51
|
Shen W, Sun J. Different modes of Notch activation and strength regulation in the spermathecal secretory lineage. Development 2020; 147:dev184390. [PMID: 31988187 PMCID: PMC7033723 DOI: 10.1242/dev.184390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 01/09/2023]
Abstract
The strength of Notch signaling contributes to pleiotropic actions of Notch; however, we do not yet have a full understanding of the molecular regulation of Notch-signaling strength. We have investigated the mode of Notch activation in binary fate specification in the Drosophila spermathecal linage, where Notch is asymmetrically activated across three divisions to specify different cell fates. Using clonal analysis, we show that Delta (Dl) serves as the ligand for Notch in the first and second divisions. Dl and Serrate (Ser) function redundantly in the third division. Compared with the third division, cell-fate decision in the second division requires a lower level of Suppressor of Hairless protein, and, consequently, a lower level of Notch signaling. Several Notch endosomal trafficking regulators differentially regulate Notch signaling between the second and third divisions. Here, we demonstrate that cell differentiation in spermathecae involves different Notch-activation modes, Notch-signaling strengths and Notch-trafficking regulations. Thus, the Drosophila spermathecal lineage is an exciting model for probing the molecular mechanisms that modulate the Notch signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
52
|
Dou XQ, Chen XJ, Zhou Q, Wen MX, Zhang SZ, Zhang SQ. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer. Kaohsiung J Med Sci 2020; 36:171-177. [PMID: 31894898 DOI: 10.1002/kjm2.12149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
Numb is a conserved protein plays important roles in the development of cancer. Two Numb isoforms have been found produced by alternative splicing and play contrast roles in regulating cellular functions. It is reported that the expression of Numb long isoform (Numb-L) was increased in various kinds of cancers, but in endometrial cancer, the condition is still unknown. The level of two Numb transcripts and protein isoforms were detected by semiquantitative polymerase chain reaction and immunoblotting in 47 paired endometrial tumor and adjacent non-tumor control tissues. The level of three alternative splicing related proteins: RBM5, RBM6, and RBM10 was determined by immunoblotting. MiRNAs targeting RBM10 were predicted by bioinformatics tools and their interaction with RBM10 was confirmed by luciferase assay and immunoblotting. The function of miR-335 in endometrial cancer was examined in xenograft mouse model. Numb-L level was increased in tumors and negatively correlated with RBM10 protein level. RBM10 mRNA level was not significantly altered in endometrial tumors suggesting its expression may regulated by post transcriptional regulators such as miRNAs. We identified miR-133a, miR-133b, and miR-335 directly target RBM10, but only miR-335 level increased in tumors and negatively correlated with RBM10 protein level. miR-335 overexpression promoted tumor growth by downregulating RBM10 and upregulating Numb-L level in xenograft mouse model. miR-335 overexpression promoted Numb-L expression via targeting RBM10 in endometrial cancer, which may provide new biomarkers for EC diagnosis.
Collapse
Affiliation(s)
- Xiao-Qing Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xiu-Juan Chen
- Department of Obstetrics and Gynecology, People's Hospital of Rizhao, Rizhao, China
| | - Qun Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming-Xiao Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shi-Qian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
53
|
McIntyre B, Asahara T, Alev C. Overview of Basic Mechanisms of Notch Signaling in Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:9-27. [PMID: 32072496 DOI: 10.1007/978-3-030-36422-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway associated with the development and differentiation of all metazoans. It is needed for proper germ layer formation and segmentation of the embryo and controls the timing and duration of differentiation events in a dynamic manner. Perturbations of Notch signaling result in blockades of developmental cascades, developmental anomalies, and cancers. An in-depth understanding of Notch signaling is thus required to comprehend the basis of development and cancer, and can be further exploited to understand and direct the outcomes of targeted cellular differentiation into desired cell types and complex tissues from pluripotent or adult stem and progenitor cells. In this chapter, we briefly summarize the molecular, evolutionary, and developmental basis of Notch signaling. We will focus on understanding the basics of Notch signaling and its signaling control mechanisms, its developmental outcomes and perturbations leading to developmental defects, as well as have a brief look at mutations of the Notch signaling pathway causing human hereditary disorders or cancers.
Collapse
Affiliation(s)
| | | | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
54
|
Xia M, Greenman CD, Chou T. PDE MODELS OF ADDER MECHANISMS IN CELLULAR PROLIFERATION. SIAM JOURNAL ON APPLIED MATHEMATICS 2020; 80:1307-1335. [PMID: 35221385 PMCID: PMC8871769 DOI: 10.1137/19m1246754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell division is a process that involves many biochemical steps and complex biophysical mechanisms. To simplify the understanding of what triggers cell division, three basic models that subsume more microscopic cellular processes associated with cell division have been proposed. Cells can divide based on the time elapsed since their birth, their size, and/or the volume added since their birth-the timer, sizer, and adder models, respectively. Here, we propose unified adder-sizer models and investigate some of the properties of different adder processes arising in cellular proliferation. Although the adder-sizer model provides a direct way to model cell population structure, we illustrate how it is mathematically related to the well-known model in which cell division depends on age and size. Existence and uniqueness of weak solutions to our 2+1-dimensional PDE model are proved, leading to the convergence of the discretized numerical solutions and allowing us to numerically compute the dynamics of cell population densities. We then generalize our PDE model to incorporate recent experimental findings of a system exhibiting mother-daughter correlations in cellular growth rates. Numerical experiments illustrating possible average cell volume blowup and the dynamical behavior of cell populations with mother-daughter correlated growth rates are carried out. Finally, motivated by new experimental findings, we extend our adder model cases where the controlling variable is the added size between DNA replication initiation points in the cell cycle.
