51
|
Plasticity of serotonergic innervation of the inferior colliculus in mice following acoustic trauma. Hear Res 2011; 283:89-97. [PMID: 22101024 DOI: 10.1016/j.heares.2011.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 01/30/2023]
Abstract
Acoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma. The trauma stimulus consisted of an 8 kHz pure tone presented at a level of 113 dB SPL for six consecutive hours to anesthetized CBA/J mice. Following a minimum recovery period of three weeks, serotonergic fibers were visualized via histochemical techniques targeting the serotonin reuptake transporter (SERT) and quantified using stereologic probes. SERT-positive fiber densities were then compared between the traumatized and protected hemispheres of unilaterally traumatized subjects and those of controls. A significant effect of acoustic trauma was found between the hemispheres of unilaterally traumatized subjects such that the IC contralateral to the ear of exposure contained a lower density of SERT-positive fibers than the IC ipsilateral to acoustic trauma. No significant difference in density was found between the hemispheres of control subjects. Additional dimensions of variability in serotonergic fibers were seen among subdivisions of the IC and with age. The central IC had a slightly but significantly lowered density of serotonergic fibers than other subdivisions of the IC, and serotonergic fibers also declined with age. Overall, the results indicate that acoustic trauma is capable of producing modest but significant decreases in the density of serotonergic fibers innervating the IC.
Collapse
|
52
|
Wang H, Brozoski TJ, Caspary DM. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res 2011; 279:111-7. [PMID: 21527325 DOI: 10.1016/j.heares.2011.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/15/2011] [Accepted: 04/03/2011] [Indexed: 11/17/2022]
Abstract
Tinnitus is a phantom auditory sensation experienced by up to 14% of the United States population with a smaller percentage experiencing decreased quality of life. A compelling hypothesis is that tinnitus results from a maladaptive plastic net down-regulation of inhibitory amino acid neurotransmission in the central auditory pathway. This loss of inhibition may be a compensatory response to loss of afferent input such as that caused by acoustic insult and/or age-related hearing loss, the most common causes of tinnitus in people. Compensatory plastic changes may result in pathologic neural activity that underpins tinnitus. The neural correlates include increased spontaneous spiking, increased bursting and decreased variance of inter-spike intervals. This review will examine evidence for chronic plastic neuropathic changes in the central auditory system of animals with psychophysically-defined tinnitus. Neurochemical studies will focus on plastic tinnitus-related changes of inhibitory glycinergic neurotransmission in the adult dorsal cochlear nucleus (DCN). Electrophysiological studies will focus on functional changes in the DCN and inferior colliculus (IC). Tinnitus was associated with increased spontaneous activity and altered response properties of fusiform cells, the major output neurons of DCN. Coincident with these physiologic alterations were changes in glycine receptor (GlyR) subunit composition, its anchoring/trafficking protein, gephyrin and the number and affinity of membrane GlyRs revealed by receptor binding. In the IC, the primary afferent target of DCN fusiform cells, multi-dimensional alterations in unit-spontaneous activity (rate, burst rate, bursting pattern) were found in animals with behavioral evidence of chronic tinnitus more than 9 months following the acoustic/cochlear insult. In contrast, immediately following an intense sound exposure, acute alterations in IC spontaneous activity resembled chronic tinnitus-related changes but were not identical. This suggests that long-term neuroplastic changes responsible for chronic tinnitus are likely to be responsible for its persistence. A clear understanding of tinnitus-related plasticity in the central auditory system and its associated neurochemistry may help define unique targets for therapeutic drug development.
Collapse
Affiliation(s)
- Hongning Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | |
Collapse
|
53
|
Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 2011; 35:1089-109. [PMID: 21094182 DOI: 10.1016/j.neubiorev.2010.11.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/20/2010] [Accepted: 11/12/2010] [Indexed: 02/03/2023]
|
54
|
Pienkowski M, Eggermont JJ. Cortical tonotopic map plasticity and behavior. Neurosci Biobehav Rev 2011; 35:2117-28. [PMID: 21315757 DOI: 10.1016/j.neubiorev.2011.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
Abstract
Central topographic representations of sensory epithelia have a genetic basis, but are refined by patterns of afferent input and by behavioral demands. Here we review such experience-driven map development and plasticity, focusing on the auditory system, and giving particular consideration to its adaptive value and to the putative mechanisms involved. Recent data have challenged the widely held notion that only the developing auditory brain can be influenced by changes to the prevailing acoustic environment, unless those changes convey information of behavioral relevance. Specifically, it has been shown that persistent exposure of adult animals to random, bandlimited, moderately loud sounds can lead to a reorganization of auditory cortex not unlike that following restricted hearing loss. The mature auditory brain is thus more plastic than previously supposed, with potentially troubling consequences for those working or living in noisy environments, even at exposure levels considerably below those presently considered just-acceptable.
Collapse
Affiliation(s)
- Martin Pienkowski
- Hotchkiss Brain Institute, Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
55
|
Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 2010; 1369:74-88. [PMID: 21047501 DOI: 10.1016/j.brainres.2010.10.095] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
Abstract
Subjective tinnitus is the perception of sound in the absence of an external source. Tinnitus is often accompanied by hearing loss but not everyone with hearing loss experiences tinnitus. We examined neuroanatomical alterations associated with hearing loss and tinnitus in three groups of subjects: those with hearing loss with tinnitus, those with hearing loss without tinnitus and normal hearing controls without tinnitus. To examine changes in gray matter we used structural MRI scans and voxel-based morphometry (VBM) and to identify changes in white matter tract orientation we used diffusion tensor imaging (DTI). A major finding of our study was that there were both gray and white matter changes in the vicinity of the auditory cortex for subjects with hearing loss alone relative to those with tinnitus and those with normal hearing. We did not find significant changes in gray or white matter in subjects with tinnitus and hearing loss compared to normal hearing controls. VBM analysis revealed that individuals with hearing loss without tinnitus had gray matter decreases in anterior cingulate and superior and medial frontal gyri relative to those with hearing loss and tinnitus. Region-of-interest analysis revealed additional decreases in superior temporal gyrus for the hearing loss group compared to the tinnitus group. Investigating effects of hearing loss alone, we found gray matter decreases in superior and medial frontal gyri in participants with hearing loss compared to normal hearing controls. DTI analysis showed decreases in fractional anisotropy values in the right superior and inferior longitudinal fasciculi, corticospinal tract, inferior fronto-occipital tract, superior occipital fasciculus, and anterior thalamic radiation for the hearing loss group relative to normal hearing controls. In attempting to dissociate the effect of tinnitus from hearing loss, we observed that hearing loss rather than tinnitus had the greatest influence on gray and white matter alterations.
