admission. The rod b wave was unrecordable, and the bright-flash ERGs were reduced, with the a wave > b wave. The amplitudes of the cone and 30-Hz flicker responses were also reduced, and their implicit times were prolonged. Three weeks after admission, the patient's serum zinc level recovered to normal levels, but his serum vitamin A level was still low. The symptoms of night blindness were gone, and the rod ERGs and single bright-flash responses were within normal limits. However, the cone ERGs and 30-Hz flicker responses were still depressed. CONCLUSIONS The recovery of scotopic function together with the recovery of zinc but not vitamin A levels suggests that the ERG changes were most likely related to low zinc levels.
Collapse
Affiliation(s)
- Kiyofumi Mochizuki
- Department of Ophthalmology, JA Gifu Koseren, Chuno General Hospital, Gifu, Japan.
- Department of Ophthalmology, JA Gifu Koseren, Chuno General Hospital, 5-1 Wakakusa-dori, Seki-shi, Gifu, 501-3802, Japan.
| | - Hiroki Murase
- Department of Ophthalmology, JA Gifu Koseren, Chuno General Hospital, Gifu, Japan
| | - Motoaki Imose
- Department of Internal Medicine, JA Gifu Koseren, Chuno General Hospital, Gifu, Japan
| | - Hideaki Kawakami
- Department of Ophthalmology, Gifu University School of Medicine, Gifu, Japan
| | - Akira Sawada
- Department of Ophthalmology, Gifu University School of Medicine, Gifu, Japan
| |
Collapse
|
94
|
Zhang B, Osborne NN. Oxidative-induced retinal degeneration is attenuated by epigallocatechin gallate. Brain Res 2006; 1124:176-87. [PMID: 17084820 DOI: 10.1016/j.brainres.2006.09.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/29/2022]
Abstract
The aim of this investigation was to determine whether an ingredient of green tea, epigallocatechin gallate (EGCG) could attenuate oxidative stress-induced degeneration of the retina as occurs in age-related macular degeneration (AMD) and glaucoma. Initial in vitro studies on brain membranes showed that EGCG was approximately 10 times more potent than trolox (vitamin E analogue) at attenuating lipid peroxidation caused by the nitric oxide donor, sodium nitroprusside (SNP). Subsequent immunohistochemical studies revealed that following an intraocular injection of SNP retinal photoreceptors are affected. This was supported by electroretinogram (ERG) recordings which showed both the a- and b-wave amplitudes to be significantly reduced. RT-PCR and Western blotting techniques showed that SNP caused a significant decrease in photoreceptor-specific markers (RET-P1, rhodopsin kinase), an increase in the cell death marker caspase-3, and no change in the ganglion cell specific markers, neurofilament (NF-L) and Thy-1. Importantly, when EGCG was co-injected, the detrimental effects to the retina caused by SNP were significantly blunted. The conclusion reached from this study is that EGCG is a powerful antioxidant and when injected into the eye with SNP attenuated the detrimental influence of SNP to retinal photoreceptors. Since oxidative stress has been implicated in retinal diseases like AMD and glaucoma this study provides "proof of principle" for the idea that daily intake of EGCG may help individuals suffering from retinal diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- B Zhang
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, UK
| | | |
Collapse
|
95
|
Hirzel K, Müller U, Latal AT, Hülsmann S, Grudzinska J, Seeliger MW, Betz H, Laube B. Hyperekplexia Phenotype of Glycine Receptor α1 Subunit Mutant Mice Identifies Zn2+ as an Essential Endogenous Modulator of Glycinergic Neurotransmission. Neuron 2006; 52:679-90. [PMID: 17114051 DOI: 10.1016/j.neuron.2006.09.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2006] [Revised: 08/08/2006] [Accepted: 09/18/2006] [Indexed: 01/09/2023]
Abstract
Zn(2+) is thought to modulate neurotransmission by affecting currents mediated by ligand-gated ion channels and transmitter reuptake by Na(+)-dependent transporter systems. Here, we examined the in vivo relevance of Zn(2+) neuromodulation by producing knockin mice carrying the mutation D80A in the glycine receptor (GlyR) alpha1 subunit gene (Glra1). This substitution selectively eliminates the potentiating effect of Zn(2+) on GlyR currents. Mice homozygous for Glra1(D80A) develop a severe neuromotor phenotype postnatally that resembles forms of human hyperekplexia (startle disease) caused by mutations in GlyR genes. In spinal neurons and brainstem slices from Glra1(D80A) mice, GlyR expression, synaptic localization, and basal glycinergic transmission were normal; however, potentiation of spontaneous glycinergic currents by Zn(2+) was significantly impaired. Thus, the hyperekplexia phenotype of Glra1(D80A) mice is due to the loss of Zn(2+) potentiation of alpha1 subunit containing GlyRs, indicating that synaptic Zn(2+) is essential for proper in vivo functioning of glycinergic neurotransmission.