Collapse
Affiliation(s)
- Mingtao Xia
- Department of Mathematics, UCLA, Los Angeles, CA 90095-1555
| | - Chris D Greenman
- School of Computing Sciences, University of East Anglia, Norwich, UK NR4 7TJ
| | - Tom Chou
- Departments of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095-1766
| |
Collapse
|
55
|
Arsenio J. Single-cell analysis of CD8 T lymphocyte diversity during adaptive immunity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1475. [PMID: 31877242 DOI: 10.1002/wsbm.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
An effective adaptive immune response to microbial infection relies on the generation of heterogeneous T lymphocyte fates and functions. CD8 T lymphocytes play a pivotal role in mediating immediate and long-term protective immune responses to intracellular pathogen infection. Systems-based analysis of the immune response to infection has begun to identify cell fate determinants and the molecular mechanisms underpinning CD8 T lymphocyte diversity at single-cell resolution. Resolving CD8 T lymphocyte heterogeneity during adaptive immunity highlights the advantages of single-cell technologies and computational approaches to better understand the ontogeny of CD8 T cellular diversity following infection. Future directions of integrating single-cell multiplex approaches capitalize on the importance of systems biology in the understanding of immune CD8 T cell differentiation and functional diversity. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| |
Collapse
|
56
|
Domingos PM, Jenny A, Combie KF, Del Alamo D, Mlodzik M, Steller H, Mollereau B. Regulation of Numb during planar cell polarity establishment in the Drosophila eye. Mech Dev 2019; 160:103583. [PMID: 31678471 DOI: 10.1016/j.mod.2019.103583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The establishment of planar cell polarity (PCP) in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells, determined by a Frizzled mediated signaling event that specifies R3 and induces Delta to activate Notch signaling in the neighboring cell, specifying it as R4. Here, we investigated the role of the Notch signaling negative regulator Numb in the specification of R3/R4 fates and PCP establishment in the Drosophila eye. We observed that Numb is transiently upregulated in R3 at the time of R3/R4 specification. This regulation of Numb levels in developing photoreceptors occurs at the post-transcriptional level and is dependent on Dishevelled, an effector of Frizzled signaling, and Lethal Giant Larva. We detected PCP defects in cells homozygous for numb15, but these defects were due to a loss of function mutation in fat (fatQ805⁎) being present in the numb15 chromosome. However, mosaic overexpression of Numb in R4 precursors (only) caused PCP defects and numb loss-of-function alleles had a modifying effect on the defects found in a hypomorphic dishevelled mutation. Our results suggest that Numb levels are upregulated to reinforce the bias of Notch signaling activation in the R3/R4 pair, two post-mitotic cells that are not specified by asymmetric cell division.
Collapse
Affiliation(s)
- Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal; Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA.
| | - Andreas Jenny
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building, Room 503, Bronx NY10461, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Keon F Combie
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA
| | - David Del Alamo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; European Molecular Biology Organization, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA
| | - Bertrand Mollereau
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA; Université de Lyon, ENSL, UCBL, CNRS, LBMC, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
57
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
58
|
Wilson C, Kavaler J, Ahmad ST. Expression of a human variant of CHMP2B linked to neurodegeneration in Drosophila external sensory organs leads to cell fate transformations associated with increased Notch activity. Dev Neurobiol 2019; 80:85-97. [PMID: 31587468 DOI: 10.1002/dneu.22722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Proper function of cell signaling pathways is dependent upon regulated membrane trafficking events that lead to the endocytosis, recycling, and degradation of cell surface receptors. The endosomal complexes required for transport (ESCRT) genes play a critical role in the sorting of ubiquitinated cell surface proteins. CHMP2BIntron5 , a truncated form of a human ESCRT-III protein, was discovered in a Danish family afflicted by a hereditary form of frontotemporal dementia (FTD). Although the mechanism by which the CHMP2B mutation in this family causes FTD is unknown, the resulting protein has been shown to disrupt normal endosomal-lysosomal pathway function and leads to aberrant regulation of signaling pathways. Here we have misexpressed CHMP2BIntron5 in the developing Drosophila external sensory (ES) organ lineage and demonstrate that it is capable of altering cell fates. Each of the cell fate transformations seen is compatible with an increase in Notch signaling. Furthermore, this interpretation is supported by evidence that expression of CHMP2BIntron5 in the notum environment is capable of raising the levels of Notch signaling. As such, these results add to a growing body of evidence that CHMP2BIntron5 can act rapidly to disrupt normal cellular function via the misregulation of critical cell surface receptor function.
Collapse
|
59
|
Wolf D, Smylla TK, Reichmuth J, Hoffmeister P, Kober L, Zimmermann M, Turkiewicz A, Borggrefe T, Nagel AC, Oswald F, Preiss A, Maier D. Nucleo-cytoplasmic shuttling of Drosophila Hairless/Su(H) heterodimer as a means of regulating Notch dependent transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1520-1532. [PMID: 31326540 DOI: 10.1016/j.bbamcr.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Activation and repression of Notch target genes is mediated by transcription factor CSL, known as Suppressor of Hairless (Su(H)) in Drosophila and CBF1 or RBPJ in human. CSL associates either with co-activator Notch or with co-repressors such as Drosophila Hairless. The nuclear translocation of transcription factor CSL relies on co-factor association, both in mammals and in Drosophila. The Drosophila CSL orthologue Su(H) requires Hairless for repressor complex formation. Based on its role in transcriptional silencing, H protein would be expected to be strictly nuclear. However, H protein is also cytosolic, which may relate to its role in the stabilization and nuclear translocation of Su(H) protein. Here, we investigate the function of the predicted nuclear localization signals (NLS 1-3) and single nuclear export signal (NES) of co-repressor Hairless using GFP-fusion proteins, reporter assays and in vivo analyses using Hairless wild type and shuttling-defective Hairless mutants. We identify NLS3 and NES to be critical for Hairless function. In fact, H⁎NLS3 mutant flies match H null mutants, whereas H⁎NLS3⁎NES double mutants display weaker phenotypes in agreement with a crucial role for NES in H export. As expected for a transcriptional repressor, Notch target genes are deregulated in H⁎NLS3 mutant cells, demonstrating nuclear requirement for its activity. Importantly, we reveal that Su(H) protein strictly follows Hairless protein localization. Together, we propose that shuttling between the nucleo-cytoplasmic compartments provides the possibility to fine tune the regulation of Notch target gene expression by balancing of Su(H) protein availability for Notch activation.
Collapse
Affiliation(s)
- Dorina Wolf
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Thomas K Smylla
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jan Reichmuth
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ludmilla Kober
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mirjam Zimmermann
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Aleksandra Turkiewicz
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Justus-Liebig University of Giessen Institute of Biochemistry, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Anja C Nagel
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Anette Preiss
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dieter Maier
- University of Hohenheim, Institute of Genetics (240a), Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
60
|
Simon F, Ramat A, Louvet-Vallée S, Lacoste J, Burg A, Audibert A, Gho M. Shaping of Drosophila Neural Cell Lineages Through Coordination of Cell Proliferation and Cell Fate by the BTB-ZF Transcription Factor Tramtrack-69. Genetics 2019; 212:773-788. [PMID: 31073020 PMCID: PMC6614892 DOI: 10.1534/genetics.119.302234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.