Collapse
Affiliation(s)
- Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Sakata T, Ueno T, Takase H, Shiraishi K, Nakagawa T. Acute idiopathic sensorineural hearing impairment at frequency exceeding 8 kHz. Acta Otolaryngol 2010; 130:1141-6. [PMID: 20297929 DOI: 10.3109/00016481003664793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Acute idiopathic sensorineural hearing impairment at a frequency exceeding 8 kHz (high-frequency range) was recognized in patients suffering from acute tinnitus without hearing loss. The cases in this study may contribute to clarifying the pathogenesis of tinnitus without hearing loss and evaluating its response to steroid therapy. OBJECTIVES The aim of this study was to demonstrate the existence of acute idiopathic sensorineural hearing impairment only in the high-frequency range and to investigate its relation to tinnitus without hearing loss. METHODS Five patients aged 29 years or younger who consulted a hospital within a few days after the onset of unilateral tinnitus without hearing loss were studied. We conducted audiometry involving the high-frequency range on first medical examination and on improvement in tinnitus, and investigated the association between the hearing findings in the high-frequency range and a tinnitus prognosis. RESULTS All five patients showed abnormalities in the threshold in the high-frequency range on the affected side. In the three cases given prednisolone, tinnitus and the threshold abnormalities were reduced within 20 days. In contrast, tinnitus and the threshold abnormalities showed little change in two patients who were not treated.
Collapse
|
57
|
Abstract
Animal models have demonstrated that mild hearing loss caused by acoustic trauma results in spontaneous hyperactivity in the central auditory pathways. This hyperactivity has been hypothesized to be involved in the generation of tinnitus, a phantom auditory sensation. We have recently shown that such hyperactivity, recorded in the inferior colliculus, is still dependent on cochlear neural output for some time after recovery (up to 6 weeks). We have now studied the capacity of an intrinsic efferent system, i.e., the olivocochlear system, to alter hyperactivity. This system is known to modulate cochlear neural output. Anesthetized guinea pigs were exposed to a loud sound and after 2 or 3 weeks of recovery, single-neuron recordings in inferior colliculus were made to confirm hyperactivity. Olivocochlear axons were electrically stimulated and effects on cochlear neural output and on highly spontaneous neurons in inferior colliculus were assessed. Olivocochlear stimulation suppressed spontaneous hyperactivity in the inferior colliculus. This result is in agreement with our earlier finding that hyperactivity can be modulated by altering cochlear neural output. Interestingly, the central suppression was generally much larger and longer lasting than reported previously for primary afferents. Blockade of the intracochlear effects of olivocochlear system activation eliminated some but not all of the effects observed on spontaneous activity, suggesting also a central component to the effects of stimulation. More research is needed to investigate whether these central effects of olivocochlear efferent stimulation are due to central intrinsic circuitry or to coactivation of central efferent collaterals to the cochlear nucleus.
Collapse
|
58
|
Chrostowski M, Yang L, Wilson HR, Bruce IC, Becker S. Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation? J Comput Neurosci 2010; 30:279-99. [PMID: 20623168 DOI: 10.1007/s10827-010-0256-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/06/2010] [Accepted: 06/18/2010] [Indexed: 12/19/2022]
Abstract
Travelling waves of activity in neural circuits have been proposed as a mechanism underlying a variety of neurological disorders, including epileptic seizures, migraine auras and brain injury. The highly influential Wilson-Cowan cortical model describes the dynamics of a network of excitatory and inhibitory neurons. The Wilson-Cowan equations predict travelling waves of activity in rate-based models that have sufficiently reduced levels of lateral inhibition. Travelling waves of excitation may play a role in functional changes in the auditory cortex after hearing loss. We propose that down-regulation of lateral inhibition may be induced in deafferented cortex via homeostatic plasticity mechanisms. We use the Wilson-Cowan equations to construct a spiking model of the primary auditory cortex that includes a novel, mathematically formalized description of homeostatic plasticity. In our model, the homeostatic mechanisms respond to hearing loss by reducing inhibition and increasing excitation, producing conditions under which travelling waves of excitation can emerge. However, our model predicts that the presence of spontaneous activity prevents the development of long-range travelling waves of excitation. Rather, our simulations show short-duration excitatory waves that cancel each other out. We also describe changes in spontaneous firing, synchrony and tuning after simulated hearing loss. With the exception of shifts in characteristic frequency, changes after hearing loss were qualitatively the same as empirical findings. Finally, we discuss possible applications to tinnitus, the perception of sound without an external stimulus.
Collapse
Affiliation(s)
- Michael Chrostowski
- McMaster Integrative Neuroscience Discovery & Study, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| | | | | | | | | |
Collapse
|
59
|
Bureš Z, Grécová J, Popelář J, Syka J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Eur J Neurosci 2010; 32:155-64. [DOI: 10.1111/j.1460-9568.2010.07280.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Meltser I, Canlon B. The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiol Dis 2010; 40:325-30. [PMID: 20598895 DOI: 10.1016/j.nbd.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 12/31/2022] Open
Abstract
Acoustic trauma is well known to cause peripheral damage with subsequent effects in the central auditory system. The inferior colliculus (IC) is a major auditory center for the integration of ascending and descending information and is involved in noise-induced tinnitus and central hyperactivity. Here we show that the early effects of acoustic trauma, that eventually result in permanent damage to auditory system, lead to a transient activation of BDNF and mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the IC. In contrast, the early effects of acoustic trauma that result in a temporary damage produced a reversible activation only of p38. The transient activation of MAPK and BDNF in the IC after permanent acoustic trauma is attributed to the plastic changes triggered by a decreased signal input from the damaged periphery. The pattern of MAPK and BDNF activation in the IC is different from that previously described for the cochlea from this laboratory. The differences in the pattern of MAPK and BDNF expression in the IC highlight unique molecular mechanisms underlying temporary and permanent acoustic damage to the central auditory system.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
61
|
Diesch E, Andermann M, Flor H, Rupp A. Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity. Neuroimage 2010; 50:1545-59. [DOI: 10.1016/j.neuroimage.2010.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/29/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022] Open
|
62
|
Noreña A, Moffat G, Blanc J, Pezard L, Cazals Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. Neuroscience 2010; 166:1194-209. [DOI: 10.1016/j.neuroscience.2009.12.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/08/2009] [Accepted: 12/23/2009] [Indexed: 12/01/2022]
|
63
|
Presynaptic GABA(B) receptors regulate experience-dependent development of inhibitory short-term plasticity. J Neurosci 2010; 30:2716-27. [PMID: 20164356 DOI: 10.1523/jneurosci.3903-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Short-term changes in synaptic gain support information processing throughout the CNS, yet we know little about the developmental regulation of such plasticity. Here we report that auditory experience is necessary for the normal maturation of synaptic inhibitory short-term plasticity (iSTP) in the auditory cortex, and that presynaptic GABA(B) receptors regulate this development. Moderate or severe hearing loss was induced in gerbils, and iSTP was characterized by measuring inhibitory synaptic current amplitudes in response to repetitive stimuli. We reveal a profound developmental shift of iSTP from depressing to facilitating after the onset of hearing. Even moderate hearing loss prevented this shift. This iSTP change was mediated by a specific class of inhibitory interneurons, the low-threshold spiking cells. Further, using paired recordings, we reveal that presynaptic GABA(B) receptors at interneuron-pyramidal connections regulate iSTP in an experience-dependent manner. This novel synaptic mechanism may support the emergence of mature temporal processing in the auditory cortex.
