51
|
SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A 2008; 105:16021-6. [PMID: 18840685 DOI: 10.1073/pnas.0806791105] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neocortical projection neurons exhibit layer-specific molecular profiles and axonal connections. Here we show that the molecular identities of early-born subplate and deep-layer neurons are not acquired solely during generation or shortly thereafter but undergo progressive postmitotic refinement mediated by SOX5. Fezf2 and Bcl11b, transiently expressed in all subtypes of newly postmigratory early-born neurons, are subsequently downregulated in layer 6 and subplate neurons, thereby establishing their layer 5-enriched postnatal patterns. In Sox5-null mice, this downregulation is disrupted, and layer 6 and subplate neurons maintain an immature differentiation state, abnormally expressing these genes postnatally. Consistent with this disruption, SOX5 binds and represses a conserved enhancer near Fezf2. The Sox5-null neocortex exhibits failed preplate partition and laminar inversion of early-born neurons, loss of layer 5 subcerebral axons, and misrouting of subplate and layer 6 corticothalamic axons to the hypothalamus. Thus, SOX5 postmitotically regulates the migration, postmigratory differentiation, and subcortical projections of subplate and deep-layer neurons.
Collapse
|
52
|
Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 2008; 15:1007-16. [PMID: 18356819 DOI: 10.1038/gt.2008.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel method for generating an antigen-specific cancer vaccine and immunotherapy has emerged using a DNA vaccine. However, antigen-presenting cells (APCs) have a limited life span, which hinders their long-term ability to prime antigen-specific T cells. Connective tissue growth factor (CTGF) has a role in cell survival. This study explored the intradermal administration of DNA encoding CTGF with a model tumor antigen, human papilloma virus type 16 E7. Mice vaccinated with CTGF/E7 DNA exhibited a dramatic increase in E7-specific CD4(+) and CD8(+) T-cell precursors. They also showed an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with the wild-type E7 DNA. The delivery of DNA encoding CTGF and E7 or CTGF alone could prolong the survival of transduced dendritic cells (DCs) in vivo. In addition, CTGF/E7-transduced DCs could enhance a higher number of E7-specific CD8(+) T cells than E7-transduced DCs. By prolonging the survival of APCs, DNA vaccine encoding CTGF linked to a tumor antigen represents an innovative approach to enhance DNA vaccine potency and holds promise for cancer prophylaxis and immunotherapy.
Collapse
|
53
|
SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes. Neuron 2008; 57:232-47. [DOI: 10.1016/j.neuron.2007.12.023] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/30/2007] [Accepted: 12/19/2007] [Indexed: 12/12/2022]
|
54
|
Rasmussen S, Wang Y, Kivisäkk P, Bronson RT, Meyer M, Imitola J, Khoury SJ. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing--remitting experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2007; 130:2816-29. [PMID: 17890734 DOI: 10.1093/brain/awm219] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cortical pathology, callosal atrophy and axonal loss are substrates of progression in multiple sclerosis (MS). Here we describe cortical, periventricular subcortical lesions and callosal demyelination in relapsing-remitting experimental autoimmune encephalomyelitis in SJL mice that are similar to lesions found in MS. Unlike the T-cell infiltrates that peak during acute disease, we found that microglia activation persists through the chronic disease phase. Microglia activation correlated with abnormal phosphorylation of neurofilaments in the cortex and stripping of synaptic proteins in cortical callosal projecting neurons. There was significant impairment of retrograde labeling of NeuN-positive callosal projecting neurons and reduction in the labelling of their transcallosal axons. These data demonstrate a novel paradigm of cortical and callosal neuropathology in a mouse model of MS, perpetuated by innate immunity. These features closely mimic the periventricular and cortical pathology described in MS patients and establish a model that could be useful to study mechanisms of progression in MS.