Collapse
Affiliation(s)
- Françoise Simon
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Anne Ramat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France.
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France.
| |
Collapse
|
61
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Liu Z, Qi S, Fu Y, Shen L, Li M, Lu J, Zhao X, Zhang H. NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian cancer cells by inhibiting cell proliferation and epithelial-mesenchymal transition. Transl Cancer Res 2019; 8:379-388. [PMID: 35116770 PMCID: PMC8798962 DOI: 10.21037/tcr.2019.01.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
Background NUMB is an inhibitory regulator of NOTCH signaling, which is critical for the induction of epithelial-mesenchymal transition (EMT). Loss of NUMB expression is correlated with the genesis and development of multiple tumors. Recent studies reported that NUMB expression was upregulated in human ovarian cancer. However, the role of NUMB in ovarian cancer is still unclear. Here, we invested the effect of NUMB knockdown on the proliferation and EMT in ovarian cancer cells and explored the role of NUMB in the effect of cisplatin. Methods Two ovarian cancer cells (OVCAR-3 and SK-OV-3) were used in the experiments. The proliferation and apoptosis of ovarian cancer cells was examined using methyl thiazolyl tetrazolium (MTT) test and flow cytometry assays. The invasion and migration of ovarian cancer cells were examined using Transwell assays. The expression of EMT markers were examined using Simple Western analysis. Results NUMB knockdown inhibited cell proliferation, invasion, and migration in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell growth inhibiting and apoptosis in both ovarian cancer cells. NUMB knockdown enhanced cisplatin-induced cell invasion in SK-OV-3 cells. NUMB knockdown also decreased the expression of N-cadherin and Vimentin in SK-OV-3 cells. Conclusions NUMB acted as an oncogene in ovarian cancer and NUMB knockdown enhanced the anti-tumor role of cisplatin on ovarian carcinoma cells by inhibiting cell proliferation and EMT.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shasha Qi
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Mingjiang Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
63
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
64
|
NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts. Bone Res 2018; 6:32. [PMID: 30455992 PMCID: PMC6226489 DOI: 10.1038/s41413-018-0030-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The adaptor protein NUMB is involved in asymmetric division and cell fate determination and recognized as an antagonist of Notch. Previous studies have proved that Notch activation in osteoblasts contributes to a high bone mass. In this study, however, an osteopenic phenotype was found in 9-week-old mice using osteoblastic specific Col1a1–2.3-Cre to ablate both Numb and its homologue Numbl . The trabecular bone mass decreased dramatically while the cortical bone mass was unaffected. Here, the Notch signal was not activated, while the tensin homologue deleted on human chromosome 10 (PTEN), which dephosphorylates phosphatidylinositide 3-kinases, was elevated, attenuating protein kinase B (Akt). The ubiquitination assay revealed that NUMB may physiologically promote PTEN ubiquitination in the presence of neural precursor cell-expressed developmentally downregulated protein 4–1. In addition, the deficiency of Numb/Numbl also activated the Hedgehog pathway through GLI1. This process was found to improve the ratio of the receptor activator of nuclear factor-kB ligand to osteoprotegerin, which enhanced the differentiation of osteoclasts and bone resorption . In conclusion, this study provides an insight into new functons of NUMB and NUMBL on bone homeostasis. The related proteins NUMB and NUMBL maintain the survival of bone-generating osteoblast cells. NUMB was previously recognized to antagonize Notch signaling pathway ; In this study, it observes that genetically altered mice, unable to express the two proteins, suffered from degraded bone quality. This suggests that the two proteins play a more complex, nuanced role in the process of bone mass maintenance. The team’s studies showed that NUMB and NUMBL suppression inhibits a signaling pathway important to skeletal development and protein synthesis in osteoblasts, though raise that further investigations are essential to elucidate the exact mechanistic action of these proteins. The authors of this study suggest that NUMB constitutes a potential target for therapies targeting bone loss and reduced bone strength in patients with osteoporosis.
Collapse
|
65
|
Wei R, Kaneko T, Liu X, Liu H, Li L, Voss C, Liu E, He N, Li SSC. Interactome Mapping Uncovers a General Role for Numb in Protein Kinase Regulation. Mol Cell Proteomics 2018; 17:2216-2228. [PMID: 29217616 PMCID: PMC6210222 DOI: 10.1074/mcp.ra117.000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.
Collapse
Affiliation(s)
- Ran Wei
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Tomonori Kaneko
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuguang Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- §Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Eric Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ningning He
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Shawn S-C Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada;
- **Department of Oncology and Child Health Research Institute, Western University
| |
Collapse
|
66
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
67
|
Altered Notch Signaling in Developing Molar Teeth of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Deficient Mice. J Mol Neurosci 2018; 68:377-388. [PMID: 30094580 DOI: 10.1007/s12031-018-1146-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with neuroprotective and neurotrophic effects. This suggests its influence on the development of teeth, which are, similarly to the nervous system, ectoderm and neural crest derivatives. Our earlier studies have shown morphological differences between wild-type (WT) and PACAP-deficient mice, with upregulated sonic hedgehog (SHH) signaling in the lack of PACAP. Notch signaling is a key element of proper tooth development by regulating apoptosis and cell proliferation. In this study, our main goal was to evaluate the possible effects of PACAP on Notch signaling pathway. Immunohistochemical staining was performed of Notch receptors (Notch1, 2, 3, 4), their ligands [delta-like protein (DLL)1, 3, 4, Jagged1, 2], and intracellular target molecules [CSL (CBF1 humans/Su (H) Drosophila/LAG1 Caenorhabditis elegans transcription factor); TACE (TNF-α converting enzyme), NUMB] in molar teeth of 5-day-old WT, and homozygous and heterozygous PACAP-deficient mice. We measured immunopositivity in the enamel-producing ameloblasts and dentin-producing odontoblasts. Notch2 receptor and DLL1 expression were elevated in ameloblasts of PACAP-deficient mice compared to those in WT ones. The expression of CSL showed similar results both in the ameloblasts and odontoblasts. Jagged1 ligand expression was elevated in the odontoblasts of homozygous PACAP-deficient mice compared to WT mice. Other Notch pathway elements did not show significant differences between the genotype groups. The lack of PACAP leads to upregulation of Notch pathway elements in the odontoblast and ameloblast cells. The underlying molecular mechanisms are yet to be elucidated; however, we propose SHH-dependent and independent processes. We hypothesize that this compensatory upregulation of Notch signaling by the lack of PACAP could represent a salvage pathway in PACAP-deficient animals.