Collapse
|
64
|
Feng Y, Yin S, Wang J. Deterioration of cortical responses to amplitude modulations of low-frequency carriers after high-frequency cochlear lesion in guinea pigs. Int J Audiol 2010; 49:228-37. [DOI: 10.3109/14992020903280153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Interaction among the components of multiple auditory steady-state responses: enhancement in tinnitus patients, inhibition in controls. Neuroscience 2010; 167:540-53. [PMID: 20152886 DOI: 10.1016/j.neuroscience.2010.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 01/20/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
Amplitude and phase of steady-state signals recorded in response to amplitude-modulated (AM) sine tones vary over time, suggesting that the steady-state response (SSR) reflects not only stimulus input but also its interaction with other input streams or internally generated signals. Alterations of the interaction between simultaneous SSRs associated with tinnitus were studied by recording the magnetic field evoked by AM-tones with one of three carrier and one of three modulation frequencies. Single AM-tones were presented in single presentation mode and superpositions of three AM-tones differing in carrier and modulation frequency in multiple presentation mode. Modulation frequency-specific SSR components were recovered by bandpass filtering. Compared with single mode, in multiple mode SSR amplitude was reduced in healthy controls, but increased in tinnitus patients. Thus, while in controls multiple response components seem to reciprocally inhibit one another, in tinnitus reciprocal facilitation seems to predominate. Reciprocal inhibition was unrelated to the phase coherence among SSR components, but was correlated with the frequency of phase slips, indicating that the lateral interaction among SSR components acts in a quasi-paroxysmal manner and manifests itself in terms of a random train of phase reset events. Phase slips were more frequent in patients than controls both in single and multiple mode. Together, these findings indicate that lateral or surround inhibition of single units in auditory cortex is reduced and suggest that in-field inhibition is increased in tinnitus.
Collapse
|
66
|
Mulders W, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 2009; 164:733-46. [DOI: 10.1016/j.neuroscience.2009.08.036] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/23/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
|
67
|
Chen Z, Yu D, Feng Y, Su K, Wang J, Yin S. Off-channel effect of high-frequency overstimulation on duration tuning of low-frequency inferior colliculus neurons in guinea pigs. Acta Otolaryngol 2009; 129:1451-5. [PMID: 19922096 DOI: 10.3109/00016480902856562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION High-frequency overstimulation can cause the loss of duration selectivity in low-frequency inferior colliculus neurons in guinea pigs. OBJECTIVE To investigate the effect of high-frequency overstimulation on duration tuning in low-frequency inferior colliculus neurons in guinea pigs. MATERIALS AND METHODS Duration tuning pattern was recorded by measuring the spikes of single neurons in response to the best frequency (BF) of different durations. The effect of high-frequency overstimulation was verified by comparing the responses before and after the tone exposure. RESULTS In total, 40 duration-tuned neurons were successfully recorded before and after the tone exposure. After the high-frequency tone trauma, a total of 29 neurons (72.5%) became non-duration-tuned.
Collapse
Affiliation(s)
- Zhengnong Chen
- Institute of Otolaryngology, Shanghai JiaoTong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
68
|
Lanting C, de Kleine E, van Dijk P. Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear Res 2009; 255:1-13. [PMID: 19545617 DOI: 10.1016/j.heares.2009.06.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
69
|
Nousak JK, Stapells DR. Auditory brainstem and middle latency responses to 1 kHz tones in noise-masked normally-hearing and sensorineurally hearing-impaired adults. Int J Audiol 2009; 44:331-44. [PMID: 16078729 DOI: 10.1080/14992020500060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study provides comparative evaluation of the ABR and MLR to 1 kHz brief tones in two groups of hearing-impaired subjects (noise-masked normally-hearing; and sensorineurally hearing-impaired adults), as well as a normally-hearing control group. Tones were presented at intensities from threshold to 80-90 dB nHL. The results of this study show that: (1) the ABR and MLR to these low-frequency (1 kHz) tones are equally accurate in estimating hearing threshold, (2) at supra-threshold levels, there are differences in the ABRs and MLRs for subjects with decreased hearing sensitivity resulting from cochlear pathology, compared to those obtained from adults with simulated hearing loss due to broadband masking, and (3) supra-threshold stimuli produce differential effects on the latency and amplitude characteristics of the ABR and MLR in listeners with true sensorineural hearing impairments. Possible physiologic explanations are offered for this differential pattern of results.
Collapse
Affiliation(s)
- J K Nousak
- Department of Communication Sciences and Disorders, ML 0379, University of Cincinnati, Cincinnati, OH 45267-0379, USA.
| | | |
Collapse
|
70
|
Takesian AE, Kotak VC, Sanes DH. Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. FUTURE NEUROLOGY 2009; 4:331-349. [PMID: 20161214 PMCID: PMC2716048 DOI: 10.2217/fnl.09.5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hearing loss during development leads to central deficits that persist even after the restoration of peripheral function. One key class of deficits is due to changes in central inhibitory synapses, which play a fundamental role in all aspects of auditory processing. This review focuses on the anatomical and physiological alterations of inhibitory connections at several regions within the central auditory pathway following hearing loss. Such aberrant inhibitory synaptic function may be linked to deficits in encoding binaural and spectral cues. Understanding the cellular changes that occur at inhibitory synapses following hearing loss may provide specific loci that can be targeted to improve function.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3914, Fax: +1 212 995 4011,
| | - Vibhakar C Kotak
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3916, Fax: +1 212 995 4011,
| | - Dan H Sanes
- Center for Neural Science & Department of Biology, New York, University, NY 10003, USA, Tel.: +1 212 998 3924, Fax: +1 212 998 4348,
| |
Collapse
|
71
|
Han BI, Lee HW, Kim TY, Lim JS, Shin KS. Tinnitus: characteristics, causes, mechanisms, and treatments. J Clin Neurol 2009; 5:11-9. [PMID: 19513328 PMCID: PMC2686891 DOI: 10.3988/jcn.2009.5.1.11] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 11/30/2022] Open
Abstract
Tinnitus-the perception of sound in the absence of an actual external sound-represents a symptom of an underlying condition rather than a single disease. Several theories have been proposed to explain the mechanisms underlying tinnitus. Tinnitus generators are theoretically located in the auditory pathway, and such generators and various mechanisms occurring in the peripheral auditory system have been explained in terms of spontaneous otoacoustic emissions, edge theory, and discordant theory. Those present in the central auditory system have been explained in terms of the dorsal cochlear nucleus, the auditory plasticity theory, the crosstalk theory, the somatosensory system, and the limbic and autonomic nervous systems. Treatments for tinnitus include pharmacotherapy, cognitive and behavioral therapy, sound therapy, music therapy, tinnitus retraining therapy, massage and stretching, and electrical suppression. This paper reviews the characteristics, causes, mechanisms, and treatments of tinnitus.
