51
|
Liao EH, Gray L, Tsurudome K, El-Mounzer W, Elazzouzi F, Baim C, Farzin S, Calderon MR, Kauwe G, Haghighi AP. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction. PLoS Genet 2018; 14:e1007184. [PMID: 29373576 PMCID: PMC5802963 DOI: 10.1371/journal.pgen.1007184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/07/2018] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.
Collapse
Affiliation(s)
- Edward H. Liao
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Lindsay Gray
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Kazuya Tsurudome
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Fatima Elazzouzi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Christopher Baim
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sarah Farzin
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Mario R. Calderon
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - A. Pejmun Haghighi
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Department of Physiology, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
52
|
The Maintenance of Synaptic Homeostasis at the Drosophila Neuromuscular Junction Is Reversible and Sensitive to High Temperature. eNeuro 2017; 4:eN-NWR-0220-17. [PMID: 29255795 PMCID: PMC5732017 DOI: 10.1523/eneuro.0220-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022] Open
Abstract
Homeostasis is a vital mode of biological self-regulation. The hallmarks of homeostasis for any biological system are a baseline set point of physiological activity, detection of unacceptable deviations from the set point, and effective corrective measures to counteract deviations. Homeostatic synaptic plasticity (HSP) is a form of neuroplasticity in which neurons and circuits resist environmental perturbations and stabilize levels of activity. One assumption is that if a perturbation triggers homeostatic corrective changes in neuronal properties, those corrective measures should be reversed upon removal of the perturbation. We test the reversibility and limits of HSP at the well-studied Drosophila melanogaster neuromuscular junction (NMJ). At the Drosophila NMJ, impairment of glutamate receptors causes a decrease in quantal size, which is offset by a corrective, homeostatic increase in the number of vesicles released per evoked presynaptic stimulus, or quantal content. This process has been termed presynaptic homeostatic potentiation (PHP). Taking advantage of the GAL4/GAL80TS/UAS expression system, we triggered PHP by expressing a dominant-negative glutamate receptor subunit at the NMJ. We then reversed PHP by halting expression of the dominant-negative receptor. Our data show that PHP is fully reversible over a time course of 48–72 h after the dominant-negative glutamate receptor stops being genetically expressed. As an extension of these experiments, we find that when glutamate receptors are impaired, neither PHP nor NMJ growth is reliably sustained at high culturing temperatures (30–32°C). These data suggest that a limitation of homeostatic signaling at high temperatures could stem from the synapse facing a combination of challenges simultaneously.
Collapse
|
53
|
Drosophila Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1. Genetics 2017; 208:705-716. [PMID: 29217522 DOI: 10.1534/genetics.117.300538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Syd-1 proteins are required for presynaptic development in worm, fly, and mouse. Syd-1 proteins in all three species contain a Rho GTPase activating protein (GAP)-like domain of unclear significance: invertebrate Syd-1s are thought to lack GAP activity, and mouse mSYD1A has GAP activity that is thought to be dispensable for its function. Here, we show that Drosophila melanogaster Syd-1 can interact with all six fly Rhos and has GAP activity toward Rac1 and Cdc42. During development, fly Syd-1 clusters multiple presynaptic proteins at the neuromuscular junction (NMJ), including the cell adhesion molecule Neurexin (Nrx-1) and the active zone (AZ) component Bruchpilot (Brp), both of which Syd-1 binds directly. We show that a mutant form of Syd-1 that specifically lacks GAP activity localizes normally to presynaptic sites and is sufficient to recruit Nrx-1 but fails to cluster Brp normally. We provide evidence that Syd-1 participates with Rac1 in two separate functions: (1) together with the Rac guanine exchange factor (RacGEF) Trio, GAP-active Syd-1 is required to regulate the nucleotide-bound state of Rac1, thereby promoting Brp clustering; and (2) Syd-1, independent of its GAP activity, is required for the recruitment of Nrx-1 to boutons, including the recruitment of Nrx-1 that is promoted by GTP-bound Rac1. We conclude that, contrary to current models, the GAP domain of fly Syd-1 is active and required for presynaptic development; we suggest that the same may be true of vertebrate Syd-1 proteins. In addition, our data provide new molecular insight into the ability of Rac1 to promote presynaptic development.
Collapse
|
54
|
A Mechanism Coupling Systemic Energy Sensing to Adipokine Secretion. Dev Cell 2017; 43:83-98.e6. [PMID: 29017032 DOI: 10.1016/j.devcel.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/18/2017] [Accepted: 09/11/2017] [Indexed: 01/13/2023]
Abstract
Adipocytes sense systemic nutrient status and systemically communicate this information by releasing adipokines. The mechanisms that couple nutritional state to adipokine release are unknown. Here, we investigated how Unpaired 2 (Upd2), a structural and functional ortholog of the primary human adipokine leptin, is released from Drosophila fat cells. We find that Golgi reassembly stacking protein (GRASP), an unconventional secretion pathway component, is required for Upd2 secretion. In nutrient-rich fat cells, GRASP clusters in close proximity to the apical side of lipid droplets (LDs). During nutrient deprivation, glucagon-mediated increase in calcium (Ca2+) levels, via calmodulin kinase II (CaMKII) phosphorylation, inhibits proximal GRASP localization to LDs. Using a heterologous cell system, we show that human leptin secretion is also regulated by Ca2+ and CaMKII. In summary, we describe a mechanism by which increased cytosolic Ca2+ negatively regulates adipokine secretion and have uncovered an evolutionarily conserved molecular link between intracellular Ca2+ levels and energy homeostasis.
Collapse
|
55
|
Sekiya M, Maruko-Otake A, Hearn S, Sakakibara Y, Fujisaki N, Suzuki E, Ando K, Iijima KM. EDEM Function in ERAD Protects against Chronic ER Proteinopathy and Age-Related Physiological Decline in Drosophila. Dev Cell 2017. [PMID: 28633019 DOI: 10.1016/j.devcel.2017.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The unfolded protein response (UPR), which protects cells against accumulation of misfolded proteins in the ER, is induced in several age-associated degenerative diseases. However, sustained UPR activation has negative effects on cellular functions and may worsen disease symptoms. It remains unknown whether and how UPR components can be utilized to counteract chronic ER proteinopathies. We found that promotion of ER-associated degradation (ERAD) through upregulation of ERAD-enhancing α-mannosidase-like proteins (EDEMs) protected against chronic ER proteinopathy without inducing toxicity in a Drosophila model. ERAD activity in the brain decreased with aging, and upregulation of EDEMs suppressed age-dependent behavioral decline and extended the lifespan without affecting the UPR gene expression network. Intriguingly, EDEM mannosidase activity was dispensable for these protective effects. Therefore, upregulation of EDEM function in the ERAD protects against ER proteinopathy in vivo and thus represents a potential therapeutic target for chronic diseases.