Collapse
|
68
|
Wang J, Zhou T, Sun Z, Ye T, Zhou S, Li J, Liu Y, Kong L, Tang J, Liu D, Xing H. Zeb1 Regulates the Symmetric Division of Mouse Lewis Lung Carcinoma Stem Cells through Numb mediated by miR-31. Int J Biol Sci 2018; 14:1399-1410. [PMID: 30262992 PMCID: PMC6158737 DOI: 10.7150/ijbs.27446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
Symmetric cell division (SD) and asymmetric cell division (ASD) were the unique characteristics of stem cells and the mechanisms underlying stem cell renewal. While recent studies have identified the presence of SD and ASD in lung cancer stem cells (CSCs), the mechanisms regulating SD and ASD in cancer state have not been elucidated, mostly due to the lack of stable cellular models of SD and ASD in CSC research. In this study, the interaction between Zeb1, an Epithelial-Mesenchymal Transition (EMT) factor shown to regulate CSCs self-renew, and Numb, which regulates SD and ASD in the normal neural stem cell was investigated using the stable mouse Lewis lung adenocarcinoma SD (LLC-SD) and ASD (LLC-ASD) lines established from our previous study. The most significant finding derived from this line of research is that we have identified and molecularly ordered the axis of Zeb1-miR-31-Numb that regulates the SD, a mechanism of CSC self-renewal that has not been previously described. More specifically, the expression of Zeb1 and Numb were both significantly higher in LLC-SD than LLC-ASD cells. Silencing of Zeb1 or Numb expression lead to decreased ratio of SD and weakened single-cell cloning formation, tumor growth and tumor metastasis, respectively. The rescure experiments have molecularly ordered the regulation of Numb by Zeb1, indirectly mediated by miR-31. Moreover, we also provided preliminary evidence supporting the clinical relevance of our finding. In summary, our study provides a new insight for the self-renew of lung CSCs in which SD is regulated by the axis of Zeb1-miR-31-Numb.
Collapse
Affiliation(s)
- Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Tiejun Zhou
- Department of Pathology, The affiliated Hospital of Southwest medical university
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Junlin Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H.Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing, China
| |
Collapse
|
69
|
Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nat Commun 2018; 9:737. [PMID: 29467404 PMCID: PMC5821850 DOI: 10.1038/s41467-018-03077-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
Uneven distribution and local concentration of protein complexes on distinct membrane cortices is a fundamental property in numerous biological processes, including Drosophila neuroblast (NB) asymmetric cell divisions and cell polarity in general. In NBs, the cell fate determinant Numb forms a basal crescent together with Pon and is segregated into the basal daughter cell to initiate its differentiation. Here we discover that Numb PTB domain, using two distinct binding surfaces, recognizes repeating motifs within Pon in a previously unrecognized mode. The multivalent Numb-Pon interaction leads to high binding specificity and liquid-liquid phase separation of the complex. Perturbations of the Numb/Pon complex phase transition impair the basal localization of Numb and its subsequent suppression of Notch signaling during NB asymmetric divisions. Such phase-transition-mediated protein condensations on distinct membrane cortices may be a general mechanism for various cell polarity regulatory complexes. Polarized localization of Numb and Pon in Drosophila neuroblasts (NBs) enables their unequal segregation during asymmetric cell divisions. Here, the authors demonstrate liquid-liquid phase separation of Pon and Numb in NBs mediated by multivalent intermolecular interactions is required for their basal condensation.
Collapse
|
70
|
Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. J Cell Biol 2018; 217:745-762. [PMID: 29269425 PMCID: PMC5800818 DOI: 10.1083/jcb.201709092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.
Collapse
Affiliation(s)
| | - Andrea Basile
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lee Freiburger
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronica D'Uva
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | | | - Manuela Vecchi
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | | | - Daniela Tosoni
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Grazia Malabarba
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| |
Collapse
|
71
|
Chen X, Liu Z, Shan Z, Yao W, Gu A, Wen W. Structural determinants controlling 14-3-3 recruitment to the endocytic adaptor Numb and dissociation of the Numb·α-adaptin complex. J Biol Chem 2018; 293:4149-4158. [PMID: 29382713 DOI: 10.1074/jbc.ra117.000897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
72
|
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 2018; 11:3. [PMID: 29304868 PMCID: PMC5755409 DOI: 10.1186/s13048-017-0377-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stem cells in the ovary comprise of two distinct populations including very small embryonic-like stem cells (VSELs) and slightly bigger progenitors termed ovarian stem cells (OSCs). They are lodged in ovary surface epithelium (OSE) and are expected to undergo neo-oogenesis and primordial follicle (PF) assembly in adult ovaries. The ovarian stem cells express follicle stimulating hormone (FSH) receptors and are directly activated by FSH resulting in formation of germ cell nests (GCN) in vitro. Present study was undertaken to further characterize adult sheep OSCs and to understand their role during neo-oogenesis and PF assembly. METHODS Stem cells were collected by gently scraping the OSE cells and were characterized by H&E staining, immuno-localization, immuno-phenotyping and RT-PCR studies. Expression of FSH receptors and markers specific for stem cells (OCT-4, SSEA-4) and proliferation (PCNA) were studied on stem/progenitor cells in OSE culture and on adult sheep ovarian cortical tissue sections. Effect of FSH on stem cells was also studied in vitro. Asymmetric cell division (ACD) was monitored by studying expression of OCT-4 and NUMB. RESULTS Additional evidence was generated on the presence of two populations of stem cells in the OSE including VSELs and OSCs. FSHR expression was observed on both VSELs and OSCs by immuno-localization and immuno-phenotyping studies. FSH treatment in vitro stimulated VSELs that underwent ACD to self-renew and give rise to OSCs which divided rapidly by symmetric cell divisions (SCD) and clonal expansion with incomplete cytokinesis to form GCN. ACD was further confirmed by differential expression of OCT-4 in VSELs and NUMB in the OSCs. Immuno-histochemical expression of OCT-4, PCNA and FSHR was noted on stem cells located in the OSE in sheep ovarian sections. GCN and cohort of PF were observed in the ovarian cortex and provided evidence in support of neo-oogenesis from the stem cells. CONCLUSION Results of present study provide further evidence in support of two stem cells populations in adult sheep ovary. Both VSELs, OSCs and GCN express FSH receptors and FSH possibly regulates their function to undergo neo-oogenesis and primordial follicle assembly.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| |
Collapse
|
73
|
Abstract
Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.