Collapse
Affiliation(s)
- Byung In Han
- Do Neurology Clinic, Willis Medical Network, Daegu, Korea
| | | | | | | | | |
Collapse
|
72
|
Knobel KAB, Sanchez TG. Selective auditory attention and silence elicit auditory hallucination in a nonclinical sample. Cogn Neuropsychiatry 2009; 14:1-10. [PMID: 19214839 DOI: 10.1080/13546800802643590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Several investigations have shown that the occurrence of auditory hallucinations (AH) is not restricted to neuropsychiatric patients. The aim of this study is to analyse the effect of attention and sustained silence on the emergence of AH in a nonclinical sample. METHODS Sitting in a silent sound booth, 66 adults were studied under different attention demands and then where asked about their auditory perception. RESULTS While performing a Hanoi Tower in silence, 10.6% of the individuals had hallucination-like perceptions (music, voices, and others). This rate decreased to 6.0% during a visual attention task, but highly increased to 36.4% during auditory attention. CONCLUSIONS Auditory hallucinations may occur in a nonclinical population in a silent environment. Concomitant auditory attention increases both the quantity and the quality of those perceptions.
Collapse
|
73
|
Popelar J, Grecova J, Rybalko N, Syka J. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats. Hear Res 2008; 245:82-91. [PMID: 18812219 DOI: 10.1016/j.heares.2008.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
74
|
Cai S, Ma WLD, Young ED. Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 2008; 10:5-22. [PMID: 18855070 DOI: 10.1007/s10162-008-0142-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022] Open
Abstract
Loudness recruitment, an abnormally rapid growth of perceived loudness with sound level, is a common symptom of sensorineural hearing loss. Following acoustic trauma, auditory-nerve rate responses are reduced, and rate grows more slowly with sound level, which seems inconsistent with recruitment (Heinz et al., J. Assoc. Res. Otolaryngol. 6:91-105, 2005). However, rate-level functions (RLFs) in the central nervous system may increase in either slope or saturation value following trauma (e.g., Salvi et al., Hear. Res. 147:261-274, 2000), suggesting that recruitment may arise from central changes. In this paper, we studied RLFs of neurons in ventral cochlear nucleus (VCN) of the cat after acoustic trauma. Trauma did not change the general properties of VCN neurons, and the usual VCN functional classifications remained valid (chopper, primary-like, onset, etc.). After trauma, non-primary-like neurons, most noticeably choppers, exhibited elevated maximum discharge rates and steeper RLFs for frequencies at and near best frequency (BF). Primary-like neurons showed the opposite changes. To relate the neurons' responses to recruitment, rate-balance functions were computed; these show the sound level required to give equal rates in a normal and a traumatized ear and are analogous to loudness balance functions that show the sound levels giving equal perceptual loudness in the two ears of a monaurally hearing-impaired person. The rate-balance functions showed recruitment-like steepening of their slopes in non-primary-like neurons in all conditions. However, primary-like neurons showed recruitment-like behavior only when rates were summated across neurons of all BFs. These results suggest that the non-primary-like, especially chopper, neurons may be the most peripheral site of the physiological changes in the brain that underlie recruitment.
Collapse
Affiliation(s)
- Shanqing Cai
- Center for Hearing and Balance and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
75
|
Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ. Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 2008; 86:2564-78. [PMID: 18438941 DOI: 10.1002/jnr.21699] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A longstanding hypothesis is that tinnitus, the perception of sound without an external acoustic source, is triggered by a distinctive pattern of cochlear hair cell (HC) damage and that this subsequently leads to altered neural activity in the central auditory pathway. This hypothesis was tested by assessing behavioral evidence of tinnitus and spontaneous neural activity in the inferior colliculus (IC) after unilateral cochlear trauma. Chinchillas were assigned to four cochlear treatment groups. Each treatment produced a distinctive pattern of HC damage, as follows: acoustic exposure (AEx): sparse low-frequency inner hair cell (IHC) and outer hair cell (OHC) loss; round window cisplatin (CisEx): pronounced OHC loss mixed with some IHC loss; round window carboplatin (CarbEx): pronounced IHC loss without OHC loss; control: no loss. Compared with controls, all experimental groups displayed significant and similar psychophysical evidence of tinnitus with features resembling a 1-kHz tone. Contralateral IC spontaneous activity was elevated in the AEx and CisEx groups, which showed increased spiking and increased cross-fiber synchrony. A multidimensional analysis identified a subpopulation of neurons more prevalent in animals with tinnitus. These units were characterized by high bursting, low ISI variance, and within-burst peak spiking of approximately 1,000/sec. It was concluded that cochlear trauma in general, rather than its specific features, leads to multiple changes in central activity that underpin tinnitus. Particularly affected was a subpopulation ensemble of IC neurons with the described unique triad of features.
