51
|
Johnson D, Bennett ES. Isoform-specific Effects of the β2 Subunit on Voltage-gated Sodium Channel Gating. J Biol Chem 2006; 281:25875-81. [PMID: 16847056 DOI: 10.1074/jbc.m605060200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | |
Collapse
|
52
|
Yamakawa K. Na channel gene mutations in epilepsy--the functional consequences. Epilepsy Res 2006; 70 Suppl 1:S218-22. [PMID: 16806834 DOI: 10.1016/j.eplepsyres.2005.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 10/24/2022]
Abstract
Mutations of voltage-gated sodium channel genes SCN1A, SCN2A, and SCN1B have been identified in several types of epilepsies including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). In both SCN1A and SCN2A, missense mutations tend to result in benign idiopathic epilepsy, whereas truncation mutations lead to severe and intractable epilepsy. However, the results obtained by the biophysical analyses using cultured cell systems still remain elusive. Now studies in animal models harboring sodium channel gene mutations should be eagerly pursued.
Collapse
Affiliation(s)
- Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
53
|
Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, Goldin AL, Escayg A. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci 2006; 26:2714-23. [PMID: 16525050 PMCID: PMC6675156 DOI: 10.1523/jneurosci.2977-05.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel alpha subunit. This residue is conserved in mammalian sodium channels as well as in sodium channels from lower organisms. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared with the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations, which have changes predicted to increase neuronal firing.
Collapse
|
54
|
Majumdar S, Sikdar SK. Fast Pseudo-Periodic Oscillation in the Rat Brain Voltage-gated Sodium Channel α Subunit. J Membr Biol 2005; 208:1-14. [PMID: 16596442 DOI: 10.1007/s00232-005-0814-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/07/2005] [Indexed: 10/24/2022]
Abstract
In the work reported here, we have investigated the changes in the activation and fast inactivation properties of the rat brain voltage-gated sodium channel (rNa(v) 1.2a) alpha subunit, expressed heterologously in the Chinese Hamster Ovary (CHO) cells, by short depolarizing prepulses (10-1000 ms). The time constant of recovery from fast inactivation (tau(fast)) and steady-state parameters for activation and inactivation varied in a pseudo-oscillatory fashion with the duration and amplitude of a sustained prepulse. A consistent oscillation was observed in most of the steady-state and non-inactivating current parameters with a time period close to 225 ms, although a faster oscillation of time period 125 ms was observed in the tau(fast). The studies on the non-inactivating current and steady-state activation indicate that the phase of oscillation varies from cell to cell. Co-expression of the beta1 subunit with the alpha subunit channel suppressed the oscillation in the charge movement per single channel and free energy of steady-state inactivation, although the oscillation in the half steady-state inactivation potential remained unaltered. Incidentally, the frequencies of oscillation in the sodium channel parameters (4-8 Hz) correspond to the theta component of network oscillation. This fast pseudo-oscillatory mechanism, together with the slow pseudo-oscillatory mechanism found in these channels earlier, may contribute to the oscillations in the firing properties observed in various neuronal subtypes and many pathological conditions.
Collapse
Affiliation(s)
- S Majumdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
55
|
Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115:2010-7. [PMID: 16075041 PMCID: PMC1180547 DOI: 10.1172/jci25466] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the first mutations of the neuronal sodium channel SCN1A were identified 5 years ago, more than 150 mutations have been described in patients with epilepsy. Many are sporadic mutations and cause loss of function, which demonstrates haploinsufficiency of SCN1A. Mutations resulting in persistent sodium current are also common. Coding variants of SCN2A, SCN8A, and SCN9A have also been identified in patients with seizures, ataxia, and sensitivity to pain, respectively. The rapid pace of discoveries suggests that sodium channel mutations are significant factors in the etiology of neurological disease and may contribute to psychiatric disorders as well.