Collapse
Affiliation(s)
- Michiko Sekiya
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen Hearn
- Microscopy Shared Resource, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yasufumi Sakakibara
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan
| | - Emiko Suzuki
- Structural Biology Center, National Institute of Genetics and Gene Network Laboratory, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kanae Ando
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan.
| |
Collapse
|
56
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
57
|
Jia YL, Fu ZX, Zhang BH, Jia YJ. Hippocampal overexpression of Down syndrome cell adhesion molecule in amyloid precursor protein transgenic mice. ACTA ACUST UNITED AC 2017; 50:e6049. [PMID: 28513774 PMCID: PMC5479388 DOI: 10.1590/1414-431x20176049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/20/2017] [Indexed: 11/25/2022]
Abstract
Down syndrome cell adhesion molecule (DSCAM) is located within the Down syndrome critical region of chromosome 21. DSCAM is a broadly expressed neurodevelopmental protein involved in synaptogenesis, neurite outgrowth, and axon guidance. We previously demonstrated DSCAM overexpression in the cortex of amyloid precursor protein (APP) transgenic mice, suggesting possible regulatory interactions between APP and DSCAM. APP mice exhibit deficits in hippocampus-dependent learning and memory. In this preliminary study, we examined age-related changes in DSCAM expression within the hippocampus in 16 APP transgenic mice (1, 3, 6 and 12 months old). Hippocampus-dependent spatial memory was assessed in APP mice and age-matched wild type littermates (WTs) using the Morris water maze (MWM). The cellular distribution of hippocampal DSCAM and total expression at both mRNA and protein levels were measured by immunohistochemistry, qRT-PCR, and western blotting, respectively. APP mice exhibited spatial memory deficits in the MWM. Intense DSCAM immunoreactivity was observed in the dentate gyrus granule cell layer and hippocampal stratum pyramidale. Total hippocampal DSCAM mRNA and protein expression levels were substantially higher in APP mice than WTs at 1 and 3 months of age. Expression decreased with age in both groups but remained higher in APP mice. DSCAM is overexpressed in the hippocampus over the first 12 months of life in APP mice, but especially during maturation to adulthood. In conclusion, these results suggest an association between DSCAM and APP mice, which is characterized by neuropathology and behavioral deficits. These results provide some clues for future studies on the role of DSCAM overexpression in the precocious cognitive decline observed in APP transgenic mice.
Collapse
Affiliation(s)
- Y L Jia
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - Z X Fu
- Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - B H Zhang
- Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - Y J Jia
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
58
|
Wagner N. Ultrastructural comparison of the Drosophila larval and adult ventral abdominal neuromuscular junction. J Morphol 2017; 278:987-996. [PMID: 28444917 DOI: 10.1002/jmor.20692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 02/04/2023]
Abstract
Drosophila melanogaster has recently emerged as model system for studying synaptic transmission and plasticity during adulthood, aging and neurodegeneration. However, still little is known about the basic neuronal mechanisms of synaptic function in the adult fly. Per se, adult Drosophila neuromuscular junctions should be highly suited for studying these aspects as they allow for genetic manipulations in combination with ultrastructural and electrophysiological analyses. Although different neuromuscular junctions of the adult fly have been described during the last years, a direct ultrastructural comparison with their larval counterpart is lacking. The present study was designed to close this gap by providing a detailed ultrastructural comparison of the larval and the adult neuromuscular junction of the ventrolongitudinal muscle. Assessment of several parameters revealed similarities but also major differences in the ultrastructural organisation of the two model neuromuscular junctions. While basic morphological parameters are retained from the larval into the adult stage, the analysis discovered major differences of potential functional relevance in the adult: The electron-dense membrane apposition of the presynaptic and postsynaptic membrane is shorter, the subsynaptic reticulum is less elaborated and the number of synaptic vesicles at a certain distance of the presynaptic membrane is higher.
Collapse
Affiliation(s)
- Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians University Wuerzburg, Koellikerstraße 6, Wuerzburg, Germany
| |
Collapse
|
59
|
Sørensen JG, Schou MF, Loeschcke V. Evolutionary adaptation to environmental stressors: a common response at the proteomic level. Evolution 2017; 71:1627-1642. [PMID: 28369831 DOI: 10.1111/evo.13243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Mechanistic trade-offs between traits under selection can shape and constrain evolutionary adaptation to environmental stressors. However, our knowledge of the quantitative and qualitative overlap in the molecular machinery among stress tolerance traits is highly restricted by the challenges of comparing and interpreting data between separate studies and laboratories, as well as to extrapolating between different levels of biological organization. We investigated the expression of the constitutive proteome (833 proteins) of 35 Drosophila melanogaster replicate populations artificially selected for increased resistance to six different environmental stressors. The evolved proteomes were significantly differentiated from replicated control lines. A targeted analysis of the constitutive proteomes revealed a regime-specific selection response among heat-shock proteins, which provides evidence that selection also adjusts the constitutive expression of these molecular chaperones. Although the selection response in some proteins was regime specific, the results were dominated by evidence for a "common stress response." With the exception of high temperature survival, we found no evidence for negative correlations between environmental stress resistance traits, meaning that evolutionary adaptation is not constrained by mechanistic trade-offs in regulation of functional important proteins. Instead, standing genetic variation and genetic trade-offs outside regulatory domains likely constrain the evolutionary responses in natural populations.
Collapse
Affiliation(s)
- Jesper G Sørensen
- Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000, Aarhus C, Denmark
| | - Mads F Schou
- Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000, Aarhus C, Denmark
| | - Volker Loeschcke
- Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000, Aarhus C, Denmark
| |
Collapse
|
60
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
61
|
Park SM, Park HR, Lee JH. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions. Mol Cells 2017; 40:151-161. [PMID: 28196412 PMCID: PMC5339506 DOI: 10.14348/molcells.2017.2307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gαq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gαq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
| | - Hae Ryoun Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| | - Ji Hye Lee
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| |
Collapse
|
62
|
Nahm M, Park S, Lee J, Lee S. MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development. Mol Cells 2016; 39:762-767. [PMID: 27770767 PMCID: PMC5104885 DOI: 10.14348/molcells.2016.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/27/2022] Open
Abstract
Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.