Collapse
Affiliation(s)
- Carol A Bauer
- Division of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | | | |
Collapse
|
76
|
Scholl B, Wehr M. Disruption of Balanced Cortical Excitation and Inhibition by Acoustic Trauma. J Neurophysiol 2008; 100:646-56. [DOI: 10.1152/jn.90406.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory deafferentation results in rapid shifts in the receptive fields of cortical neurons, but the synaptic mechanisms underlying these changes remain unknown. The rapidity of these shifts has led to the suggestion that subthreshold inputs may be unmasked by a selective loss of inhibition. To study this, we used in vivo whole cell recordings to directly measure tone-evoked excitatory and inhibitory synaptic inputs in auditory cortical neurons before and after acoustic trauma. Here we report that acute acoustic trauma disrupted the balance of excitation and inhibition by selectively increasing and reducing the strength of inhibition at different positions within the receptive field. Inhibition was abolished for frequencies far below the trauma-tone frequency but was markedly enhanced near the edges of the region of elevated peripheral threshold. These changes occurred for relatively high-level tones. These changes in inhibition led to an expansion of receptive fields but not by a simple unmasking process. Rather, membrane potential responses were delayed and prolonged throughout the receptive field by distinct interactions between synaptic excitation and inhibition. Far below the trauma-tone frequency, decreased inhibition combined with prolonged excitation led to increased responses. Near the edges of the region of elevated peripheral threshold, increased inhibition served to delay rather than abolish responses, which were driven by prolonged excitation. These results show that the rapid receptive field shifts caused by acoustic trauma are caused by distinct mechanisms at different positions within the receptive field, which depend on differential disruption of excitation and inhibition.
Collapse
|
77
|
Sun W, Zhang L, Lu J, Yang G, Laundrie E, Salvi R. Noise exposure-induced enhancement of auditory cortex response and changes in gene expression. Neuroscience 2008; 156:374-80. [PMID: 18713646 DOI: 10.1016/j.neuroscience.2008.07.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Noise exposure is one of the most common causes of hearing loss. There is growing evidence suggesting that noise-induced peripheral hearing loss can also induce functional changes in the central auditory system. However, the physiological and biological changes in the central auditory system induced by noise exposure are poorly understood. To address these issues, neurophysiological recordings were made from the auditory cortex (AC) of awake rats using chronically implanted electrodes before and after acoustic overstimulation. In addition, focused gene microarrays and quantitative real-time polymerase chain reaction were used to identify changes in gene expression in the AC. Monaural noise exposure (120 dB sound pressure level, 1 h) significantly elevated hearing threshold on the exposed ear and induced a transient enhancement on the AC response amplitude 4 h after the noise exposure recorded from the unexposed ear. This increase of the cortical neural response amplitude was associated with an upregulation of genes encoding heat shock protein (HSP) 27 kDa and 70 kDa after several hours of the noise exposure. These results suggest that noise exposure can induce a fast physiological change in the AC which may be related to the changes of HSP expressions.
Collapse
Affiliation(s)
- W Sun
- Center for Hearing & Deafness, 137 Cary Hall, State University of New York at Buffalo, 3454 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Hurley LM, Tracy JA, Bohorquez A. Serotonin 1B receptor modulates frequency response curves and spectral integration in the inferior colliculus by reducing GABAergic inhibition. J Neurophysiol 2008; 100:1656-67. [PMID: 18632894 DOI: 10.1152/jn.90536.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selectivity of sensory neurons for stimuli is often shaped by a balance between excitatory and inhibitory inputs, making this balance an effective target for regulation. In the inferior colliculus (IC), an auditory midbrain nucleus, the amplitude and selectivity of frequency response curves are altered by the neuromodulator serotonin, but the changes in excitatory-inhibitory balance that mediate this plasticity are not well understood. Previous findings suggest that the presynaptic 5-HT1B receptor may act to decrease the release of GABA onto IC neurons. Here, in vivo extracellular recording and iontophoresis of the selective 5-HT1B agonist CP93129 were used to characterize inhibition within and surrounding frequency response curves using two-tone protocols to indirectly measure inhibition as a decrease in spikes relative to an excitatory tone alone. The 5-HT1B agonist attenuated such two-tone spike reduction in a varied pattern among neurons, suggesting that the function of 5-HT1B modulation also varies. The hypothesis that the 5-HT1B receptor reduces inhibition was tested by comparing the effects of CP93129 and the GABAA antagonists bicuculline and gabazine in the same neurons. The effects of GABAA antagonists on spike count, tuning bandwidth, two-tone ratio, and temporal response characteristics mimicked those of CP93129 across the neuron population. GABAA antagonists also blocked or reduced the facilitation of evoked responses by CP93129. These results are all consistent with the reduction of GABAA-mediated inhibition by 5-HT1B receptors in the IC, resulting in an increase in the level of evoked responses in some neurons, and a decrease in spectral selectivity in others.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
79
|
Izquierdo M, Gutiérrez-Conde P, Merchán M, Malmierca M. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss. Neuroscience 2008; 154:355-69. [DOI: 10.1016/j.neuroscience.2008.01.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/25/2022]
|
80
|
Yin SK, Feng YM, Chen ZN, Wang J. The effect of noise-induced sloping high-frequency hearing loss on the gap-response in the inferior colliculus and auditory cortex of guinea pigs. Hear Res 2008; 239:126-40. [PMID: 18348901 DOI: 10.1016/j.heares.2008.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/11/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
Gap detection has been used as an evaluation tool for temporal processing in subjects with sensorineural hearing loss (SNHL). However, the results from other reports are varied making it difficult to clearly define the impact of SNHL on the temporal processing ability of the auditory system. Specifically, we do not know if and how a high-frequency hearing loss impacts, presumably through off-channel interaction, the temporal processing in low-frequency channels where hearing sensitivity is virtually normal. In this experiment, gap-evoked responses in a low-frequency band (0.5-8 kHz) were recorded in the inferior colliculus (IC) and auditory cortex (AC) of guinea pigs through implanted electrodes, before and after a slopping high-frequency hearing loss, which was induced by over-stimulation using a 12-kHz-tone. The results showed that the gap thresholds in the low-frequency region increased gradually and became significantly higher 8 weeks after the induced high-frequency hearing loss. In addition, the response latency was slightly increased in the IC but this was not true for the AC. These results strongly indicate that a high-frequency hearing loss exerted an off-channel impact on temporal processing in the low-frequency region of the auditory system.
Collapse
Affiliation(s)
- Shan-Kai Yin
- The Affiliated Sixth People's Hospital, Otorhinolaryngology Institute, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | | | |
Collapse
|
81
|
Kotak VC, Takesian AE, Sanes DH. Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cereb Cortex 2008; 18:2098-108. [PMID: 18222937 PMCID: PMC2517109 DOI: 10.1093/cercor/bhm233] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABAA receptor subunits are coregulated by hearing.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
82
|
Abstract
Guided by findings from neural imaging and population responses in humans, where tinnitus is well characterized, several morphological and physiological substrates of tinnitus in animal studies are reviewed. These include changes in ion channels, receptor systems, single unit firing rate, and population responses. Most findings in humans can be interpreted as resulting from increased neural synchrony.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
83
|
Abstract
Loudness perception may be controlled by a central gain, possibly dependent on the mean level of the acoustic environment. Owing to hearing loss, for instance, a decrease in sensory inputs could increase this central gain and cause an auditory hypersensitivity or hyperacusis. According to this model, individuals with hyperacusis, provided with an enriched acoustic environment specifically designed to compensate for the decrease in sensory inputs, should show an improvement in their hyperacusis. This study showed that such an enriched acoustic environment indeed decreased auditory hypersensitivity: stimuli initially considered as being too loud became comfortable after a few weeks of acoustic stimulation. Therefore, this original approach could provide a solution to the problem of hyperacusis.