Collapse
Affiliation(s)
- Miriam H Meisler
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA.
| | | |
Collapse
|
56
|
Jurkat-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 2005; 115:2000-9. [PMID: 16075040 PMCID: PMC1180551 DOI: 10.1172/jci25525] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Muscle channelopathies are caused by mutations in ion channel genes, by antibodies directed against ion channel proteins, or by changes of cell homeostasis leading to aberrant splicing of ion channel RNA or to disturbances of modification and localization of channel proteins. As ion channels constitute one of the only protein families that allow functional examination on the molecular level, expression studies of putative mutations have become standard in confirming that the mutations cause disease. Functional changes may not necessarily prove disease causality of a putative mutation but could be brought about by a polymorphism instead. These problems are addressed, and a more critical evaluation of the underlying genetic data is proposed.
Collapse
|
57
|
Rhodes TH, Vanoye CG, Ohmori I, Ogiwara I, Yamakawa K, George AL. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J Physiol 2005; 569:433-45. [PMID: 16210358 PMCID: PMC1464244 DOI: 10.1113/jphysiol.2005.094326] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel alpha(1) subunit (Na(V)1.1), are associated with genetic forms of epilepsy, including generalized epilepsy with febrile seizures plus (GEFS+ type 2), severe myoclonic epilepsy of infancy (SMEI) and related conditions. Several missense SCN1A mutations have been identified in probands affected by the syndrome of intractable childhood epilepsy with generalized tonic-clonic seizures (ICEGTC), which bears similarity to SMEI. To test whether ICEGTC arises from molecular mechanisms similar to those involved in SMEI, we characterized eight ICEGTC missense mutations by whole-cell patch clamp recording of recombinant human SCN1A heterologously expressed in cultured mammalian cells. Two mutations (G979R and T1709I) were non-functional. The remaining alleles (T808S, V983A, N1011I, V1611F, P1632S and F1808L) exhibited measurable sodium current, but had heterogeneous biophysical phenotypes. Mutant channels exhibited lower (V983A, N1011I and F1808L), greater (T808S) or similar (V1611F and P1632S) peak sodium current densities compared with wild-type (WT) SCN1A. Three mutations (V1611F, P1632S and F1808L) displayed hyperpolarized conductance-voltage relationships, while V983A exhibited a strong depolarizing shift in the voltage dependence of activation. All mutants except T808S had hyperpolarized shifts in the voltage dependence of steady-state channel availability. Three mutants (V1611F, P1632S and F1808L) exhibited persistent sodium current ranging from approximately 1-3% of peak current amplitude that was significantly greater than WT-SCN1A. Several mutants had impaired slow inactivation, with V983A showing the most prominent effect. Finally, all of the functional alleles exhibited reduced use-dependent channel inhibition. In summary, SCN1A mutations associated with ICEGTC result in a wide spectrum of biophysical defects, including mild-to-moderate gating impairments, shifted voltage dependence and reduced use dependence. The constellation of biophysical abnormalities for some mutants is distinct from those previously observed for GEFS+ and SMEI, suggesting possible, but complex, genotype-phenotype correlations.
Collapse
Affiliation(s)
- Thomas H Rhodes
- Division of Genetic Medicine, Department of Medicine, 529 Light Hall, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37232-0275, USA
| | | | | | | | | | | |
Collapse
|
58
|
Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AMJM, Pusch M, Strom TM. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005; 366:371-7. [PMID: 16054936 DOI: 10.1016/s0140-6736(05)66786-4] [Citation(s) in RCA: 560] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Familial hemiplegic migraine is an autosomal dominant severe subtype of migraine with aura characterised by some degree of hemiparesis during the attacks. So far, mutations in two genes regulating ion translocation-CACNA1A and ATP1A2-have been identified in pedigrees with this disease. METHODS To identify additional genes for familial hemiplegic migraine, we did a genome-wide linkage analysis of two disease pedigrees without mutations in CACNA1A and ATP1A2. Ion channel genes in the candidate interval were analysed for mutations, and the functional consequences of the recorded sequence alteration were determined. FINDINGS We identified a novel locus for familial hemiplegic migraine on chromosome 2q24. Sequencing of candidate genes in this region revealed a heterozygous missense mutation (Gln1489Lys) in the neuronal voltage-gated sodium channel gene SCN1A, mutations of which have been associated with epilepsy. This same mutation was present in three families with familial hemiplegic migraine. It results in a charge-altering aminoacid exchange in the so-called hinged-lid domain of the protein, which is critical for fast inactivation of the channel. Whole-cell recordings in transiently transfected tsA201 cells expressing the highly homologous SCN5A sodium channel showed that the mutation induces a two-fold to four-fold accelerated recovery from fast inactivation without altering any of the other channel parameters investigated. INTERPRETATION Dysfunction of the neuronal sodium channel SCN1A can cause familial hemiplegic migraine. Our findings have implications for the understanding of migraine aura. Moreover, our study reinforces the molecular links between migraine and epilepsy, two common paroxysmal disorders.