Collapse
Affiliation(s)
- Minyeop Nahm
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826,
Korea
| | - Sunyoung Park
- Interdisciplinary Graduate Program in Brain Science, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jihye Lee
- Department of Oral Pathology and BK21 PLUS Project, School of Dentistry and Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826,
Korea
- Interdisciplinary Graduate Program in Brain Science, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
63
|
Harden N, Wang SJH, Krieger C. Making the connection – shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J Cell Sci 2016; 129:3067-76. [DOI: 10.1242/jcs.186627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The pleated septate junction (pSJ), an ancient structure for cell–cell contact in invertebrate epithelia, has protein components that are found in three more-recent junctional structures, the neuronal synapse, the paranodal region of the myelinated axon and the vertebrate epithelial tight junction. These more-recent structures appear to have evolved through alterations of the ancestral septate junction. During its formation in the developing animal, the pSJ exhibits plasticity, although the final structure is extremely robust. Similar to the immature pSJ, the synapse and tight junctions both exhibit plasticity, and we consider evidence that this plasticity comes at least in part from the interaction of members of the immunoglobulin cell adhesion molecule superfamily with highly regulated membrane-associated guanylate kinases. This plasticity regulation probably arose in order to modulate the ancestral pSJ and is maintained in the derived structures; we suggest that it would be beneficial when studying plasticity of one of these structures to consider the literature on the others. Finally, looking beyond the junctions, we highlight parallels between epithelial and synaptic membranes, which both show a polarized distribution of many of the same proteins – evidence that determinants of apicobasal polarity in epithelia also participate in patterning of the synapse.
Collapse
Affiliation(s)
- Nicholas Harden
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
| | - Simon Ji Hau Wang
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| | - Charles Krieger
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
64
|
LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat Commun 2016; 7:12188. [PMID: 27432119 PMCID: PMC4960312 DOI: 10.1038/ncomms12188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease gene leucine-rich repeat kinase 2 (LRRK2) has been implicated in a number of processes including the regulation of mitochondrial function, autophagy and endocytic dynamics; nevertheless, we know little about its potential role in the regulation of synaptic plasticity. Here we demonstrate that postsynaptic knockdown of the fly homologue of LRRK2 thwarts retrograde, homeostatic synaptic compensation at the larval neuromuscular junction. Conversely, postsynaptic overexpression of either the fly or human LRRK2 transgene induces a retrograde enhancement of presynaptic neurotransmitter release by increasing the size of the release ready pool of vesicles. We show that LRRK2 promotes cap-dependent translation and identify Furin 1 as its translational target, which is required for the synaptic function of LRRK2. As the regulation of synaptic homeostasis plays a fundamental role in ensuring normal and stable synaptic function, our findings suggest that aberrant function of LRRK2 may lead to destabilization of neural circuits. Mutations in the protein LRRK2 have been associated with Parkinson's disease but little is still known about the basic functions of the protein in the brain. Here the authors show that in fruit flies, LRRK2 regulates retrograde homeostatic synaptic compensation at the larval neuromuscular junction.
Collapse
|
65
|
Vonhoff F, Keshishian H. Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction. Dev Neurobiol 2016; 77:39-60. [PMID: 27281494 DOI: 10.1002/dneu.22407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
The removal of miswired synapses is a fundamental prerequisite for normal circuit development, leading to clinical problems when aberrant. However, the underlying activity-dependent molecular mechanisms involved in synaptic pruning remain incompletely resolved. Here the dynamic properties of intracellular calcium oscillations and a role for cAMP signaling during synaptic refinement in intact Drosophila embryos were examined using optogenetic tools. We provide In vivo evidence at the single gene level that the calcium-dependent adenylyl cyclase rutabaga, the phosphodiesterase dunce, the kinase PKA, and Protein Phosphatase 1 (PP1) all operate within a functional signaling pathway to modulate Sema2a-dependent chemorepulsion. It was found that presynaptic cAMP levels were required to be dynamically maintained at an optimal level to suppress connectivity defects. It was also proposed that PP1 may serve as a molecular link between cAMP signaling and CaMKII in the pathway underlying refinement. The results introduced an in vivo model where presynaptic cAMP levels, downstream of electrical activity and calcium influx, act via PKA and PP1 to modulate the neuron's response to chemorepulsion involved in the withdrawal of off-target synaptic contacts. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 39-60, 2017.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| |
Collapse
|
66
|
Navas-Navarro P, Rojo-Ruiz J, Rodriguez-Prados M, Ganfornina MD, Looger LL, Alonso MT, García-Sancho J. GFP-Aequorin Protein Sensor for Ex Vivo and In Vivo Imaging of Ca(2+) Dynamics in High-Ca(2+) Organelles. Cell Chem Biol 2016; 23:738-45. [PMID: 27291400 DOI: 10.1016/j.chembiol.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.
Collapse
Affiliation(s)
- Paloma Navas-Navarro
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Macarena Rodriguez-Prados
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Dolores Ganfornina
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
67
|
Nijhof B, Castells-Nobau A, Wolf L, Scheffer-de Gooyert JM, Monedero I, Torroja L, Coromina L, van der Laak JAWM, Schenck A. A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry. PLoS Comput Biol 2016; 12:e1004823. [PMID: 26998933 PMCID: PMC4801422 DOI: 10.1371/journal.pcbi.1004823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm 'Drosophila_NMJ_Morphometrics', available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ.
Collapse
Affiliation(s)
- Bonnie Nijhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louis Wolf
- Microscopical Imaging Centre (MIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jolanda M. Scheffer-de Gooyert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ignacio Monedero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Laura Torroja
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lluis Coromina
- Research Group on Statistics, Econometrics and Health (GRECS) and CIBER of Epidemiology and Public Health (CIBERESP), University of Girona, Girona, Spain
| | - Jeroen A. W. M. van der Laak
- Microscopical Imaging Centre (MIC), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
68
|
Spring AM, Brusich DJ, Frank CA. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005886. [PMID: 26901416 PMCID: PMC4764653 DOI: 10.1371/journal.pgen.1005886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating downstream expression or localization of FasII. Homeostasis is a fundamental topic in biology. Individual cells and systems of cells constantly monitor their environments and adjust their outputs in order to maintain physiological properties within ranges that can support life. The nervous system is no exception. Synapses and circuits are endowed with a capacity to respond to environmental challenges in a homeostatic fashion. As a result, synaptic output stays within an appropriate physiological range. We know that homeostasis is a fundamental form of regulation in animal nervous systems, but we have very little information about how it works. In this study, we examine the fruit fly Drosophila melanogaster and its ability to maintain normal levels of synaptic output over long periods of developmental time. We identify new roles in this process for classical signaling molecules called C-terminal Src kinase, Src family kinases, as well as a neuronal cell adhesion molecule called Fasciclin II, which was previously shown to stabilize synaptic contacts between neurons and muscles. Our work contributes to a broader understanding of how neurons work to maintain stable outputs. Ultimately, this type of knowledge could have important implications for neurological disorders in which stability is lost, such as forms of epilepsy or ataxia.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
69
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
70
|
Ormerod KG, LePine OK, Bhutta MS, Jung J, Tattersall GJ, Mercier AJ. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. J Neurophysiol 2016; 115:568-80. [PMID: 26538605 PMCID: PMC4760479 DOI: 10.1152/jn.00606.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide proctolin (RYLPT) plays important roles as both a neurohormone and a cotransmitter in arthropod neuromuscular systems. We used third-instar Drosophila larvae as a model system to differentiate synaptic effects of this peptide from its direct effects on muscle contractility and to determine whether proctolin can work in a cell-selective manner on muscle fibers. Proctolin did not appear to alter the amplitude of excitatory junctional potentials but did induce sustained muscle contractions in preparations where the CNS had been removed and no stimuli were applied to the remaining nerves. Proctolin-induced contractions were dose-dependent, were reduced by knocking down expression of the Drosophila proctolin receptor in muscle tissue, and were larger in some muscle cells than others (i.e., larger in fibers 4, 12, and 13 than in 6 and 7). Proctolin also increased the amplitude of nerve-evoked contractions in a dose-dependent manner, and the magnitude of this effect was also larger in some muscle cells than others (again, larger in fibers 4, 12, and 13 than in 6 and 7). Increasing the intraburst impulse frequency and number of impulses per burst increased the magnitude of proctolin's enhancement of nerve-evoked contractions and decreased the threshold and EC50 concentrations for proctolin to enhance nerve-evoked contractions. Reducing proctolin receptor expression decreased the velocity of larval crawling at higher temperatures, and thermal preference in these larvae. Our results suggest that proctolin acts directly on body-wall muscles to elicit slow, sustained contractions and to enhance nerve-evoked contractions, and that proctolin affects muscle fibers in a cell-selective manner.