Collapse
Affiliation(s)
- Arnaud Jean Noreña
- Laboratory of Integrative and Adaptative Neurobiology, University of Provence/St Charles, Pôle 3C, Marseille, France.
| | | |
Collapse
|
84
|
Abstract
OBJECTIVE To describe the current ideas about the manifestations of neural plasticity in generating tinnitus. DATA SOURCES Recently published source articles were identified using MEDLINE, PubMed, and Cochrane Library according to the key words mentioned below. STUDY SELECTION Review articles and controlled trials were particularly selected. DATA EXTRACTION Data were selected systematically, scaled on validity and comparability. CONCLUSION An altered afferent input to the auditory pathway may be the initiator of a complex sequence of events, finally resulting in the generation of tinnitus at the central level of the auditory nervous system. The effects of neural plasticity can generally be divided into early modifications and modifications with a later onset. The unmasking of dormant synapses, diminishing of (surround) inhibition and initiation of generation of new connections through axonal sprouting are early manifestations of neural plasticity, resulting in lateral spread of neural activity and development of hyperexcitability regions in the central nervous system. The remodeling process of tonotopic receptive fields within auditory pathway structures (dorsal cochlear nucleus, inferior colliculus, and the auditory cortex) are late manifestations of neural plasticity. The modulation of tinnitus by stimulating somatosensory or visual systems in some people with tinnitus might be explained via the generation of tinnitus following the nonclassical pathway. The similarities between the pathophysiological processes of phantom pain sensations and tinnitus have stimulated the theory that chronic tinnitus is an auditory phantom perception.
Collapse
Affiliation(s)
- Hilke Bartels
- Department of Otorhinolaryngology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
85
|
|
86
|
Alkhatib A, Biebel UW, Smolders JWT. Reduction of inhibition in the inferior colliculus after inner hair cell loss. Neuroreport 2006; 17:1493-7. [PMID: 16957595 DOI: 10.1097/01.wnr.0000234754.11431.ee] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effects of carboplatin-induced partial loss of inner hair cells on rate-level functions of neurons in the central nucleus of the inferior colliculus of the same chinchillas before and 1-3 months after carboplatin treatment were examined. Partial inner hair cell loss caused only a small elevation of response thresholds but induced a significant increase in the proportion of monotonic and a significant decrease in the proportion of non-monotonic rate-level functions at the characteristic frequency of 210 multiunits. This indicates that inhibition in the inferior colliculus is reduced after sensory deafferentation. We conclude that some of the functional changes reported in the auditory cortex after peripheral deafferentation are already realized at the level of the inferior colliculus.
Collapse
Affiliation(s)
- Ala Alkhatib
- Physiology II, JW Goethe-University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
87
|
Argence M, Saez I, Sassu R, Vassias I, Vidal PP, de Waele C. Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: an in situ and immunofluorescence study. Neuroscience 2006; 141:1193-207. [PMID: 16757119 DOI: 10.1016/j.neuroscience.2006.04.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
We investigated whether inhibitory synaptic transmission mediated through glycinergic receptor, GABAA receptors, glutamic acid decarboxylase, the enzyme synthesizing GABA, and excitatory synaptic transmission through alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors and N-methyl-D-aspartate receptors are affected in the inferior colliculus by unilateral surgical cochleectomy. In situ hybridization and immunohistofluorescence studies were performed in normal and lesioned adult rats at various times following the lesion (1-150 days). Unilateral auditory deprivation decreased glycine receptor alpha1 and glutamic acid decarboxylase 67 expression in the contralateral central nucleus of the inferior colliculus. This decrease began one day after cochleectomy, and continued until day 8; thereafter expression was consistently low until day 150. The glycine receptor alpha1 subunit decrease did not occur if a second contralateral cochleectomy was performed either on day 8 or 150 after the first cochleectomy. Bilateral cochleectomy caused also a bilateral inferior colliculus diminution of glutamic acid decarboxylase 67 mRNA at post-lesion day 8 but there were no changes in glycine receptor alpha1 compared with controls. In contrast, the abundance of other alpha2-3, and beta glycine receptor, gephyrin, the anchoring protein of glycine receptor, the alpha1, beta2 and gamma2 subunits of GABAA receptors, GluR2, R3 subunits of alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors, and NR1 and NR2A transcripts of N-methyl-D-aspartate receptors was unaffected during the first week following the lesion. Thus, unilateral cochlear removal resulted in a selective and long-term decrease in the amount of the glycine receptor alpha1 subunit and of glutamic acid decarboxylase 67 in the contralateral central nucleus of the inferior colliculus. These changes most probably result from the induced asymmetry of excitatory auditory inputs into the central nucleus of the inferior colliculus and may be one of the mechanisms involved in the tinnitus frequently encountered in patients suffering from a sudden hearing loss.
Collapse
Affiliation(s)
- M Argence
- UMR 7060, CNRS-Paris 5, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|
88
|
Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci 2006; 23:3124-38. [PMID: 16820003 DOI: 10.1111/j.1460-9568.2006.04774.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tinnitus, the perception of a sound in the absence of acoustic stimulation, is often associated with hearing loss. Animal studies indicate that hearing loss through cochlear damage can lead to behavioral signs of tinnitus that are correlated with pathologically increased spontaneous firing rates, or hyperactivity, of neurons in the auditory pathway. Mechanisms that lead to the development of this hyperactivity, however, have remained unclear. We address this question by using a computational model of auditory nerve fibers and downstream auditory neurons. The key idea is that mean firing rates of these neurons are stabilized through a homeostatic plasticity mechanism. This homeostatic compensation can give rise to hyperactivity in the model neurons if the healthy ratio between mean and spontaneous firing rate of the auditory nerve is decreased, for example through a loss of outer hair cells or damage to hair cell stereocilia. Homeostasis can also amplify non-auditory inputs, which then contribute to hyperactivity. Our computational model predicts how appropriate additional acoustic stimulation can reverse the development of such hyperactivity, which could provide a new basis for treatment strategies.