Collapse
Affiliation(s)
- Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
74
|
Yang S, Sheng L, Xu K, Wang Y, Zhu H, Zhang P, Mu Q, Ouyang G. Anticancer effect of quinacrine on diffuse large B‑cell lymphoma via inhibition of MSI2‑NUMB signaling pathway. Mol Med Rep 2018; 17:522-530. [PMID: 29115587 DOI: 10.3892/mmr.2017.7892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 11/05/2022] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) is the most common subtype of non‑Hodgkin's lymphoma. Despite improvements in the clinical outcomes of DLBCL, ~30% of patients will develop relapse/refractory disease. Therefore, novel therapeutic drugs have been investigated to improve disease outcomes. Previous studies have revealed the anticancer effects of quinacrine (QC) on tumor cells in vitro, although its role in human DLBCL is yet to be identified. The present study sought to examine the cytotoxic effect of QC on DLBCL cells. QC induced G0/G1 cell cycle arrest and apoptosis in the DLBCL cell lines SU‑DHL‑8 and OCI‑LY01, in a dose‑dependent manner, in addition to the downregulation of cyclin‑dependent kinase 4/6 and the upregulation of cleaved poly‑ADP ribose polymerase 1. Upon exposure to QC, RNA‑binding protein Musashi homolog 2 inactivation and activation of protein numb homolog were observed. In addition, QC was able to inhibit the expression of Myc proto‑oncogene protein. The results of the present study indicated that QC may be a potential anti‑DLBCL drug.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
75
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
76
|
Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division. ENDOCYTOSIS AND SIGNALING 2018; 57:301-329. [DOI: 10.1007/978-3-319-96704-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
77
|
Reichardt I, Bonnay F, Steinmann V, Loedige I, Burkard TR, Meister G, Knoblich JA. The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep 2017; 19:102-117. [PMID: 29191977 DOI: 10.15252/embr.201744188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.
Collapse
Affiliation(s)
- Ilka Reichardt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Inga Loedige
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
78
|
Guo Y, Zhang K, Cheng C, Ji Z, Wang X, Wang M, Chu M, Tang DG, Zhu HH, Gao WQ. Numb -/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clin Cancer Res 2017; 23:6744-6756. [PMID: 28751447 DOI: 10.1158/1078-0432.ccr-17-0913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To elucidate the role and molecular mechanism of Numb in prostate cancer and the functional contribution of Numb-/low prostate cancer cells in castration resistance.Experimental Design: The expression of Numb was assessed using multiple Oncomine datasets and prostate cancer tissues from both humans and mice. The biological effects of the overexpression and knockdown of Numb in human prostate cancer cell lines were investigated in vitro and in vivo In addition, we developed a reliable approach to distinguish between prostate cancer cell populations with a high or low endogenous expression of Numb protein using a Numb promoter-based lentiviral reporter system. The difference between Numb-/low and Numbhigh prostate cancer cells in the response to androgen-deprivation therapy (ADT) was then tested. The likely downstream factors of Numb were analyzed using luciferase reporter assays, immunoblotting, and quantitative real-time PCR.Results: We show here that Numb was downregulated and negatively correlated with prostate cancer advancement. Functionally, Numb played an inhibitory role in xenograft prostate tumor growth and castration-resistant prostate cancer development by suppressing Notch and Hedgehog signaling. Using a Numb promoter-based lentiviral reporter system, we were able to distinguish Numb-/low prostate cancer cells from Numbhigh cells. Numb-/low prostate cancer cells were smaller and quiescent, preferentially expressed Notch and Hedgehog downstream and stem-cell-associated genes, and associated with a greater resistance to ADT. The inhibition of the Notch and Hedgehog signaling pathways significantly increased apoptosis in Numb-/low cells in response to ADT.Conclusions: Numb-/low enriches a castration-resistant prostate cancer cell subpopulation that is associated with unregulated Notch and Hedgehog signaling. Clin Cancer Res; 23(21); 6744-56. ©2017 AACR.
Collapse
Affiliation(s)
- Yanjing Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Minglei Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingliang Chu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Shao X, Ding Z, Zhao M, Liu K, Sun H, Chen J, Liu X, Zhang Y, Hong Y, Li H, Li H. Mammalian Numb protein antagonizes Notch by controlling postendocytic trafficking of the Notch ligand Delta-like 4. J Biol Chem 2017; 292:20628-20643. [PMID: 29042443 DOI: 10.1074/jbc.m117.800946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/30/2017] [Indexed: 11/06/2022] Open
Abstract
The biological antagonism between the signaling proteins Numb and Notch has been implicated in the regulation of many developmental processes, especially in asymmetric cell division. Mechanistic studies show that Numb inactivates Notch via endocytosis and proteasomal degradation that directly reduce Notch protein levels at the cell surface. However, some aspects of how Numb antagonizes Notch remain unclear. Here, we report a novel mechanism in which Numb acts as a Notch antagonist by controlling the intracellular destination and stability of the Notch ligand Delta-like 4 (Dll4) through a postendocytic-sorting process. We observed that Numb/Numblike knockdown increases the stability and cell-surface accumulation of Dll4. Further study indicated that Numb acts as a sorting switch to control the postendocytic trafficking of Dll4. Of note, the Numb/Numblike knockdown decreased Dll4 delivery to the lysosome, while increasing the recycling of Dll4 to the plasma membrane. Moreover, we demonstrate that this enrichment of Dll4 at the cell surface within Numb/Numblike knockdown cells could activate Notch signaling in neighboring cells. We also provide evidence that Numb negatively controls the Dll4 plasma membrane recycling through a well-documented recycling regulator protein AP1. In conclusion, our study has uncovered a molecular mechanism whereby Numb regulates the endocytic trafficking of the Notch ligand Dll4. Our findings provide a new perspective on how Numb counteracts Notch signaling and sheds additional critical insights into the antagonistic relationship between Numb and Notch signaling.