Collapse
Affiliation(s)
- Kiel G Ormerod
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Olivia K LePine
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - JaeHwan Jung
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Glenn J Tattersall
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
71
|
Bornstein B, Zahavi EE, Gelley S, Zoosman M, Yaniv SP, Fuchs O, Porat Z, Perlson E, Schuldiner O. Developmental Axon Pruning Requires Destabilization of Cell Adhesion by JNK Signaling. Neuron 2015; 88:926-940. [PMID: 26586184 DOI: 10.1016/j.neuron.2015.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
Developmental axon pruning is essential for normal brain wiring in vertebrates and invertebrates. How axon pruning occurs in vivo is not well understood. In a mosaic loss-of-function screen, we found that Bsk, the Drosophila JNK, is required for axon pruning of mushroom body γ neurons, but not their dendrites. By combining in vivo genetics, biochemistry, and high-resolution microscopy, we demonstrate that the mechanism by which Bsk is required for pruning is through reducing the membrane levels of the adhesion molecule Fasciclin II (FasII), the NCAM ortholog. Conversely, overexpression of FasII is sufficient to inhibit axon pruning. Finally, we show that overexpressing other cell adhesion molecules, together with weak attenuation of JNK signaling, strongly inhibits pruning. Taken together, we have uncovered a novel and unexpected interaction between the JNK pathway and cell adhesion and found that destabilization of cell adhesion is necessary for efficient pruning.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Gelley
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Maayan Zoosman
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Shiri Penina Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Ora Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
72
|
Muhammad K, Reddy-Alla S, Driller JH, Schreiner D, Rey U, Böhme MA, Hollmann C, Ramesh N, Depner H, Lützkendorf J, Matkovic T, Götz T, Bergeron DD, Schmoranzer J, Goettfert F, Holt M, Wahl MC, Hell SW, Scheiffele P, Walter AM, Loll B, Sigrist SJ. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun 2015; 6:8362. [PMID: 26471740 PMCID: PMC4633989 DOI: 10.1038/ncomms9362] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Assembly and maturation of synapses at the Drosophila neuromuscular junction
(NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by
the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold
protein spinophilin binds to the C-terminal portion of neurexin and is needed to
limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of
presynaptic spinophilin results in the formation of excess, but atypically small
active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at
spinophilin mutant NMJs, and removal of single copies of the
neurexin-1, Syd-1 or neuroligin-1 genes suppresses the
spinophilin-active zone phenotype. Evoked transmission is strongly reduced at
spinophilin terminals, owing to a severely reduced release probability at
individual active zones. We conclude that presynaptic spinophilin fine-tunes
neurexin/neuroligin signalling to control active zone number and functionality,
thereby optimizing them for action potential-induced exocytosis. Synaptic assembly depends on trans-synaptic Neurexin/Neuroligin
signalling. Here, Muhammad et al. show that Spinophilin, a pre-synaptic
scaffolding protein, interacts with Neurexin, in competition with Syd-1, to regulate the
formation and function of synaptic active zones at Drosophila neuromuscular
junctions.
Collapse
Affiliation(s)
- Karzan Muhammad
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Jan H Driller
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Dietmar Schreiner
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Ulises Rey
- NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | | | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany
| | - Harald Depner
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | - Tanja Matkovic
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Torsten Götz
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | - Jan Schmoranzer
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany.,Leibniz Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Fabian Goettfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Mathew Holt
- VIB Center for the Biology of Disease, Herestraat 49, Leuven 3000, Belgium
| | - Markus C Wahl
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Peter Scheiffele
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Alexander M Walter
- NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany.,Leibniz Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
73
|
Gao QQ, Wyatt E, Goldstein JA, LoPresti P, Castillo LM, Gazda A, Petrossian N, Earley JU, Hadhazy M, Barefield DY, Demonbreun AR, Bönnemann C, Wolf M, McNally EM. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. J Clin Invest 2015; 125:4186-95. [PMID: 26457733 DOI: 10.1172/jci82768] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/03/2015] [Indexed: 01/16/2023] Open
Abstract
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.
Collapse
MESH Headings
- Animals
- Codon, Nonsense/genetics
- Diaphragm/metabolism
- Diaphragm/pathology
- Drosophila Proteins/deficiency
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Dystrophin-Associated Protein Complex/chemistry
- Exons
- Fibrosis
- Genetic Therapy
- HEK293 Cells
- Humans
- Mice
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Protein Engineering
- Protein Interaction Mapping
- Protein Structure, Tertiary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/metabolism
- Sarcoglycans/biosynthesis
- Sarcoglycans/chemistry
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Sarcolemma/metabolism
- Sequence Deletion
Collapse
|
74
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
75
|
Ball RW, Peled ES, Guerrero G, Isacoff EY. BMP signaling and microtubule organization regulate synaptic strength. Neuroscience 2015; 291:155-66. [PMID: 25681521 DOI: 10.1016/j.neuroscience.2015.01.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022]
Abstract
The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strengths between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system.
Collapse
Affiliation(s)
- R W Ball
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - E S Peled
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - G Guerrero
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - E Y Isacoff
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
76
|
Bouchard MB, Voleti V, Mendes CS, Lacefield C, Grueber WB, Mann RS, Bruno RM, Hillman EMC. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. NATURE PHOTONICS 2015; 9:113-119. [PMID: 25663846 PMCID: PMC4317333 DOI: 10.1038/nphoton.2014.323] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/04/2014] [Indexed: 05/18/2023]
Abstract
We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae.