Collapse
Affiliation(s)
- Martin Dichgans
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-Universität, 81377 München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Turnbull J, Lohi H, Kearney JA, Rouleau GA, Delgado-Escueta AV, Meisler MH, Cossette P, Minassian BA. Sacred disease secrets revealed: the genetics of human epilepsy. Hum Mol Genet 2005; 14:2491-500. [PMID: 16049035 DOI: 10.1093/hmg/ddi250] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurons throughout the brain suddenly discharging synchronously and recurrently cause primarily generalized seizures. Discharges localized awhile in one part of the brain cause focal-onset seizures. A genetically determined generalized hyperexcitability had been predicted in primarily generalized seizures, but surprisingly the first epilepsy gene discovered, CHRNA4, was in a focal (frontal lobe)-onset syndrome. Another surprise with CHRNA4 was its encoding of an ion channel present throughout the brain. The reason why CHRNA4 causes focal-onset seizures is unknown. Recently, the second focal (temporal lobe)-onset epilepsy gene, LGI1 (unknown function), was discovered. CHRNA4 led the way to mutation identifications in 15 ion channel genes, most causing primarily generalized epilepsies. Potassium channel mutations cause benign familial neonatal convulsions. Sodium channel mutations cause generalized epilepsy with febrile seizures plus or, if more severe, severe myoclonic epilepsy of infancy. Chloride and calcium channel mutations are found in rare families with the common syndromes childhood absence epilepsy and juvenile myoclonic epilepsy (JME). Mutations in the EFHC1 gene (unknown function) occur in other rare JME families, and yet in other families, associations are present between JME (or other generalized epilepsies) and single nucleotide polymorphisms in the BRD2 gene (unknown function) and the malic enzyme 2 (ME2) gene. Hippocrates predicted the genetic nature of the 'sacred' disease. Genes underlying the 'malevolent' forces seizing 1% of humans have now been revealed. These, however, still account for a mere fraction of the genetic contribution to epilepsy. Exciting years are ahead, in which the genetics of this extremely common, and debilitating, neurological disorder will be solved.
Collapse
Affiliation(s)
- Julie Turnbull
- The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Spampanato J, Kearney JA, de Haan G, McEwen DP, Escayg A, Aradi I, MacDonald BT, Levin SI, Soltesz I, Benna P, Montalenti E, Isom LL, Goldin AL, Meisler MH. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction. J Neurosci 2005; 24:10022-34. [PMID: 15525788 PMCID: PMC6730248 DOI: 10.1523/jneurosci.2034-04.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel alpha subunit. The mutation decreased modulation of the alpha subunit by beta1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of beta1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type alpha subunit with the beta1 or beta3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for beta subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the alpha and beta1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility.