Collapse
Affiliation(s)
- Ximing Shao
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhihao Ding
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ming Zhao
- the Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ke Liu
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haiyan Sun
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Juntao Chen
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xianming Liu
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yuzhen Zhang
- the Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yang Hong
- the Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Huashun Li
- the ATCG Corp., BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongchang Li
- From the Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China,
| |
Collapse
|
80
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
81
|
Wang J, Sun Z, Liu Y, Kong L, Zhou S, Tang J, Xing HR. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells. Oncotarget 2017; 8:96852-96864. [PMID: 29228576 PMCID: PMC5722528 DOI: 10.18632/oncotarget.18451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Collapse
Affiliation(s)
- Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Junlin Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| | - Hongmei Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chong Qing Medical University, Chongqing, China
| |
Collapse
|
82
|
Ha T, Moon KH, Dai L, Hatakeyama J, Yoon K, Park HS, Kong YY, Shimamura K, Kim JW. The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep 2017; 19:351-363. [PMID: 28402857 DOI: 10.1016/j.celrep.2017.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron.
Collapse
Affiliation(s)
- Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Le Dai
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keejung Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Young-Yoon Kong
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
83
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
84
|
Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice. Brain Res 2017; 1665:36-49. [PMID: 28347671 DOI: 10.1016/j.brainres.2017.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/28/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Endocytic adaptor protein Numb is the first identified cell fate determinant in Drosophila melanogaster. It has been implicated in Notch signaling pathway and regulation of neural stem cells proliferation in the central nervous system. Numb is also expressed in postmitotic neurons, in vitro studies showed that Numb is involved in neuronal morphologic development, such as neurite growth, axonal growth and spine development. However, in vivo functions of Numb in the postmitotic neurons are largely unknown. Here we show that deletion of Numb/Numblike in glutamatergic neurons causes anxiety-like behavior in mouse. In this study, we conditionally deleted Numb and its homologous gene Numblike in the glutamatergic neurons in dorsal forebrain, and thoroughly characterized the behavioral phenotypes of mutant mice. On a battery of tests for anxiety-like behavior, the conditional double knockout mice showed increased anxiety-like behavior on light/dark exploration and novel open field tests, but not on elevated zero maze tests. The conditional double knockout mice also displayed novelty induced hyperactivity in novel open field test. Control measures of general health, motor functions, startle response, sensorimotor gating, depression-related behaviors did not show differences between genotypes. Our present findings provide new insight into the indispensable functions of Numb/Numblike in the brain and behavior, and suggest that Numb/Numblike may play a role in mediating neuronal functions that underlie behaviors related to anxiety.
Collapse
|
85
|
Rong C, Feng Y, Ye Z. Notch is a critical regulator in cervical cancer by regulating Numb splicing. Oncol Lett 2017; 13:2465-2470. [PMID: 28454421 DOI: 10.3892/ol.2017.5683] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer, which is the second most common female malignancy, is characterized by the consistent presence of human papillomavirus. Inappropriate activation of Notch signaling has been associated with various types of cancer; however, the role of Notch in cervical cancer remains unclear. The present study aimed to investigate the role of Notch in cervical cancer. The methods used included the generation of plasmids, viability assays, polymerase chain reaction and western blotting The present findings demonstrated that cervical cancer samples also consistently exhibit abnormal activation of the Notch pathway. The data also indicated that different Numb isoforms may have opposite effects on the proliferation of cervical cancer cells. As a result, the activated Notch signaling pathway regulates the alternative splicing of the Numb gene, which affects the proliferation of the cervical cancer cells. These findings suggest that activated Notch signaling may lead to the development of cervical cancer by regulating Numb splicing. Thus, Numb splice variants may be a potential clinical marker for indicating cervical cancer genesis and development.
Collapse
Affiliation(s)
- Cai Rong
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Yu Feng
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Zhou Ye
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
86
|
Bélanger MC, Robert B, Cayouette M. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Dev Cell 2016; 40:137-150. [PMID: 28011038 DOI: 10.1016/j.devcel.2016.11.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis.
Collapse
Affiliation(s)
- Marie-Claude Bélanger
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Benoit Robert
- Department of Molecular Genetics of Morphogenesis, Institut Pasteur, Paris 75015, France
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
87
|
Sakamoto K. Notch signaling in oral squamous neoplasia. Pathol Int 2016; 66:609-617. [PMID: 27671927 DOI: 10.1111/pin.12461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Notch signaling is involved in cell-cell communication. It is an evolutionarily ancient mechanism and plays a fundamental role in development. The typical function of Notch signaling is the regulation of cell fate segregation at asymmetric division; however, a role in tumorigenesis has also been suggested. Inactivating mutations of NOTCH1 are present in about 10 % of cases of squamous cell carcinoma of the skin, oral cavity, esophagus, and lung, rendering it one of the most frequently mutated genes in squamous cell carcinoma. Mouse knockout studies have demonstrated that Notch1 is imperative for early development but is dispensable for formation of the squamous epithelium. However, loss of Notch signaling predisposes the epidermis to hyperplasia and increases tumor incidence. This tumor-inducing effect resulting from the loss of Notch signaling is associated with non-cell-autonomous effects that are elicited by subtle alteration of epithelial cell features, generating a wound-like microenvironment in the underlying stroma. We found that Notch1 was expressed specifically in the basal cells of the oral squamous epithelium. In cancer and oral epithelial dysplasia, it was significantly downregulated, suggesting that reduced Notch activity plays a distinct role in oral neoplasia.
Collapse
Affiliation(s)
- Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
88
|
Zhang J, Shao X, Sun H, Liu K, Ding Z, Chen J, Fang L, Su W, Hong Y, Li H, Li H. NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling. Oncotarget 2016; 7:61036-61053. [PMID: 27506933 PMCID: PMC5308634 DOI: 10.18632/oncotarget.11062] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with higher rates of early relapse and metastasis, is frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT). Nonetheless, how EMT is initiated and regulated during TNBC progression is not well understood. Here, we report that NUMB is a negative regulator of EMT in both human mammary epithelial cells and breast cancer cells. Reduced NUMB expression was significantly associated with elevated EMT in TNBC. Conversely, overexpression of NUMB strongly attenuated the EMT program and metastasis of TNBC cell lines. Interestingly, we showed that NUMB employs different molecular mechanisms to regulate EMT. In normal mammary epithelial cells and breast cancer cells expressing wild-type p53, NUMB suppressed EMT by stabilizing p53. However, in TNBC cells, loss of NUMB facilitated the EMT program by activating Notch signaling. Consistent with these findings, low NUMB expression and high Notch activity were significantly correlated with the TNBC subtype in patients. Collectively, these findings reveal novel molecular mechanisms of NUMB in the regulation of breast tumor EMT, especially in TNBC.