Collapse
Affiliation(s)
- Matthew B. Bouchard
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027
| | - Venkatakaushik Voleti
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027
| | - César S. Mendes
- Mann Lab, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Clay Lacefield
- Bruno Lab, Department of Neuroscience, Columbia University, New York, NY 10032
| | - Wesley B. Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032
| | - Richard S. Mann
- Mann Lab, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Randy M. Bruno
- Bruno Lab, Department of Neuroscience, Columbia University, New York, NY 10032
| | - Elizabeth M. C. Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027
- corresponding
| |
Collapse
|
77
|
Presynaptic NCAM is required for motor neurons to functionally expand their peripheral field of innervation in partially denervated muscles. J Neurosci 2014; 34:10497-510. [PMID: 25100585 DOI: 10.1523/jneurosci.0697-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9(cre)NCAM(flx)). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM(+/+)) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9(cre)NCAM(flx) mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1-4 weeks post-partial denervation in Hb9(cre)NCAM(flx) mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9(cre)NCAM(flx) mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9(cre)NCAM(flx) soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9(cre)NCAM(flx) sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs.
Collapse
|
78
|
McDermott SM, Yang L, Halstead JM, Hamilton RS, Meignin C, Davis I. Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction. RNA (NEW YORK, N.Y.) 2014; 20:1593-606. [PMID: 25171822 PMCID: PMC4174441 DOI: 10.1261/rna.045849.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/09/2014] [Indexed: 05/24/2023]
Abstract
Localized mRNA translation is thought to play a key role in synaptic plasticity, but the identity of the transcripts and the molecular mechanism underlying their function are still poorly understood. Here, we show that Syncrip, a regulator of localized translation in the Drosophila oocyte and a component of mammalian neuronal mRNA granules, is also expressed in the Drosophila larval neuromuscular junction, where it regulates synaptic growth. We use RNA-immunoprecipitation followed by high-throughput sequencing and qRT-PCR to show that Syncrip associates with a number of mRNAs encoding proteins with key synaptic functions, including msp-300, syd-1, neurexin-1, futsch, highwire, discs large, and α-spectrin. The protein levels of MSP-300, Discs large, and a number of others are significantly affected in syncrip null mutants. Furthermore, syncrip mutants show a reduction in MSP-300 protein levels and defects in muscle nuclear distribution characteristic of msp-300 mutants. Our results highlight a number of potential new players in localized translation during synaptic plasticity in the neuromuscular junction. We propose that Syncrip acts as a modulator of synaptic plasticity by regulating the translation of these key mRNAs encoding synaptic scaffolding proteins and other important components involved in synaptic growth and function.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Lu Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - James M Halstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Russell S Hamilton
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carine Meignin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
79
|
Knodel MM, Geiger R, Ge L, Bucher D, Grillo A, Wittum G, Schuster CM, Queisser G. Synaptic bouton properties are tuned to best fit the prevailing firing pattern. Front Comput Neurosci 2014; 8:101. [PMID: 25249970 PMCID: PMC4158995 DOI: 10.3389/fncom.2014.00101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/07/2014] [Indexed: 11/25/2022] Open
Abstract
The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junction (NMJ) of body wall muscles of Drosophila larvae. These NMJs are built by two motor neurons forming two types of glutamatergic multi-release-site boutons with two typical diameters. However, it is unknown why these distinct nerve terminal configurations are used on the same postsynaptic muscle fiber. To systematically dissect the biophysical properties of these boutons we developed a full three-dimensional model of such boutons, their release sites and transmitter-harboring vesicles and analyzed the local vesicle dynamics of various configurations during stimulation. Here we show that the rate of transmission of a bouton is primarily limited by diffusion-based vesicle movements and that the probability of vesicle release and the size of a bouton affect bouton-performance in distinct temporal domains allowing for an optimal transmission of the neural signals at different time scales. A comparison of our in silico simulations with in vivo recordings of the natural motor pattern of both neurons revealed that the bouton properties resemble a well-tuned cooperation of the parameters release probability and bouton size, enabling a reliable transmission of the prevailing firing-pattern at diffusion-limited boutons. Our findings indicate that the prevailing firing-pattern of a neuron may determine the physiological and morphological parameters required for its synaptic terminals.
Collapse
Affiliation(s)
- Markus M Knodel
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| | - Romina Geiger
- Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Lihao Ge
- Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Daniel Bucher
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany ; Development Unit, European Molecular Biology Laboratory Heidelberg, Germany
| | - Alfio Grillo
- Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany ; Department of Mathematical Sciences, Polythecnic of Turin Turin, Italy
| | - Gabriel Wittum
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| | - Christoph M Schuster
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Gillian Queisser
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Computational Neuroscience, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| |
Collapse
|
80
|
Gan G, Lv H, Xie W. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil. PLoS One 2014; 9:e105497. [PMID: 25166897 PMCID: PMC4148333 DOI: 10.1371/journal.pone.0105497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/24/2014] [Indexed: 12/02/2022] Open
Abstract
In Drosophila, ventral nerve cord (VNC) occupies most of the larval central nervous system (CNS). However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV) neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV) neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV) neurites have mixed vesicles and some T-bar structures; Large vesicle (LV) neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P) phase, they have mitochondria, microtubules or big dark vesicles in the second (S) phase, and they contain immature synaptic features in the third (T) phase. The subsequent bifurcate (B) phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M) phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5–3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo development.
Collapse
Affiliation(s)
- Guangming Gan
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- * E-mail:
| | - Huihui Lv
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Xie
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| |
Collapse
|
81
|
Choi BJ, Imlach WL, Jiao W, Wolfram V, Wu Y, Grbic M, Cela C, Baines RA, Nitabach MN, McCabe BD. Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 2014; 82:618-34. [PMID: 24811381 PMCID: PMC4022839 DOI: 10.1016/j.neuron.2014.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Abstract
Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that miniature neurotransmission is required for the normal structural maturation of Drosophila glutamatergic synapses in a developmental role that is not shared by evoked neurotransmission. Conversely, we find that increasing miniature events is sufficient to induce synaptic terminal growth. We show that miniature neurotransmission acts locally at terminals to regulate synapse maturation via a Trio guanine nucleotide exchange factor (GEF) and Rac1 GTPase molecular signaling pathway. Our results establish that miniature neurotransmission, a universal but often-overlooked feature of synapses, has unique and essential functions in vivo. Miniature, but not evoked, neurotransmission is required for synapse development Miniature neurotransmission bidirectionally regulates synaptic terminal maturation Miniature events signal locally through the GEF Trio and the GTPase Rac1 Miniature neurotransmission has unique and essential functions in vivo
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wendy L Imlach
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Jiao
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Verena Wolfram
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Ying Wu
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Grbic
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolina Cela
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brian D McCabe
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
82
|
Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:9491-6. [PMID: 24979807 DOI: 10.1073/pnas.1409427111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity develops in response to an imbalance of energy homeostasis and whole-body metabolism. Muscle plays a central role in the control of energy homeostasis through consumption of energy and signaling to adipose tissue. We reported previously that MED13, a subunit of the Mediator complex, acts in the heart to control obesity in mice. To further explore the generality and mechanistic basis of this observation, we investigated the potential influence of MED13 expression in heart and muscle on the susceptibility of Drosophila to obesity. Here, we show that heart/muscle-specific knockdown of MED13 or MED12, another Mediator subunit, increases susceptibility to obesity in adult flies. To identify possible muscle-secreted obesity regulators, we performed an RNAi-based genetic screen of 150 genes that encode secreted proteins and found that Wingless inhibition also caused obesity. Consistent with these findings, muscle-specific inhibition of Armadillo, the downstream transcriptional effector of the Wingless pathway, also evoked an obese phenotype in flies. Epistasis experiments further demonstrated that Wingless functions downstream of MED13 within a muscle-regulatory pathway. Together, these findings reveal an intertissue signaling system in which Wingless acts as an effector of MED13 in heart and muscle and suggest that Wingless-mediated cross-talk between striated muscle and adipose tissue controls obesity in Drosophila. This signaling system appears to represent an ancestral mechanism for the control of systemic energy homeostasis.