Collapse
Affiliation(s)
- Klaus Hirzel
- Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Choi JS, Kim KA, Yoon YJ, Fujikado T, Joo CK. Inhibition of cyclooxygenase-2 expression by zinc-chelator in retinal ischemia. Vision Res 2006; 46:2721-7. [PMID: 16584753 DOI: 10.1016/j.visres.2006.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2005] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 01/26/2023]
Abstract
The zinc ion (Zn2+) is abundant in neurons. However, excessive Zn2+ can induce neuronal cell death. This study examined the role of Zn2+ in transient retinal ischemia in adult male rats. The rats were sacrificed 4-24 h after retinal ischemia by high intra-ocular pressure, and the retinas were prepared for microscopic examination of retinal cell degeneration, and fluorescence microscopy using zinquin ethyl ester as the zinc ion-specific probe. Moreover, COX-2 expression was observed by Western blotting. In control retinas, there was a low Zn2+ concentration in the inner plexiform layer (IPL), a high Zn2+ concentration in the outer plexiform layer (OPL), and no detectable Zn2+ in either the ganglion cell layer (GCL) or the inner nuclear layer (INL). In contrast, in the retinas exposed to ischemia without the administration of the zinc ion chelators (Ca2+-EDTA and TPEN), Zn2+ deposits were found in the IPL and INL beginning 4 h after ischemia and degeneration of neurons was found in the GCL and INL. Less Zn2+ accumulation in the IPL and INL and less neuronal degeneration in the GCL and INL were found in the retinas treated with Ca2+-EDTA or TPEN before ischemia. Furthermore, the COX-2 protein levels increased 4-8 h after retinal ischemia, and chelation of zinc ion inhibited this effect. These results suggest that the accumulation of Zn2+ following an ischemic insult can cause retinal degeneration and induce abnormal COX-2 expression.
Collapse
Affiliation(s)
- Jun-Sub Choi
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
97
|
Redenti S, Chappell RL. Neuroimaging of zinc released by depolarization of rat retinal cells. Vision Res 2005; 45:3520-5. [PMID: 16181655 DOI: 10.1016/j.visres.2005.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 11/12/2022]
Abstract
Zinc is associated with glutamatergic pathways in brain and retina, yet its role in neuromodulation remains unknown. High concentrations of reactive zinc in vertebrate photoreceptor terminals suggest a neuromodulatory role in the outer plexiform layer but zinc release has not been demonstrated. Using the membrane-impermeable form of the Zn(2+) sensitive fluorescent dye Newport Green, we have demonstrated increased release of Zn(2+) from the rat retina in response to potassium-induced depolarization of retinal cells. This increase was greatest in the outer retina with densest bands observed in the outer plexiform layer and photoreceptor inner segment regions of rat retinal slices.
Collapse
|
98
|
Nusetti S, Obregón F, Quintal M, Benzo Z, Lima L. Taurine and Zinc Modulate Outgrowth from Goldfish Retinal Explants. Neurochem Res 2005; 30:1483-92. [PMID: 16362767 DOI: 10.1007/s11064-005-8825-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Taurine and zinc, highly concentrated in the retina, possess similar properties in this structure, such as neuro-protection, membrane stabilization, influencing regeneration, and modulating development, maybe by acting in parallel or as interacting agents. We previously demonstrated that there are some correlations between taurine and zinc levels in hippocampus, dentate gyrus and retina of the developing rat. In the present study we evaluate the possible effects of taurine and zinc on outgrowth from goldfish retinal explants. The optic nerve was crushed 10 days before plating and culturing retinal explants in Leibovitz medium with 10% fetal calf serum and gentamicin. Neurites were measured with SigmaScanPro after 5 days in culture. Taurine (HPLC) and zinc (ICP) concentrations were determined in the retina between 1 and 180 days after crushing the optic nerve. Zinc sulfate (0.01-100 microM), N,N, N',N'-tetrakis (pyridylmethyl) ethylenediamine (TPEN, 0.1-5 nM) and diethylenetriamine penta-acetic acid (DTPA, 10-300 microM), intracellular and extracellular zinc chelators, respectively, were added to the medium. TPEN was also injected intraocular (0.1 nM). Combinations of them were added with taurine (1-16 mM). Taurine concentrations were elevated in the retina 72 h after the crush, but were normalized by 180 days, those of zinc increased at 24 h, preceding the increase of taurine. The axonal transport of [3H]taurine from the optic tectum to the retina was not affected in fish with or without crush of the optic nerve at early periods after the injection, indicating an increase of it post-lesion. Zinc sulfate produced a bell-shaped concentration dependency on in vitro outgrowth, with stimulation at 0.05 microM, and inhibition at higher levels, also increased the effect of 4 mM taurine at 0.02 microM, but diminished it at higher concentrations in the medium. TPEN decreased outgrowth at 1 nM, but not at 0.5 nM, although the simultaneous presence of 4 mM taurine and 0.5 nM TPEN decreased outgrowth respecting the stimulation by taurine alone. The intraocular administration of TPEN decreased outgrowth in vitro, an effect counteracted by the addition of 4 mM taurine to the culture medium. DTPA decreased outgrowth from 10 microM in the medium. The present results indicate that an optimal zinc concentration is necessary for outgrowth of goldfish retinal explants and that, in zinc deficient retina, taurine could stimulate outgrowth. In addition, the observations of variations in tissue concentrations and of the effects of intraocular administration of TPEN indicate that these effects could occur in vivo.