Collapse
Affiliation(s)
- J Spampanato
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Pediatric epilepsies display unique characteristics that differ significantly from epilepsy in adults. The immature brain exhibits a decreased seizure threshold and an age-specific response to seizure-induced brain injury. Many idiopathic epilepsy syndromes and symptomatic epilepsies commonly present during childhood. This review highlights recent advances in the pathophysiology of developmental epilepsies. Cortical development involves maturational regulation of multiple cellular and molecular processes, such as neurogenesis, neuronal migration, synaptogenesis, and expression of neurotransmitter receptors and ion channels. These normal developmental changes of the immature brain also contribute to the increased risk for seizures and unique responses to seizure-induced brain injury in pediatric epilepsies. Recent technological advances, especially in genetics and imaging, have yielded exciting discoveries about the pathophysiology of specific pediatric epilepsy syndromes, such as the emergence of channelopathies as the cause of many idiopathic epilepsies and identification of malformations of cortical development as a major source of symptomatic epilepsies in children.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology, Box 8111, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
62
|
Abstract
Mutations in voltage-gated sodium channel genes (SCN1A, SCN2A, SCN1B) have been reported to be responsible for some epilepsies. Although studying such mutations to elucidate the disease mechanisms would be indispensable for the development of effective therapies, the functional consequences of these mutations remain controversial. Here, I propose a novel hypothesis for an epileptic disease mechanism which could drive the design of further studies to understand the molecular pathology of these diseases.
Collapse
Affiliation(s)
- Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
63
|
Bennett ES. Channel activation voltage alone is directly altered in an isoform-specific manner by Na(v1.4) and Na(v1.5) cytoplasmic linkers. J Membr Biol 2004; 197:155-68. [PMID: 15042347 DOI: 10.1007/s00232-004-0650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Indexed: 12/19/2022]
Abstract
The isoform-specific direct role of cytoplasmic loops in the gating of two voltage-gated sodium channel isoforms, the human cardiac channel (Na(v1.5); hH1) and the human adult skeletal muscle channel (Na(v1.4); hSkM1), was investigated. Comparison of biophysical characteristics was made among hSkM1, hH1, and several hSkM1/hH1 chimeras in which the putative cytoplasmic loops that join domain I to II (loop A) and domain II to III (loop B) from one isoform replaced one or both of the analogous loops from the other isoform. For all parameters measured, hSkM1 and hH1 behavior were significantly different. Comparison of hSkM1 and hH1 biophysical characteristics with the function of their respective chimeras indicate that only the half-activation voltage ( V(a)) is directly and differently altered by the species of cytoplasmic loop such that a channel consisting of one or both hSkM1 loops activates at smaller depolarizations, while a larger depolarization is required for activation of a channel containing one or both of the analogous hH1 loops. When either cardiac channel loop A or B is attached to hSkM1, a 6-7 mV depolarizing shift in V(a) is measured, increasing to a nearly 20 mV depolarization when both cardiac-channel loops are attached. The addition of either skeletal muscle-channel loop to hH1 causes a 7 mV hyperpolarization in V(a), which increases to about 10 mV for the double loop chimera. There is no significant difference in either steady-state inactivation or in the recovery from inactivation data between hSkM1 and its chimeras and between hH1 and its chimeras. Data indicate that the cytoplasmic loops contribute directly to the magnitude of the window current, suggesting that channels containing skeletal muscle loops have three times the peak persistent channel activity compared to channels containing the cardiac loops. An electrostatic mechanism, in which surface charge differences among these loops might alter differently the voltage sensed by the gating mechanism of the channel, can not account for the observed isoform-specific effects of these loops only on channel activation voltage. In summary, although the DI-DII and DII-DIII loop structures among isoforms are not well conserved, these data indicate that only one gating parameter, V(a) is affected directly and in an isoform-specific manner by these divergent loop structures, creating loop-specific window currents and percentages of persistently active channels at physiological voltages that will likely impact the excitability of the cell.