Collapse
Affiliation(s)
- Roland Schaette
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | | |
Collapse
|
89
|
Morita T, Fujiki N, Nagamine T, Hiraumi H, Naito Y, Shibasaki H, Ito J. Effects of continuous masking noise on tone-evoked magnetic fields in humans. Brain Res 2006; 1087:151-8. [PMID: 16626668 DOI: 10.1016/j.brainres.2006.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 03/02/2006] [Accepted: 03/02/2006] [Indexed: 11/27/2022]
Abstract
Two different types of steep loudness growth have been reported in detail in psychoacoustical studies but have rarely been evaluated by objective methods in humans. One occurs in inner-ear hearing-impaired patients and is known as loudness recruitment. Another similar phenomenon is observed in healthy subjects with concurrent presence of background noise. Concerning the first type, our previous study using magnetoencephalography (MEG) showed that enhancement of the dipole moment of N100m with increase in stimulus intensity was greater in patients than in normal individuals. However, it is unclear whether the enhancement of activity in auditory cortex will also be detected with background noise in healthy subjects. To elucidate the effects of continuous background noise on tone-evoked cortical activity, we measured auditory-evoked magnetic fields (AEFs) from 7 normal-hearing subjects in two different conditions, with and without 55 dB SPL continuous masking white noise (noise/quiet conditions). The stimuli were 200 ms 1-kHz tones delivered monaurally and randomly at 4 different intensities (40-70 dB SPL) with constant 1-s interstimulus intervals. The N100m increased in amplitude and decreased in latency as a function of stimulus intensity in both noise and quiet conditions. The dipole moment of N100m was significantly smaller in the noise than in the quiet condition, showing that continuous background noise suppresses the strength of tone-evoked cortical responses. The mechanisms underlying these two psychoacoustically similar phenomena of rapid loudness growth thus differ.
Collapse
Affiliation(s)
- Takeshi Morita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
90
|
Ma WLD, Young ED. Dorsal cochlear nucleus response properties following acoustic trauma: response maps and spontaneous activity. Hear Res 2006; 216-217:176-88. [PMID: 16630701 PMCID: PMC1582886 DOI: 10.1016/j.heares.2006.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/20/2022]
Abstract
Recordings from single neurons in the dorsal cochlear nucleus (DCN) of unanesthetized (decerebrate) cats were done to characterize the effects of acoustic trauma. Trauma was produced by a 250 Hz band of noise centered at 10 kHz, presented at 105-120 dB SPL for 4h. After a one-month recovery period, neurons were recorded in the DCN. The threshold shift, determined from compound action-potential audiograms, showed a sharp threshold elevation of about 60 dB at BFs above an edge frequency of 5-10 kHz. The response maps of neurons with best frequencies (BFs) above the edge did not show the typical organization of excitatory and inhibitory areas seen in the DCN of unexposed animals. Instead, neurons showed no response to sound, weak responses that were hard to tune and characterize, or "tail" responses, consisting of broadly-tuned, predominantly excitatory responses, with a roughly low-pass shape similar to the tuning curves of auditory nerve fibers with similar threshold shifts. In some tail responses whose BFs were near the edge of the threshold elevation, a second weak high-frequency response was seen that suggests convergence of auditory nerve inputs with widely separated BFs on these cells. Spontaneous rates among neurons with elevated thresholds were not increased over those in populations of principal neurons in unexposed animals.
Collapse
Affiliation(s)
- Wei-Li Diana Ma
- Department of Biomedical Engineering and Center for Hearing and Balance, Johns Hopkins University, 505 Traylor Research Building, 720 Rutland Avenue, Baltimore, MD 21205-2109, USA.
| | | |
Collapse
|
91
|
Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH. Hearing loss raises excitability in the auditory cortex. J Neurosci 2006; 25:3908-18. [PMID: 15829643 PMCID: PMC1764814 DOI: 10.1523/jneurosci.5169-04.2005] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developmental hearing impairments compromise sound discrimination, speech acquisition, and cognitive function; however, the adjustments of functional properties in the primary auditory cortex (A1) remain unknown. We induced sensorineural hearing loss (SNHL) in developing gerbils and then reared the animals for several days. The intrinsic membrane and synaptic properties of layer 2/3 pyramidal neurons were subsequently examined in a thalamocortical brain slice preparation with whole-cell recordings and electron microscopic immunocytochemistry. SNHL neurons displayed a depolarized resting membrane potential, an increased input resistance, and a higher incidence of sustained firing. They also exhibited significantly larger thalamocortically and intracortically evoked excitatory synaptic responses, including a greater susceptibility to the NMDA receptor antagonist AP-5 and the NR2B subunit antagonist ifenprodil. This correlated with an increase in NR2B labeling of asymmetric synapses, as visualized ultrastructurally. Furthermore, decreased frequency and increased amplitude of miniature EPSCs (mEPSCs) in SNHL neurons suggest that a decline in presynaptic release properties is compensated by an increased excitatory response. To verify that the increased thalamocortical excitation was elicited by putative monosynaptic connections, minimum amplitude ventral medial geniculate nucleus-evoked EPSCs were recorded. These minimum-evoked responses were of larger amplitude, and the NMDAergic currents were also larger and longer in SNHL neurons. These findings were supported by significantly longer AP-5-sensitive durations and larger amplitudes of mEPSCs. Last, the amplitudes of intracortically evoked monosynaptic and polysynaptic GABAergic inhibitory synaptic responses were significantly smaller in SNHL neurons. These alterations in cellular properties after deafness reflect an attempt by A1 to sustain an operative level of cortical excitability that may involve homeostatic mechanisms.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Tomita M, Noreña AJ, Eggermont JJ. Effects of an acute acoustic trauma on the representation of a voice onset time continuum in cat primary auditory cortex. Hear Res 2005; 193:39-50. [PMID: 15219319 DOI: 10.1016/j.heares.2004.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 03/02/2004] [Indexed: 11/24/2022]
Abstract
Here we show that hearing loss associated with an impairment of speech recognition causes a decrease in neural temporal resolution. In order to assess central auditory system changes in temporal resolution, we investigated the effect of an acute hearing loss on the representation of a voice onset time (VOT) and gap-duration continuum in primary auditory cortex (AI) of the ketamine-anesthetized cat. Multiple single-unit activity related to the presentation of a /ba/-/pa/ continuum--in which VOT was varied in 5-ms step from 0 to 70 ms-- was recorded from the same sites before and after an acoustic trauma using two 8-electrode arrays. We also obtained data for gaps, of duration equal to the VOT, embedded in noise 5 ms after the onset. We specifically analyzed the maximum firing rate (FRmax), related to the presentation of the vowel or trailing noise burst, as a function of VOT and gap duration. The changes in FRmax for /ba/-/pa/ continuum as a function of VOT match the psychometric function for categorical perception of /ba/-/pa/ modeled by a sigmoid function. An acoustic trauma made the sigmoid fitting functions shallower, and shifted them toward higher values of VOT. The less steep fitting function may be a neural correlate of an impaired psychoacoustic temporal resolution, because the ambiguity between /ba/ and /pa/ should consequently be increased. The present study is the first one in showing an impairment of the temporal resolution of neurons in AI caused by an acute acoustic trauma.