Collapse
Affiliation(s)
- Stine Rasmussen
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Campolongo P, Trezza V, Cassano T, Gaetani S, Morgese MG, Ubaldi M, Soverchia L, Antonelli T, Ferraro L, Massi M, Ciccocioppo R, Cuomo V. Perinatal exposure to delta-9-tetrahydrocannabinol causes enduring cognitive deficits associated with alteration of cortical gene expression and neurotransmission in rats. Addict Biol 2007; 12:485-95. [PMID: 17578508 DOI: 10.1111/j.1369-1600.2007.00074.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to investigate whether perinatal exposure to a moderate dose of delta-9-tetrahydrocannabinol (THC) alters cortical gene expression and neurotransmission, leading to enduring cognitive dysfunctions in rat offspring. To this purpose, rat dams were treated, from gestational day 15 to postnatal day 9, with THC at a daily dose (5 mg/kg, per os) devoid of overt signs of toxicity. THC did not influence reproduction parameters, whereas it caused subtle neurofunctional deficits in the adult offspring. Particularly, perinatal THC induced long-lasting alterations of cortical genes related to glutamatergic and noradrenergic systems, associated with a decrease in the cortical extracellular levels of both neurotransmitters. These alterations may account, at least in part, for the enduring cognitive impairment displayed by THC-exposed offspring. Taken together, the present results highlight how exposure to cannabinoids during early stages of brain development can lead to irreversible, subtle dysfunctions in the offspring.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Human Physiology and Pharmacology, Sapienza, University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2006; 445:168-76. [PMID: 17151600 DOI: 10.1038/nature05453] [Citation(s) in RCA: 3993] [Impact Index Per Article: 221.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/15/2006] [Indexed: 11/09/2022]
Abstract
Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Collapse
Affiliation(s)
- Ed S Lein
- Allen Institute for Brain Science, Seattle, Washington 98103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Watakabe A, Ohsawa S, Hashikawa T, Yamamori T. Binding and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys. J Comp Neurol 2006; 499:258-73. [PMID: 16977617 DOI: 10.1002/cne.21106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although axon guidance molecules play critical roles in neural circuit formation during development, their roles in the adult circuit are not well understood. In this study we examined the expression patterns of Semaphorin 3E (Sema3E), a member of the semaphorin family, in the mature neocortices of monkeys and mice by in situ hybridization (ISH). We found that Sema3E mRNA is highly specific to layer VI throughout the macaque monkey neocortex. We further examined the ratio of Sema3E+ cells among the layer VI excitatory neurons in areas M1, S1, TE, and V1 by fluorescence double ISH, using the vesicular glutamate transporter 1 (VGluT1) gene as a specific marker for excitatory neurons. Among these areas, 34-63% of the VGluT1+ neurons expressed Sema3E mRNA. In the mouse cortex, two significant differences were observed in the pattern of Sema3E mRNA distribution. 1) Sema3E mRNA was expressed in layer Vb, in addition to layer VI in mice. 2) A subset of GABAergic interneurons expressed Sema3E mRNA in mice. By an in vitro binding experiment, we provide evidence that Plexin D1 is the specific receptor for Sema3E. Plexin D1 mRNA was preferentially expressed in layers II-V in both monkey and mouse cortices. The detailed lamina analysis by double ISH, however, revealed that Plexin D1 mRNA is expressed in layers II-Va, but not in layer Vb in the mouse cortex. Thus, the Plexin D1 and Sema3E mRNAs exhibit conserved complementary lamina patterns in mice and monkeys, despite the species differences in the pattern of each gene.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
58
|
Watakabe A, Ichinohe N, Ohsawa S, Hashikawa T, Komatsu Y, Rockland KS, Yamamori T. Comparative analysis of layer-specific genes in Mammalian neocortex. ACTA ACUST UNITED AC 2006; 17:1918-33. [PMID: 17065549 DOI: 10.1093/cercor/bhl102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined the expression patterns of 4 layer-specific genes in monkey and mouse cortices by fluorescence double in situ hybridization. Based on their coexpression profiles, we were able to distinguish several subpopulations of deep layer neurons. One group was characterized by the expression of ER81 and the lack of Nurr1 mRNAs and mainly localized to layer 5. In monkeys, this neuronal group was further subdivided by 5-HT2C receptor mRNA expression. The 5-HT2C(+)/ER81(+) neurons were located in layer 5B in most cortical areas, but they intruded layer 6 in the primary visual area (V1). Another group of neurons, in monkey layer 6, was characterized by Nurr1 mRNA expression and was further subdivided as Nurr1(+)/connective tissue growth factor (CTGF)(-) and Nurr1(+)/CTGF(+) neurons in layers 6A and 6B, respectively. The Nurr1(+)/CTGF(+) neurons coexpressed ER81 mRNA in monkeys but not in mice. On the basis of tracer injections in 3 monkeys, we found that the Nurr1(+) neurons in layer 6A send some corticocortical, but not corticopulvinar, projections. Although the Nurr1(+)/CTGF(-) neurons were restricted to lateral regions in the mouse cortex, they were present throughout the monkey cortex. Thus, an architectonic heterogeneity across areas and species was revealed for the neuronal subpopulations with distinct gene expression profiles.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
McQuillen PS, Ferriero DM. Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol 2005; 15:250-60. [PMID: 16196392 PMCID: PMC8096042 DOI: 10.1111/j.1750-3639.2005.tb00528.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Perinatal brain injury may result in widespread deficits in visual, motor and cognitive systems suggesting disrupted brain development. Neurosensory and cognitive impairment are observed at increasing frequency with decreasing gestational ages, suggesting a unique vulnerability of the developing brain. The peak of human subplate neuron development coincides with the gestational ages of highest vulnerability to perinatal brain injury in the premature infant. At the same time, human thalamocortical connections are forming and being refined by activity-dependent mechanisms during critical periods. Subplate neurons are the first cortical neurons to mature and are selectively vulnerable to early hypoxic-ischemic brain injury in animal models. Timing of subplate neuron death determines the resulting defect in thalamocortical development: very early excitotoxic subplate neuron death results in failure of thalamocortical innervation, while later subplate neuron death interferes with the refinement of thalamocortical connections into mature circuits. We suggest that subplate neuron injury may be a central component of perinatal brain injury resulting in specific neurodevelopmental consequences.