Collapse
Affiliation(s)
- E S Bennett
- Department of Physiology & Biophysics and Program in Neuroscience, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
64
|
Johnson D, Montpetit ML, Stocker PJ, Bennett ES. The Sialic Acid Component of the β1 Subunit Modulates Voltage-gated Sodium Channel Function. J Biol Chem 2004; 279:44303-10. [PMID: 15316006 DOI: 10.1074/jbc.m408900200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Physiology & Biophysics and Program in Neuroscience, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW This article reviews the most significant advances in the field of genetics of the epilepsies during the past year, with emphasis on newly identified genes and functional studies leading to new insights into the pathophysiology of epilepsy. RECENT FINDINGS Mutations in the chloride channel gene CLCN2 have been associated with the most common forms of idiopathic generalized epilepsies. A mutation in the ATP1A2 sodium potassium ATPase pump gene has been described in a family in which familial hemiplegic migraine and benign familial infantile convulsions partly co-segregate. The leucine-rich, glioma-inactivated 1 gene (LGI1) (also known as epitempin) was found to be responsible for autosomal-dominant lateral temporal lobe epilepsy in additional families. The serine-threonine kinase 9 gene (STK9) was identified as the second gene associated with X-linked infantile spasms. Mutations in the Aristaless-related homeobox gene (ARX) have been recognized as a cause of X-linked infantile spasms and sporadic cryptogenic infantile spasms. A second gene underlying progressive myoclonus epilepsy of Lafora, NHLRC1, was shown to code for a putative E3 ubiquitin ligase. SUMMARY Genes associated with idiopathic generalized epilepsies remain within the ion channel family. Mutations in non-ion channel genes are responsible for autosomal-dominant lateral temporal lobe epilepsy, a form of idiopathic focal epilepsy, malformations of cortical development, and syndromes that combine X-linked mental retardation and epilepsy. Most genetic epilepsies have a complex mode of inheritance, and genes identified so far account only for a minority of families and sporadic cases. Functional studies are leading to a better understanding of the mechanisms underlying hyperexcitability and seizures.
Collapse
Affiliation(s)
- Eva Gutierrez-Delicado
- Epilepsy Unit, Neurology Service, Fundación Jiménez Díaz and Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
66
|
Baulac S, Gourfinkel-An I, Nabbout R, Huberfeld G, Serratosa J, Leguern E, Baulac M. Fever, genes, and epilepsy. Lancet Neurol 2004; 3:421-30. [PMID: 15207799 DOI: 10.1016/s1474-4422(04)00808-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
About 13% of patients with epilepsy have a history of febrile seizures (FS). Studies of familial forms suggest a genetic component to the epidemiological link. Indeed, in certain monogenic forms of FS, for which several loci have been reported, some patients develop epilepsy with a higher risk than in the general population. Patients with generalised epilepsy with febrile seizures plus (GEFS+) can have typical and isolated FS, FS lasting more beyond age 6 years, and subsequent afebrile (typically generalised) seizures. Mutations associated with GEFS+ were identified in genes for subunits of the voltage-gated sodium channel and the gamma2 subunit of the ligand-gated GABAA receptor. Screening for these genes in patients with severe myoclonic epilepsy in infancy showed de novo mutations of the alpha1 subunit of the voltage-gated sodium channel. Antecedent FS are commonly observed in temporal-lobe epilepsy (TLE). In sporadic mesial TLE-characterised by the sequence of complex FS in childhood, hippocampal sclerosis, and refractory temporal-lobe seizures-association studies suggested the role of several susceptibility genes. Work on some large pedigrees also suggests that FS and temporal-lobe seizures may have a common genetic basis, whether hippocampus sclerosis is present or not. The molecular defects identified in the genetic associations of FS and epileptic seizures are very attractive models to aid our understanding of epileptogenesis and susceptibility to seizure-provoking factors, especially fever.
Collapse
|
67
|
Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL. Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proc Natl Acad Sci U S A 2004; 101:11147-52. [PMID: 15263074 PMCID: PMC503754 DOI: 10.1073/pnas.0402482101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel alpha(1) subunit (Na(V)1.1), are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of five SMEI mutations by using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. Two mutations (F902C and G1674R) rendered SCN1A channels nonfunctional, and a third allele (G1749E) exhibited minimal functional alterations. However, two mutations within or near the S4 segment of the fourth repeat domain (R1648C and F1661S) conferred significant impairments in fast inactivation, including persistent, noninactivating channel activity resembling the pattern of channel dysfunction observed for alleles associated with generalized epilepsy with febrile seizures plus. Our data provide evidence for a range of SCN1A functional abnormalities in SMEI, including gain-of-function defects that were not anticipated in this disorder. Our results further indicate that a complex relationship exists between phenotype and aberrant sodium channel function in these inherited epilepsies.