Collapse
Affiliation(s)
- Masahiko Tomita
- Departments of Physiology and Biophysics, and Psychology, Neuroscience Research Group, University of Calgary, 2500 University Drive N.W., Calgary, Alta., Canada T2N 1N4
| | | | | |
Collapse
|
93
|
Sendowski I, Braillon-Cros A, Delaunay C. CAP amplitude after impulse noise exposure in guinea pigs. Eur Arch Otorhinolaryngol 2004; 261:77-81. [PMID: 12883821 DOI: 10.1007/s00405-003-0647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 06/11/2003] [Indexed: 11/26/2022]
Abstract
In this study, 21 guinea pigs were submitted to a single high energy impulse noise (gun shot with blank projectiles). The auditory function was evaluated over a 7-day recovery period by recording the compound action potential (CAP) from the round window. The threshold shift and input/output function (CAP amplitude and delay function of the stimulus intensity) were studied at different frequencies. CAP amplitude fell after the noise trauma, especially at the lower sound level, resulting in a threshold shift. Latency was significantly increased. During recovery, whereas latency returned to its initial value, CAP amplitude gradually increased and, in half the animals, exceeded the control value for the higher levels of stimulus. This could have been because of progressive disinhibition or recruitment, and may correspond clinically to hyperacusis. These results are discussed referring to those obtained by other authors using other methods.
Collapse
Affiliation(s)
- Isabelle Sendowski
- Centre de Recherches du Service de Santé des Armées, 24 avenue des Maquis du Grésivaudan, BP 87, 38702 La Tronche Cedex, France.
| | | | | |
Collapse
|
94
|
Kim JJ, Gross J, Morest DK, Potashner SJ. Quantitative study of degeneration and new growth of axons and synaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J Neurosci Res 2004; 77:829-42. [PMID: 15334601 DOI: 10.1002/jnr.20211] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To determine if acoustic overstimulation altered synaptic connections in the cochlear nucleus, anesthetized adult chinchillas, with one ear protected by a silicone plug, were exposed for 3 hr to a 108-dB octave-band noise, centered at 4 kHz, and allowed to survive for periods up to 32 weeks. This exposure led to cochlear damage in the unprotected ear, mainly in the basal regions of the organ of Corti. The anterior part of the ipsilateral posteroventral cochlear nucleus consistently contained a band of degenerating axons and terminals, in which electron microscopic analysis revealed substantial losses of axons and synaptic terminals with excitatory and inhibitory cytology. The losses were significant after 1 week's survival and progressed for 16-24 weeks after exposure. By 24-32 weeks, a new growth of these structures produced a resurgence in the number of axons and terminals. The net number of excitatory endings fully recovered, but the quantity with inhibitory cytology was only partially recouped. Neuronal somata lost both excitatory and inhibitory endings at first and later recovered a full complement of excitatory but not inhibitory terminals. Dendrites suffered a net loss of both excitatory and inhibitory endings. Excitatory and inhibitory terminals with unidentified postsynaptic targets in the neuropil declined, then increased in number, with excitatory terminals exhibiting a greater recovery. These findings are consistent with a loss and regrowth of synaptic endings and with a reorganization of synaptic connections that favors excitation.
Collapse
Affiliation(s)
- J J Kim
- Department of Neuroscience, The University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
95
|
Irvine DRF, Rajan R, Smith S. Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. J Comp Neurol 2003; 467:354-74. [PMID: 14608599 DOI: 10.1002/cne.10921] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15-22 kHz. After recovery periods of 2.5-18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Department of Psychology, Faculty of Medicine, Nursing and Health Science, Monash University, Victoria 3800, Australia.
| | | | | |
Collapse
|
96
|
Noreña AJ, Tomita M, Eggermont JJ. Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 2003; 90:2387-401. [PMID: 12773493 DOI: 10.1152/jn.00139.2003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we present the changes in cortical activity occurring within a few hours after a 1-h exposure to a 120-dB SPL pure tone (5 or 6 kHz). The changes in primary auditory cortex of 16 ketamine-anesthetized cats were assessed by recording, with two 8-microelectrode arrays, from the same multiunit clusters before and after the trauma. The exposure resulted in a peripheral threshold increase that stabilized after a few hours to on average 40 dB in the frequency range of 6-32 kHz, as measured by the auditory brain stem response. The trauma induced a shift in characteristic frequency toward lower frequencies, an emergence of new responses, a broadening of the tuning curve, and an increase in the maximum of driven discharges. In addition, the onset response after the trauma was of shorter duration than before the trauma. The results suggest the involvement of both a decrease and an increase in inhibition. They are discussed in terms of changes in central inhibition and its implications for tonotopic map plasticity.
Collapse
Affiliation(s)
- Arnaud J Noreña
- Department of Physiology, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
97
|
Morita T, Naito Y, Nagamine T, Fujiki N, Shibasaki H, Ito J. Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: a magnetoencephalographic study. Clin Neurophysiol 2003; 114:851-9. [PMID: 12738430 DOI: 10.1016/s1388-2457(03)00033-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Injury of peripheral auditory organ often induces abnormality of loudness sensation such as loudness recruitment. However, objective evaluation of this phenomenon has rarely been performed. To elucidate this abnormal loudness sensation, cortical mechanisms were investigated by recording auditory evoked magnetic fields (AEFs). METHODS We recorded AEFs in 8 patients suffering from inner-ear hearing impairment with loudness recruitment and in 14 healthy hearing controls using a 122-channel whole-head neuromagnetometer. Tone bursts of 1 kHz were presented monaurally at 4 different intensities (40, 50, 60, 70 dB HL) with a constant interstimulus interval of 1 s. RESULTS In both groups, the 100 ms response (N100m) increased in amplitude and decreased in latency as a function of stimulus intensity in both hemispheres. Concerning the source strength, increment of dipole moment of N100m was more rapid according to the stimulus intensity in patients compared with that in healthy subjects. Source strength of N100m was enhanced at high stimulus intensity in patients, and its ratio to healthy subjects was 1.08 at 50 dB, 1.69 at 60 dB and 2.04 at 70 dB. CONCLUSIONS In patients with inner-ear hearing impairment, enhanced activation of the auditory cortex was observed, and may help explain loudness recruitment.
Collapse
Affiliation(s)
- T Morita
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Japan.
| | | | | | | | | | | |
Collapse
|
98
|
|