Collapse
Affiliation(s)
- P S McQuillen
- Department of Pediatrics, Box 0106, University of California San Francisco Medical Center, San Francisco, CA 94143-0106, USA.
| | | |
Collapse
|
60
|
Conrad S, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells. J Neurosurg Spine 2005; 2:319-26. [PMID: 15796357 DOI: 10.3171/spi.2005.2.3.0319] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The glial scar composed of astrogliosis and extracellular matrix deposition represents a major impediment to axonal regeneration. The authors investigated the role of a novel profibrotic and angiogenic peptide connective tissue growth factor (CTGF [Hcs24/IGFBP-r2P]) in glial scar formation following spinal cord injury (SCI) in rats. METHODS The effects of SCI on CTGF expression during glial scar maturation 1 day to 1 month post-SCI were investigated using fluorescein-activated cell sorter (FACS) immunohistochemical analysis; these findings were compared with those obtained in sham-operated (control) spinal cords. The CTGF-positive cells accumulated at the spinal cord lesion site (p < 0.0001) corresponding to areas of glial scar formation. In the perilesional rim, CTGF expression was confined to invading vimentin-positive, glial fibrillary acidic protein (GFAP)-negative fibroblastoid cells, endothelial and smooth-muscle cells of laminin-positive vessels, and GFAP-positive reactive astrocytes. The CTGF-positive astrocytes coexpressed the activation-associated intermediate filaments nestin, vimentin (> 80%), and mesenchymal scar component fibronectin (50%). CONCLUSIONS The restricted accumulation of CTGF-reactive astrocytes and CTGF-positive fibroblastoid cells lining the laminin-positive basal neolamina suggests participation of these cells in scar formation. In addition, perilesional upregulation of endothelial and smooth-muscle CTGF expression points to a role in blood-brain barrier function modulating edema-induced secondary damage.
Collapse
Affiliation(s)
- Sabine Conrad
- Institute of Brain Research, University of Tübingen, Medical School, Tübingen, Germany
| | | | | | | |
Collapse
|
61
|
Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2004; 81:355-63. [PMID: 14663501 DOI: 10.1139/o03-069] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connective tissue growth factor (CTGF, CCN2), a member of the CCN family of proteins, is a cysteine-rich proadhesive matricellular protein that plays an essential role in the formation of blood vessels, bone, and connective tissue. As expression of this protein is potently induced by transforming growth factor-beta (TGFbeta), it has been hypothesized that CTGF mediates several of the downstream actions of TGFbeta. In particular, CTGF is profibrotic, as CTGF is overexpressed in fibrotic disease and synergizes with TGFbeta to promote sustained fibrosis in vivo. Over the last several years, key data regarding the developmental role and structure and function relationship of CTGF have emerged. In addition, increased information concerning the mechanisms underlying the control of CTGF expression in normal and fibrotic cells and the signal transduction pathways through which CTGF acts on cells has been uncovered. This review summarizes the current state of knowledge regarding CTGF biology.
Collapse
Affiliation(s)
- Andrew Leask
- Center for Rheumatology, Department of Medicine, Royal Free, University College London, Rowland Hill Sreet, London NW3 @PF, U.K.
| | | |
Collapse
|
62
|
Friedrichsen S, Heuer H, Christ S, Winckler M, Brauer D, Bauer K, Raivich G. CTGF expression during mouse embryonic development. Cell Tissue Res 2003; 312:175-88. [PMID: 12712324 DOI: 10.1007/s00441-003-0712-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Accepted: 02/19/2003] [Indexed: 12/25/2022]
Abstract
Connective tissue growth factor (CTGF) is a potent fibroblast mitogen and angiogenic factor which plays an important role in wound healing, cancerogenesis and fibrotic and vascular disease. Here we explored the regulation and the cellular site of the mRNA synthesis for this growth factor in the developing mouse embryo by in situ hybridisation. Strong and persistent CTGF gene expression was limited to three types of tissue: the vascular endothelium, particularly the high-pressure part of the cardiovascular system, condensed connective tissue around bone and cartilage, and maturing layer VII neurons in the cerebral cortex. With few exceptions (late tooth bud, neuroepithelium) epithelial tissue was negative. Very transient but strong expression was observed early during formation of cartilage, in late stages during perichondral ossification, on cerebral neuroepithelium, and in several discrete stages of tooth formation, on mesenchymal precursors of odontoblasts condensing on inner dental epithelium, and later on apposing regions of ameloblast and odontoblast epithelium. Altogether, the current study suggests that CTGF performs a dual role: a continuous function in the cardiovascular system, bone and cartilage-associated mesenchyme and maturing layer VII neurons, but also a more transient function associated with the formation of cartilage, bone, tooth and cerebral nerve cells.
Collapse
|