Collapse
|
83
|
PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 2014; 10:e1004279. [PMID: 24874806 PMCID: PMC4038460 DOI: 10.1371/journal.pgen.1004279] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson's disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be a cleavage target of several mitochondrial proteases, whether these proteases account for the constitutive degradation of PINK1 in healthy mitochondria remains unclear. To explore the mechanism by which PINK1 is degraded, we performed a screen for mitochondrial proteases that influence PINK1 abundance in the fruit fly Drosophila melanogaster. We found that genetic perturbations targeting the matrix-localized protease Lon caused dramatic accumulation of processed PINK1 species in several mitochondrial compartments, including the matrix. Knockdown of Lon did not decrease mitochondrial membrane potential or trigger activation of the mitochondrial unfolded protein stress response (UPRmt), indicating that PINK1 accumulation in Lon-deficient animals is not a secondary consequence of mitochondrial depolarization or the UPRmt. Moreover, the influence of Lon on PINK1 abundance was highly specific, as Lon inactivation had little or no effect on the abundance of other mitochondrial proteins. Further studies indicated that the processed forms of PINK1 that accumulate upon Lon inactivation are capable of activating the PINK1-Parkin pathway in vivo. Our findings thus suggest that Lon plays an essential role in regulating the PINK1-Parkin pathway by promoting the degradation of PINK1 in the matrix of healthy mitochondria.
Collapse
|
84
|
Demontis F, Patel VK, Swindell WR, Perrimon N. Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep 2014; 7:1481-1494. [PMID: 24882005 DOI: 10.1016/j.celrep.2014.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023] Open
Abstract
Recent evidence indicates that skeletal muscle influences systemic aging, but little is known about the signaling pathways and muscle-released cytokines (myokines) responsible for this intertissue communication. Here, we show that muscle-specific overexpression of the transcription factor Mnt decreases age-related climbing defects and extends lifespan in Drosophila. Mnt overexpression in muscle autonomously decreases the expression of nucleolar components and systemically decreases rRNA levels and the size of the nucleolus in adipocytes. This nonautonomous control of the nucleolus, a regulator of ribosome biogenesis and lifespan, relies on Myoglianin, a myokine induced by Mnt and orthologous to human GDF11 and Myostatin. Myoglianin overexpression in muscle extends lifespan and decreases nucleolar size in adipocytes by activating p38 mitogen-activated protein kinase (MAPK), whereas Myoglianin RNAi in muscle has converse effects. Altogether, these findings highlight a key role for myokine signaling in the integration of signaling events in muscle and distant tissues during aging.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Vishal K Patel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
85
|
Bulat V, Rast M, Pielage J. Presynaptic CK2 promotes synapse organization and stability by targeting Ankyrin2. ACTA ACUST UNITED AC 2014; 204:77-94. [PMID: 24395637 PMCID: PMC3882785 DOI: 10.1083/jcb.201305134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylation of synaptic cytoskeletal components by casein kinase 2 promotes the development and maintenance of synaptic connections. The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.
Collapse
Affiliation(s)
- Victoria Bulat
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
86
|
Chipman PH, Zhang Y, Rafuse VF. A stem-cell based bioassay to critically assess the pathology of dysfunctional neuromuscular junctions. PLoS One 2014; 9:e91643. [PMID: 24626225 PMCID: PMC3953473 DOI: 10.1371/journal.pone.0091643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/13/2014] [Indexed: 02/01/2023] Open
Abstract
Pluripotent stem cells can be directed to differentiate into motor neurons and assessed for functionality in vitro. An emerging application of this technique is to model genetically inherited diseases in differentiated motor neurons and to screen for new therapeutic targets. The neuromuscular junction (NMJ) is essential to the functionality of motor neurons and its dysfunction is a primary hallmark of motor neuron disease. However, mature NMJs that possess the functional and morphological characteristics of those formed in vivo have so far not been obtained in vitro. Here we describe the generation and analysis of mature NMJs formed between embryonic stem cell-derived motor neurons (ESCMNs) and primary myotubes. We compared the formation and maturation of NMJs generated by wild-type (NCAM+/+) ESCMNs to those generated by neural cell adhesion molecule null (NCAM-/-) ESCMNs in order to definitively test the sensitivity of this assay to identify synaptic pathology. We find that co-cultures using NCAM-/- ESCMNs replicate key in vivo NCAM-/- phenotypes and reveal that NCAM influences neuromuscular synaptogenesis by controlling the mode of synaptic vesicle endocytosis. Further, we could improve synapse formation and function in NCAM-/- co-cultures by chronic treatment with nifedipine, which blocks an immature synaptic vesicle recycling pathway. Together, our results demonstrate that this ESCMN/myofiber co-culture system is a highly sensitive bioassay for examining molecules postulated to regulate synaptic function and for screening therapeutics that will improve the function of compromised NMJs.
Collapse
Affiliation(s)
- Peter H. Chipman
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Life Science Research Centre, Halifax, Nova Scotia, Canada
| | - Victor F. Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Life Science Research Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
87
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
88
|
Milakovic M, Ormerod KG, Klose MK, Mercier AJ. Mode of action of a Drosophila FMRFamide in inducing muscle contraction. ACTA ACUST UNITED AC 2014; 217:1725-36. [PMID: 24526728 DOI: 10.1242/jeb.096941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Collapse
Affiliation(s)
- Maja Milakovic
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| | - Kiel G Ormerod
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| | - Markus K Klose
- Department of Anatomy & Neurobiology, Washington University, St Louis, MO 63110, USA
| | - A Joffre Mercier
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| |
Collapse
|
89
|
Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF, Klein R. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J 2014; 33:341-55. [PMID: 24473149 PMCID: PMC3983680 DOI: 10.1002/embj.201284290] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN₂B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN₂B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.