Collapse
Affiliation(s)
- Jianchao Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haiyan Sun
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ke Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Juntao Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wu Su
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Hong
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine and Advanced Institute of Translational Medicine, Shanghai 200123, China
- ATCG Corporation, BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
89
|
Gunnar E, Bivik C, Starkenberg A, Thor S. sequoia controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Development 2016; 143:3774-3784. [PMID: 27578794 DOI: 10.1242/dev.139998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023]
Abstract
Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.
Collapse
Affiliation(s)
- Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| |
Collapse
|
90
|
Ramat A, Audibert A, Louvet-Vallée S, Simon F, Fichelson P, Gho M. Escargot and Scratch regulate neural commitment by antagonizing Notch activity in Drosophila sensory organs. Development 2016; 143:3024-34. [PMID: 27471258 DOI: 10.1242/dev.134387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
During Notch (N)-mediated binary cell fate decisions, cells adopt two different fates according to the levels of N pathway activation: an Noff-dependent or an Non-dependent fate. How cells maintain these N activity levels over time remains largely unknown. We address this question in the cell lineage that gives rise to the Drosophila mechanosensory organs. In this lineage a primary precursor cell undergoes a stereotyped sequence of oriented asymmetric cell divisions and transits through two neural precursor states before acquiring a neuron identity. Using a combination of genetic and cell biology strategies, we show that Escargot and Scratch, two transcription factors belonging to the Snail superfamily, maintain Noff neural commitment by directly blocking the transcription of N target genes. We propose that Snail factors act by displacing proneural transcription activators from DNA binding sites. As such, Snail factors maintain the Noff state in neural precursor cells by buffering any ectopic variation in the level of N activity. Since Escargot and Scratch orthologs are present in other precursor cells, our findings are fundamental for understanding precursor cell fate acquisition in other systems.
Collapse
Affiliation(s)
- Anne Ramat
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, IBPS, Paris F-75005, France
| | - Agnès Audibert
- Sorbonne Universités, UPMC Université Paris 06, UMR7622, Laboratoire de Biologie du Développement, Paris F-75005, France
| | - Sophie Louvet-Vallée
- Sorbonne Universités, UPMC Université Paris 06, UMR7622, Laboratoire de Biologie du Développement, Paris F-75005, France
| | - Françoise Simon
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, IBPS, Paris F-75005, France
| | - Pierre Fichelson
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, IBPS, Paris F-75005, France
| | - Michel Gho
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, IBPS, Paris F-75005, France
| |
Collapse
|
91
|
Johnson SA, Zitserman D, Roegiers F. Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells. Mol Biol Cell 2016; 27:2857-66. [PMID: 27466320 PMCID: PMC5025272 DOI: 10.1091/mbc.e15-11-0751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/21/2016] [Indexed: 11/11/2022] Open
Abstract
Steady-state and pulse-labeling techniques are used to follow Notch receptors in sensory organ precursor cells in Drosophila. Numb and L(2)gl antagonize a pool of Notch receptors, and Numb promotes Notch targeting to late endosomes in Drosophila neural progenitors to regulate Notch signaling and cell fate. The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.
Collapse
Affiliation(s)
- Seth A Johnson
- Fox Chase Cancer Center, Philadelphia, PA 19111 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Diana Zitserman
- Fox Chase Cancer Center, Philadelphia, PA 19111 University of Bridgeport, Bridgeport, CT 06604
| | - Fabrice Roegiers
- Fox Chase Cancer Center, Philadelphia, PA 19111 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
92
|
Abstract
Itch or itchy E3 ubiquitin ligase was initially discovered by genetic studies on the mouse coat color changes, and its deletion results in an itchy phenotype with constant skin scratching and multi-organ inflammation. It is a member of the homologous to E6-associated protein C-terminus (HECT)-type family of E3 ligases, with the protein-interacting WW-domains for the recruitment of substrate and the HECT domain for the transfer of ubiquitin to the substrate. Since its discovery, numerous studies have demonstrated that Itch is involved in the control of many aspects of immune responses including T-cell activation and tolerance and T-helper cell differentiation. Itch is also implicated in other biological contexts such as tumorigenesis, development, and stress responses. Many signaling pathways are regulated by Itch-promoted ubiquitylation of diverse target proteins. Itch is also involved in human diseases. Here, we discuss the major progress in understanding the biological significance of Itch-promoted protein ubiquitylation in the immune and other systems and in Itch-mediated regulation of signal transduction.
Collapse
Affiliation(s)
- Daisuke Aki
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Wen Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
93
|
García-Alegría E, Lafita-Navarro MC, Aguado R, García-Gutiérrez L, Sarnataro K, Ruiz-Herguido C, Martín F, Bigas A, Canelles M, León J. NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells. Cancer Lett 2016; 375:92-99. [PMID: 26944313 DOI: 10.1016/j.canlet.2016.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function. NUMB is an endocytic protein associated with receptor internalization, involved in multiple cellular functions. It has been reported that MSI2 protein, a NUMB inhibitor, is upregulated in CML blast crisis, whereas NUMB itself is downregulated. This suggest that NUMB plays a role in the malignant progression of CML. Here we have generated K562 cells (derived from CML in blast crisis) constitutively expressing a dominant negative form of NUMB (dnNUMB). We show that dnNUMB expression confers a high proliferative phenotype to the cells. Importantly, dnNUMB triggers a partial resistance to imatinib in these cells, antagonizing the apoptosis mediated by the drug. Interestingly, imatinib resistance is not linked to p53 status or NOTCH signaling, as K562 lack p53 and imatinib resistance is reproduced in the presence of NOTCH inhibitors. Taken together, our data support the hypothesis that NUMB activation could be a new therapeutic target in CML.
Collapse
Affiliation(s)
- Eva García-Alegría
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rocío Aguado
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain
| | - Lucia García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Kyle Sarnataro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | - Anna Bigas
- Stem Cells and Cancer Group. IMIM, Barcelona, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
94
|
Matsumoto K, Ayukawa T, Ishio A, Sasamura T, Yamakawa T, Matsuno K. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking. J Biol Chem 2016; 291:13743-52. [PMID: 27129198 DOI: 10.1074/jbc.m115.710483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions.