Collapse
Affiliation(s)
- Thomas H Rhodes
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
68
|
Spampanato J, Aradi I, Soltesz I, Goldin AL. Increased Neuronal Firing in Computer Simulations of Sodium Channel Mutations That Cause Generalized Epilepsy With Febrile Seizures Plus. J Neurophysiol 2004; 91:2040-50. [PMID: 14702334 DOI: 10.1152/jn.00982.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generalized epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial syndrome with a complex seizure phenotype. It is caused by mutations in one of 3 voltage-gated sodium channel subunit genes ( SCN1B, SCN1A, and SCN2A) and the GABAA receptor γ2 subunit gene ( GBRG2). The biophysical characterization of 3 mutations (T875M, W1204R, and R1648H) in SCN1A, the gene encoding the CNS voltage-gated sodium channel α subunit Nav1.1, demonstrated a variety of functional effects. The T875M mutation enhanced slow inactivation, the W1204R mutation shifted the voltage dependency of activation and inactivation in the negative direction, and the R1648H mutation accelerated recovery from inactivation. To determine how these changes affect neuronal firing, we used the NEURON simulation software to design a computational model based on the experimentally determined properties of each GEFS+ mutant sodium channel and a delayed rectifier potassium channel. The model predicted that W1204R decreased the threshold, T875M increased the threshold, and R1648H did not affect the threshold for firing a single action potential. Despite the different effects on the threshold for firing a single action potential, all of the mutations resulted in an increased propensity to fire repetitive action potentials. In addition, each mutation was capable of driving repetitive firing in a mixed population of mutant and wild-type channels, consistent with the dominant nature of these mutations. These results suggest a common physiological mechanism for epileptogenesis resulting from sodium channel mutations that cause GEFS+.
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Microbiology and Molecular Genetics, University of California 92697-4025, USA
| | | | | | | |
Collapse
|
69
|
Gourfinkel-An I, Baulac S, Nabbout R, Ruberg M, Baulac M, Brice A, LeGuern E. Monogenic idiopathic epilepsies. Lancet Neurol 2004; 3:209-18. [PMID: 15039033 DOI: 10.1016/s1474-4422(04)00706-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major advances have recently been made in our understanding of the genetic bases of monogenic inherited epilepsies. Direct molecular diagnosis is now possible in numerous inherited symptomatic epilepsies. Progress has also been spectacular with respect to several idiopathic epilepsies that are caused by mutations in genes encoding subunits of ion channels or neurotransmitter receptors. Although these findings concern only a few families and sporadic cases, their potential importance is great, because these genes are implicated in a wide range of more common epileptic disorders and seizure types as well as some rare syndromes. Functional studies of these mutations, while leading to further progress in the neurobiology of the epilepsies, will help to refine genotype-phenotype relations and increase our understanding of responses to antiepileptic drugs. In this article, we review the clinical and genetic data on most of the idiopathic human epilepsies and epileptic contexts in which the association of epilepsy and febrile convulsions is genetically determined.