Collapse
Affiliation(s)
- Pontus Klein
- Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Confocal imaging of fluorescently labeled proteins in the Drosophila larval neuromuscular junction. Methods Mol Biol 2014; 1075:201-12. [PMID: 24052353 DOI: 10.1007/978-1-60761-847-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Drosophila larval neuromuscular junction (NMJ) consists of a presynaptic motor neuron terminal and a postsynaptic muscle cell that offer an accessible and popular model system for the analysis of synaptic growth and function. I describe techniques for visualizing fluorescently labeled proteins within dissected, formaldehyde-fixed second to third instar larval NMJs. In addition, I present two strategies using confocal microscopy to solve a particular problem in NMJ analysis: distinguishing fluorescence in the presynaptic nerve terminal from that in the adjacent postsynaptic muscle cell. This problem arises from the fact that the membrane of the muscle cell envelops the motor neuron terminal with a convoluted process called the subsynaptic reticulum, obscuring the boundary between muscle and nerve. A first strategy entails taking thin optical sections through synaptic boutons to capture a cross section of the nerve terminal, and a second strategy involves visualizing epitope-tagged isoforms of particular proteins that have been transgenically expressed in either the nerve or the muscle.
Collapse
|
91
|
Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci 2013; 33:17937-50. [PMID: 24198381 DOI: 10.1523/jneurosci.6075-11.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
At the Drosophila neuromuscular junction (NMJ), the loss of retrograde, trans-synaptic BMP signaling causes motoneuron terminals to have fewer synaptic boutons, whereas increased neuronal activity results in a larger synapse with more boutons. Here, we show that an early and transient BMP signal is necessary and sufficient for NMJ growth as well as for activity-dependent synaptic plasticity. This early critical period was revealed by the temporally controlled suppression of Mad, the SMAD1 transcriptional regulator. Similar results were found by genetic rescue tests involving the BMP4/5/6 ligand Glass bottom boat (Gbb) in muscle, and alternatively the type II BMP receptor Wishful Thinking (Wit) in the motoneuron. These observations support a model where the muscle signals back to the innervating motoneuron's nucleus to activate presynaptic programs necessary for synaptic growth and activity-dependent plasticity. Molecular genetic gain- and loss-of-function studies show that genes involved in NMJ growth and plasticity, including the adenylyl cyclase Rutabaga, the Ig-CAM Fasciclin II, the transcription factor AP-1 (Fos/Jun), and the adhesion protein Neurexin, all depend critically on the canonical BMP pathway for their effects. By contrast, elevated expression of Lar, a receptor protein tyrosine phosphatase found to be necessary for activity-dependent plasticity, rescued the phenotypes associated with the loss of Mad signaling. We also find that synaptic structure and function develop using genetically separable, BMP-dependent mechanisms. Although synaptic growth depended on Lar and the early, transient BMP signal, the maturation of neurotransmitter release was independent of Lar and required later, ongoing BMP signaling.
Collapse
|
92
|
Abstract
Skeletal muscle undergoes marked functional decay during aging in humans, but the cell biological mechanisms responsible for this process are only partly known. Age-related muscle dysfunction is also a feature of aging in the fruit fly Drosophila melanogaster. Here we describe a detailed step-by-step protocol, which takes place over 3 d, for whole-mount immunostaining of Drosophila flight muscle. The skeletal muscle is fixed and permeabilized without any tissue freezing and dehydration so that antigens are accessible for staining with appropriate antibodies and the overall tissue ultrastructure is well preserved. This technique can be used to identify age-related cellular changes driving skeletal muscle aging and for characterizing models of human muscle disease in Drosophila.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
93
|
Rai M, Katti P, Nongthomba U. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene. J Cell Sci 2013; 127:191-203. [PMID: 24198395 DOI: 10.1242/jcs.135525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
94
|
Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction. PLoS One 2013; 8:e75902. [PMID: 24124519 PMCID: PMC3790821 DOI: 10.1371/journal.pone.0075902] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/17/2013] [Indexed: 02/08/2023] Open
Abstract
Retrograde growth factors regulating synaptic plasticity at the neuromuscular junction (NMJ) in Drosophila have long been predicted but their discovery has been scarce. In vertebrates, such retrograde factors produced by the muscle include GDNF and the neurotrophins (NT: NGF, BDNF, NT3 and NT4). NT superfamily members have been identified throughout the invertebrates, but so far no functional in vivo analysis has been carried out at the NMJ in invertebrates. The NT family of proteins in Drosophila is formed of DNT1, DNT2 and Spätzle (Spz), with sequence, structural and functional conservation relative to mammalian NTs. Here, we investigate the functions of Drosophila NTs (DNTs) at the larval NMJ. All three DNTs are expressed in larval body wall muscles, targets for motor-neurons. Over-expression of DNTs in neurons, or the activated form of the Spz receptor, Toll10b, in neurons only, rescued the semi-lethality of spz2 and DNT141, DNT2e03444 double mutants, indicating retrograde functions in neurons. In spz2 mutants, DNT141, DNT2e03444 double mutants, and upon over-expression of the DNTs, NMJ size and bouton number increased. Boutons were morphologically abnormal. Mutations in spz and DNT1,DNT2 resulted in decreased number of active zones per bouton and decreased active zone density per terminal. Alterations in DNT function induced ghost boutons and synaptic debris. Evoked junction potentials were normal in spz2 mutants and DNT141, DNT2e03444 double mutants, but frequency and amplitude of spontaneous events were reduced in spz2 mutants suggesting defective neurotransmission. Our data indicate that DNTs are produced in muscle and are required in neurons for synaptogenesis. Most likely alterations in DNT function and synapse formation induce NMJ plasticity leading to homeostatic adjustments that increase terminal size restoring overall synaptic transmission. Data suggest that Spz functions with neuron-type specificity at the muscle 4 NMJ, and DNT1 and DNT2 function together at the muscles 6,7 NMJ.