Collapse
Affiliation(s)
- Kenjiroo Matsumoto
- From the Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 and
| | - Tomonori Ayukawa
- the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-1500, Japan
| | - Akira Ishio
- the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-1500, Japan
| | - Takeshi Sasamura
- From the Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 and
| | - Tomoko Yamakawa
- From the Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 and
| | - Kenji Matsuno
- From the Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 and
| |
Collapse
|
95
|
Sun M, Asghar SZ, Zhang H. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb. Neurobiol Dis 2016; 93:1-11. [PMID: 27072891 DOI: 10.1016/j.nbd.2016.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/13/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022] Open
Abstract
The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Suwaiba Z Asghar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
96
|
Tosoni D, Zecchini S, Coazzoli M, Colaluca I, Mazzarol G, Rubio A, Caccia M, Villa E, Zilian O, Di Fiore PP, Pece S. The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells. J Cell Biol 2016; 211:845-62. [PMID: 26598619 PMCID: PMC4657167 DOI: 10.1083/jcb.201505037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cell fate determinant Numb orchestrates tissue morphogenesis and patterning in developmental systems. In the human mammary gland, Numb is a tumor suppressor and regulates p53 levels. However, whether this function is linked to its role in fate determination remains unclear. Here, by exploiting an ex vivo system, we show that at mitosis of purified mammary stem cells (SCs), Numb ensures the asymmetric outcome of self-renewing divisions by partitioning into the progeny that retains the SC identity, where it sustains high p53 activity. Numb also controls progenitor maturation. At this level, Numb loss associates with the epithelial-to-mesenchymal transition and results in differentiation defects and reacquisition of stemness features. The mammary gland of Numb-knockout mice displays an expansion of the SC compartment, associated with morphological alterations and tumorigenicity in orthotopic transplants. This is because of low p53 levels and can be inhibited by restoration of Numb levels or p53 activity, which results in successful SC-targeted treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alicia Rubio
- Istituto Europeo di Oncologia, 20141 Milan, Italy
| | | | | | | | - Pier Paolo Di Fiore
- Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Salvatore Pece
- Istituto Europeo di Oncologia, 20141 Milan, Italy Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| |
Collapse
|
97
|
Moghbeli M, Sadrizadeh A, Forghanifard MM, Mozaffari HM, Golmakani E, Abbaszadegan MR. Role of Msi1 and PYGO2 in esophageal squamous cell carcinoma depth of invasion. J Cell Commun Signal 2016; 10:49-53. [PMID: 26643817 PMCID: PMC4850136 DOI: 10.1007/s12079-015-0314-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022] Open
Abstract
Deregulation of developmental signaling pathways such as Wnt/b-catenin and NOTCH are commonly observed in different cancers. A normal wnt pathway is essential for development and tissue homeostasis to preserve a normal balance between the differentiation and proliferation. PYGO2 is the main transcription factor of wnt pathway, while Msi1 is one of the wnt inhibitors. In this study we assessed the correlation between Msi1 and PYGO2 mRNA expression using Real time polymerase chain reaction in 48 esophageal squamous cell carcinoma (ESCC) patients. Although, there was not any significant correlation between the levels of Msi1 and PYGO2 mRNA expression, we observed a significant correlation between the Msi1 and PYGO2 overexpressed cases and depth of tumor invasion (p = 0.05). In conclusion, despite the role of these markers in tumor depth of invasion there is not any feedback between Msi1 and PYGO2 gene expression in ESCC.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Sadrizadeh
- Cardiothoracic Surgery and Transplant Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hooman Mosannen Mozaffari
- Department of Gastroenterology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Golmakani
- Department of Anesthesiology and Critical Care, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
98
|
Ayeni JO, Audibert A, Fichelson P, Srayko M, Gho M, Campbell SD. G2 phase arrest prevents bristle progenitor self-renewal and synchronizes cell division with cell fate differentiation. Development 2016; 143:1160-9. [PMID: 26893341 DOI: 10.1242/dev.134270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
Developmentally regulated cell cycle arrest is a fundamental feature of neurogenesis, whose significance is poorly understood. During Drosophila sensory organ (SO) development, primary progenitor (pI) cells arrest in G2 phase for precisely defined periods. Upon re-entering the cell cycle in response to developmental signals, these G2-arrested precursor cells divide and generate specialized neuronal and non-neuronal cells. To study how G2 phase arrest affects SO lineage specification, we forced pI cells to divide prematurely. This produced SOs with normal neuronal lineages but supernumerary non-neuronal cell types because prematurely dividing pI cells generate a secondary pI cell that produces a complete SO and an external precursor cell that undergoes amplification divisions. pI cells are therefore able to undergo self-renewal before transit to a terminal mode of division. Regulation of G2 phase arrest thus serves a dual role in SO development: preventing progenitor self-renewal and synchronizing cell division with developmental signals. Cell cycle arrest in G2 phase temporally coordinates the precursor cell proliferation potential with terminal cell fate determination to ensure formation of organs with a normal set of sensory cells.
Collapse
Affiliation(s)
- Joseph O Ayeni
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Agnès Audibert
- Sorbonne Universités, UPMC University of Paris 06, IBPS-UMR 7622, Laboratory of Developmental Biology, Paris 75005, France
| | - Pierre Fichelson
- CNRS, IBPS-UMR 7622, Laboratory of Developmental Biology, Paris 75005, France
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Michel Gho
- CNRS, IBPS-UMR 7622, Laboratory of Developmental Biology, Paris 75005, France
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
99
|
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 2016; 34:277-287. [PMID: 26676652 DOI: 10.1002/stem.2270] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/21/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
In recent years, the highly conserved promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16, ZNF145) has attracted attention as a multifunctional transcription factor involved in major biological processes during development. As a transcription factor, PLZF shows tight regulation in its cell-type-specific and stage-specific expression patterns. Emerging evidence shows that PLZF regulates the balance of self-renewal and differentiation in stem cells. However, the gene regulatory network of PLZF is only beginning to be understood. In this review, we discuss the diverse functions of PLZF, in particular its role in self-renewal versus differentiation of stem cells. We also discuss the current state of knowledge on the gene regulatory network of PLZF, in conjunction with its upstream factors, post-translational modifications and binding cofactors for multiprotein complexes. This review aims to provide the reader with an in-depth understanding of the molecular mechanisms underlying PLZF and the potential applications in tissue regeneration.
Collapse
Affiliation(s)
- Tong Ming Liu
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, National University of Singapore, Singapore
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, Singapore
| | - Bing Lim
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore
| | - Ng Shyh-Chang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| |
Collapse
|
100
|
Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours. Development 2015; 143:219-31. [PMID: 26657768 PMCID: PMC4725341 DOI: 10.1242/dev.126326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023]
Abstract
Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Benjamin E Housden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - George Garinis
- Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, UK
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, FORTH-Hellas, Heraklion, Crete 70013, Greece Department of Biology, University of Crete, Heraklion, Greece GR71409
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|