Collapse
Affiliation(s)
- S Nusetti
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Apdo. 21827, 1020-A, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
99
|
Otteson DC, Lai H, Liu Y, Zack DJ. Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elements. BMC Mol Biol 2005; 6:15. [PMID: 15963234 PMCID: PMC1182371 DOI: 10.1186/1471-2199-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2005] [Accepted: 06/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the retina, many of the genes that encode components of the visual transduction cascade and retinoid recycling are exclusively expressed in photoreceptor cells and show highly stereotyped temporal and spatial expression patterns. Multiple transcriptional activators of photoreceptor-specific genes have been identified, but little is known about negative regulation of gene expression in the retina. We recently identified KLF15, a member of the Sp/Krüppel-like Factor family of zinc-finger containing transcription factors, as an in vitro repressor of the promoters of the photoreceptor-specific genes rhodopsin and IRBP/Rbp3. To gain further insight into the mechanism of KLF15-mediated regulation of gene expression, we have characterized the binding characteristics and specificity of KLF15's DNA binding domains and defined the KLF15 binding sites in the rhodopsin and IRBP promoters. RESULTS In EMSA and DNAseI footprinting assays, a KLF15-GST fusion protein containing the C-terminal zinc-finger domains (123 amino acids) showed zinc-dependent and sequence-specific binding to a 9 bp consensus sequence containing a core CG/TCCCC. Both the bovine rhodopsin and IRBP promoters contained multiple KLF15 binding sites that included the previously identified CRS-1 and G-rich repressor elements. KLF15 binding sites were highly conserved between the bovine, human, chimp and dog rhodopsin promoters, but less conserved in rodents. KLF15 reduced luciferase expression by bRho130-luc (containing 4 KLF15 sites) and repressed promoter activation by CRX (cone rod homeobox) and/or NRL (neural retina leucine zipper), although the magnitude of the reduction was smaller than previously reported for a longer bRho225-luc (containing 6 KFL15 sites). CONCLUSION KLF15 binds to multiple 9 bp consensus sites in the Rhodospin and IRBP promoters including the CRS-1 and G-rich repressor elements. Based on the known expression pattern of KLF15 in non-photoreceptor cells, we hypothesize an in vivo role for KLF15 in repressing photoreceptor-specific gene expression in the inner retina.
Collapse
Affiliation(s)
- Deborah C Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- College of Optometry, University of Houston; Houston, TX 77204 USA
| | - Hong Lai
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Genetics, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Yuhui Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| | - Donald J Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Departments of Neuroscience, and Molecular Biology and Genetics; Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| |
Collapse
|
100
|
Osborne NN, Chidlow G, Layton CJ, Wood JPM, Casson RJ, Melena J. Optic nerve and neuroprotection strategies. Eye (Lond) 2005; 18:1075-84. [PMID: 15534592 DOI: 10.1038/sj.eye.6701588] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Experimental studies have yielded a wealth of information related to the mechanism of ganglion cell death following injury either to the myelinated ganglion cell axon or to the ganglion cell body. However, no suitable animal models exist where injury can be directed to the optic nerve head region, particularly the unmyelinated ganglion cell axons. The process of relating the data from the various animal models to many different types of optic neuropathies in man must, therefore, be cautious. RESULTS Extensive studies on the isolated optic nerve have yielded valuable information on the way white matter is affected by ischaemia and how certain types of compounds can attenuate the process. Moreover, there are now persuasive data on how ganglion cell survival is affected when the ocular blood flow is reduced in various animal models. As a consequence, the molecular mechanisms involved in ganglion cell death are fairly well understood and various pharmacological agents have been shown to blunt the process when delivered before or shortly after the insult. CONCLUSIONS A battery of agents now exist that can blunt animal ganglion cell death irrespective of whether the insult was to the ganglion cell body or the myelinated axon. Whether this information can be applied for use in patients remains a matter of debate, and major obstacles need to be overcome before the laboratory studies may be applied clinically. These include the delivery of the pharmacological agents to the site of ganglion cell injury and side effects to the patients. Moreover, it is necessary to establish whether effective neuroprotection is only possible when the drug is administered at a defined time after injury to the ganglion cells. This information is essential in order to pursue the idea that a neuroprotective strategy can be applied to a disease like glaucoma, where ganglion cell death appears to occur at different times during the lifetime of the patient.
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalmology, Oxford University, Oxford, UK.
| | | | | | | | | | | |
Collapse
|