Collapse
|
95
|
The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 2013; 33:11916-31. [PMID: 23864680 DOI: 10.1523/jneurosci.1760-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory deficits in Drosophila nalyot mutants suggest that the Myb family transcription factor Adf-1 is an important regulator of developmental plasticity in the brain. However, the cellular functions for this transcription factor in neurons or molecular mechanisms by which it regulates plasticity remain unknown. Here, we use in vivo 3D reconstruction of identifiable larval motor neuron dendrites to show that Adf-1 is required cell autonomously for dendritic development and activity-dependent plasticity of motor neurons downstream of CaMKII. Adf-1 inhibition reduces dendrite growth and neuronal excitability, and results in motor deficits and altered transcriptional profiles. Surprisingly, analysis by comparative chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of Adf-1, RNA Polymerase II (Pol II), and histone modifications in Kc cells shows that Adf-1 binding correlates positively with high Pol II-pausing indices and negatively with active chromatin marks such as H3K4me3 and H3K27ac. Consistently, the expression of Adf-1 targets Staufen and Fasciclin II (FasII), identified through larval brain ChIP-Seq for Adf-1, is negatively regulated by Adf-1, and manipulations of these genes predictably modify dendrite growth. Our results imply mechanistic interactions between transcriptional and local translational machinery in neurons as well as conserved neuronal growth mechanisms mediated by cell adhesion molecules, and suggest that CaMKII, Adf-1, FasII, and Staufen influence crucial aspects of dendrite development and plasticity with potential implications for memory formation. Further, our experiments reveal molecular details underlying transcriptional regulation by Adf-1, and indicate active interaction between Adf-1 and epigenetic regulators of gene expression during activity-dependent neuronal plasticity.
Collapse
|
96
|
Shaw JL, Chang KT. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling. PLoS Genet 2013; 9:e1003792. [PMID: 24086147 PMCID: PMC3784514 DOI: 10.1371/journal.pgen.1003792] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/29/2013] [Indexed: 01/06/2023] Open
Abstract
Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD. Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by gradual neuronal cell loss and memory decline. Importantly, Down syndrome (DS) individuals over 40 years of age almost always develop neuropathological features of AD, although most do not develop dementia until at least two decades later. These findings suggest that DS and AD may share common genetic causes and that a neuroprotective mechanism may delay neurodegeneration and cognitive decline. It has been shown that the amyloid precursor protein (APP), which is associated with AD when duplicated and upregulated in DS, is a key gene contributing to AD pathologies and axonal transport abnormalities. Here, using fruit fly as a simple model organism, we examined the role of Down syndrome critical region 1 (DSCR1), another gene located on chromosome 21 and upregulated in both DS and AD, in modulating APP phenotypes. We find that upregulation of DSCR1 (Nebula in flies) is neuroprotective in the presence of APP upregulation. We report that nebula overexpression delays the onset of neurodegeneration and transport blockage in neuronal cells. Our results further suggest that signaling pathways downstream of DSCR1 may be potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Jillian L. Shaw
- Zilkha Neurogenetic Institute and Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Karen T. Chang
- Zilkha Neurogenetic Institute and Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
97
|
Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system. Proc Natl Acad Sci U S A 2013; 110:E3878-87. [PMID: 24043825 DOI: 10.1073/pnas.1311711110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows.
Collapse
|
98
|
Becnel J, Johnson O, Majeed ZR, Tran V, Yu B, Roth BL, Cooper RL, Kerut EK, Nichols CD. DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. Cell Rep 2013; 4:1049-59. [PMID: 24012754 DOI: 10.1016/j.celrep.2013.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2013] [Accepted: 08/01/2013] [Indexed: 12/29/2022] Open
Abstract
We have translated a powerful genetic tool, designer receptors exclusively activated by designer drugs (DREADDs), from mammalian systems to Drosophila melanogaster to selectively, rapidly, reversibly, and dose-dependently control behaviors and physiological processes in the fly. DREADDs are muscarinic acetylcholine G protein-coupled receptors evolved for loss of affinity to acetylcholine and for the ability to be fully activated by an otherwise biologically inert chemical, clozapine-N-oxide. We demonstrate its ability to control a variety of behaviors and processes in larvae and adults, including heart rate, sensory processing, diurnal behavior, learning and memory, and courtship. The advantages of this particular technology include the dose-responsive control of behaviors, the lack of a need for specialized equipment, and the capacity to remotely control signaling in essentially all neuronal and nonneuronal fly tissues.
Collapse
Affiliation(s)
- Jaime Becnel
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-β signaling. Neuron 2013; 78:456-68. [PMID: 23664613 DOI: 10.1016/j.neuron.2013.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/22/2022]
Abstract
Axon pruning during development is essential for proper wiring of the mature nervous system, but its regulation remains poorly understood. We have identified an immunoglobulin superfamily (IgSF) transmembrane protein, Plum, that is cell autonomously required for axon pruning of mushroom body (MB) γ neurons and for ectopic synapse refinement at the developing neuromuscular junction in Drosophila. Plum promotes MB γ neuron axon pruning by regulating the expression of Ecdysone Receptor-B1, a key initiator of axon pruning. Genetic analyses indicate that Plum acts to facilitate signaling of Myoglianin, a glial-derived TGF-β, on MB γ neurons upstream of the type-I TGF-β receptor Baboon. Myoglianin, Baboon, and Ecdysone Receptor-B1 are also required for neuromuscular junction ectopic synapse refinement. Our study highlights both IgSF proteins and TGF-β facilitation as key promoters of developmental axon elimination and demonstrates a mechanistic conservation between MB axon pruning during metamorphosis and the refinement of ectopic larval neuromuscular connections.
Collapse
|
100
|
Özkan E, Carrillo RA, Eastman CL, Weiszmann R, Waghray D, Johnson KG, Zinn K, Celniker SE, Garcia KC. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell 2013; 154:228-39. [PMID: 23827685 PMCID: PMC3756661 DOI: 10.1016/j.cell.2013.06.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/02/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Extracellular domains of cell surface receptors and ligands mediate cell-cell communication, adhesion, and initiation of signaling events, but most existing protein-protein "interactome" data sets lack information for extracellular interactions. We probed interactions between receptor extracellular domains, focusing on a set of 202 proteins composed of the Drosophila melanogaster immunoglobulin superfamily (IgSF), fibronectin type III (FnIII), and leucine-rich repeat (LRR) families, which are known to be important in neuronal and developmental functions. Out of 20,503 candidate protein pairs tested, we observed 106 interactions, 83 of which were previously unknown. We "deorphanized" the 20 member subfamily of defective-in-proboscis-response IgSF proteins, showing that they selectively interact with an 11 member subfamily of previously uncharacterized IgSF proteins. Both subfamilies interact with a single common "orphan" LRR protein. We also observed interactions between Hedgehog and EGFR pathway components. Several of these interactions could be visualized in live-dissected embryos, demonstrating that this approach can identify physiologically relevant receptor-ligand pairs.
Collapse
Affiliation(s)
- Engin Özkan
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A. Carrillo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Catharine L. Eastman
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
| | - Richard Weiszmann
- Department of Genome Dynamics, Berkeley Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
| | - Karl G. Johnson
- Department of Biology, and Neuroscience, Pomona College, Claremont, CA 91711, USA
| | - Kai Zinn
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Susan E. Celniker
- Department of Genome Dynamics, Berkeley Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|