Collapse
Affiliation(s)
- Isabelle Gourfinkel-An
- Unité d'Epileptologie, Assistace Publique Hôpitaux, and INSERM U 289, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
70
|
Ceulemans BPGM, Claes LRF, Lagae LG. Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy. Pediatr Neurol 2004; 30:236-43. [PMID: 15087100 DOI: 10.1016/j.pediatrneurol.2003.10.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 10/20/2003] [Indexed: 10/26/2022]
Abstract
Mutations in the alpha-subunit of the first neuronal sodium channel gene SCN1A have been described in isolated patients with severe myoclonic epilepsy in infancy or Dravet syndrome and in families with generalized epilepsy with febrile seizures plus. To find phenotype/genotype correlations, we reviewed all published cases of mutations in SCN1A in addition to four new patients reported here. A total of 60 mutations were observed. Approximately 52% (31/60) are truncating mutations correlating with de novo cases of classical Dravet syndrome in 32 of 34 (94%) patients. Missense mutations in the pore-forming part constitute 27% (16/60) and correspond to a classical type in 12 of 16 (75%) patients. Missense mutations in the voltage sensor were present in 12% (7/60) and correlate with a clinical picture ranging from febrile seizures plus to severe myoclonic epilepsy in infancy. Outside these regions missense mutations are rare and account for only 10% (6/60), corresponding mostly with febrile seizures plus. These results illustrate that the clinical spectrum of SCN1A mutations ranges from febrile seizures, febrile seizures plus, over a milder type to the classical form of severe myoclonic epilepsy in infancy, and confirm the clinical experience that severe myoclonic epilepsy in infancy is the most severe form on this spectrum.
Collapse
|
71
|
Kerr NCH, Holmes FE, Wynick D. Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat. J Biol Chem 2004; 279:24826-33. [PMID: 15047701 PMCID: PMC2726572 DOI: 10.1074/jbc.m401281200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.
Collapse
Affiliation(s)
- Niall C. H. Kerr
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
- NeuroTargets Ltd., Surrey Technology Centre, Occam Road, Surrey Research Park, Guilford, Surrey GU2 7YG, United Kingdom
| | - Fiona E. Holmes
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - David Wynick
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
- NeuroTargets Ltd., Surrey Technology Centre, Occam Road, Surrey Research Park, Guilford, Surrey GU2 7YG, United Kingdom
- To whom correspondence should be addressed: LINE, Dorothy Hodgkin Building, Whitson St., Bristol BS1 3NY, UK. Tel.: 44-0-117-3313085; Fax: 44-0-117-3313084;
| |
Collapse
|
72
|
Abstract
Ion channels are critical for neuronal excitability and provide important targets for anticonvulsant drugs. In the past few years, several monogenetic epilepsies have been linked to mutations in genes encoding either voltage-gated or ligand-gated channels. The recognition that certain epilepsy syndromes are "channelopathies" initiates a new era in understanding the molecular pathophysiology of seizure disorders. This review summarizes recent advances related to this exciting area of investigation.
Collapse
Affiliation(s)
- Alfred L George
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
73
|
Abstract
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel alpha1 subunit (NaV1.1), are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of four GEFS+ alleles and one SMEI allele using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. One previously reported GEFS+ mutation (I1656M) and an additional novel allele (R1657C), both affecting residues in a voltage-sensing S4 segment, exhibited a similar depolarizing shift in the voltage dependence of activation. Additionally, R1657C showed a 50% reduction in current density and accelerated recovery from slow inactivation. Unlike three other GEFS+ alleles that we recently characterized, neither R1657C nor I1656M gave rise to a persistent, noninactivating current. In contrast, two other GEFS+ mutations (A1685V and V1353L) and L986F, an SMEI-associated allele, exhibited complete loss of function. In conclusion, our data provide evidence for a wide spectrum of sodium channel dysfunction in familial epilepsy and demonstrate that both GEFS+ and SMEI can be associated with nonfunctional SCN1A alleles.
Collapse
|
74
|
Abstract
Rapid inactivation of sodium channels is crucial for the normal electrical activity of excitable cells. There are many different types of inactivation, including fast, slow and ultra-slow, and each of these can be modulated by cellular factors or accessory subunits. Fast inactivation occurs by a 'hinged lid' mechanism in which an inactivating particle occludes the pore, whereas slow inactivation is most likely to involve a rearrangement of the channel pore. Subtle defects in either inactivation process can lead to debilitating human diseases, including periodic paralyses in muscle, ventricular fibrillation and long QT syndrome (delayed cardiac repolarization) in the heart, and epilepsy in the CNS.
Collapse
Affiliation(s)
- Alan L Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA.
| |
Collapse
|