51
|
Laste G, Ripoll Rozisky J, de Macedo IC, Souza Dos Santos V, Custódio de Souza IC, Caumo W, Torres ILS. Spinal cord brain-derived neurotrophic factor levels increase after dexamethasone treatment in male rats with chronic inflammation. Neuroimmunomodulation 2013; 20:119-25. [PMID: 23328256 DOI: 10.1159/000345995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
Dexamethasone is widely used in the therapy of chronic inflammatory diseases for its pain-modulating effects. The objective of this study was to evaluate the effect of dexamethasone on nociception and local inflammation, and the levels of brain-derived neurotrophic factor (BDNF) in the spinal cord in male rats with chronic inflammation induced by complete Freund's adjuvant (CFA). Rats were randomly divided into a control group (not manipulated) and 2 CFA-induced chronic inflammation groups (in the 15th post-CFA injection): 1 injected with vehicle (saline solution) and 1 received dexamethasone (0.25 mg/kg) for 8 days. The hot-plate and electronic von Frey tests were performed 24 h after the end of treatment. BDNF spinal cord levels were determined by enzyme-linked immunosorbent assay (ELISA). The level of inflammation in the tibiotarsal joint (the ankle region) was evaluated histologically at the end of treatment. Dexamethasone produced significantly increased latency in the hot-plate test (one-way ANOVA, p < 0.05) and withdrawal threshold in the electronic von Frey test (p < 0.005). The dexamethasone group showed increased spinal cord BDNF levels compared to the other groups (one-way ANOVA p, < 0.05). Histological analysis showed a local inflammatory response only in animals treated with vehicle, which demonstrated that the dexamethasone treatment decreased the inflammatory process. Our findings corroborate the antinociceptive and anti-inflammatory properties of dexamethasone. In addition, we showed that the dexamethasone treatment increased BDNF levels in the spinal cord; its pain- modulating effects can be attributed to this effect.
Collapse
Affiliation(s)
- Gabriela Laste
- Laboratório de Farmacologia da Dor, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.
Collapse
Affiliation(s)
- Andrea Gómez-Palacio-Schjetnan
- División de Investigación y Estudios de Posgrado, Facultad de Psicologia, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | | |
Collapse
|
53
|
Laudes T, Meis S, Munsch T, Lessmann V. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Neuroscience 2012; 222:215-27. [DOI: 10.1016/j.neuroscience.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023]
|
54
|
Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J Neurosci 2012; 32:8127-37. [PMID: 22699894 DOI: 10.1523/jneurosci.6034-11.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mammalian target of rapamycin (mTOR) via calcium calmodulin-dependent protein kinase kinase (CaMKK). Specifically, BDNF-mediated phosphorylation of threonine 308 (T308) in AKT, a known substrate of CaMKK and an upstream activator of mTOR-dependent translation, was prevented by (1) pharmacological inhibition of CaMKK with STO-609, (2) overexpression of a dominant-negative CaMKK, or (3) short hairpin-mediated knockdown of CaMKK. GluA1 surface expression induced by BDNF, as assessed by immunocytochemistry using an extracellular N-terminal GluA1 antibody or by surface biotinylation, was impaired following knockdown of CaMKK or treatment with STO-609. Activation of CaMKK by BDNF requires transient receptor potential canonical (TRPC) channels as SKF-96365, but not the NMDA receptor antagonist d-APV, prevented BDNF-induced GluA1 surface expression as well as phosphorylation of CaMKI, AKT(T308), and mTOR. Using siRNA we confirmed the involvement of TRPC5 and TRPC6 subunits in BDNF-induced AKT(T308) phosphorylation. The BDNF-induced increase in mEPSC was blocked by IEM-1460, a selected antagonist of CP-AMPARs, as well as by the specific repression of acute GluA1 translation via siRNA to GluA1 but not GluA2. Together these data support the conclusion that newly synthesized GluA1 subunits, induced by BDNF, are readily incorporated into synapses where they enhance the expression of CP-AMPARs and synaptic strength.
Collapse
|
55
|
Intracellular Ca2+ stores and Ca2+ influx are both required for BDNF to rapidly increase quantal vesicular transmitter release. Neural Plast 2012; 2012:203536. [PMID: 22811938 PMCID: PMC3397209 DOI: 10.1155/2012/203536] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca2+ stores as well as extracellular Ca2+. Consistent with a role of Ca2+-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca2+-dependent mechanism involving TrkB receptors, Ca2+ stores, and TRPC channels.
Collapse
|
56
|
Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF. J Neurosci 2012; 32:5868-79. [PMID: 22539848 DOI: 10.1523/jneurosci.5275-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A large amount of experimental evidence has highlighted the rapid changes in synaptic efficacy induced by high-frequency stimulation and BDNF at central excitatory synapses. We clarified the quantal mechanisms and the involvement of Synapsin I (SynI) phosphorylation in the expression of post-tetanic potentiation (PTP) and in its modulation by BDNF in mouse glutamatergic autapses. We found that PTP is associated with an elevation in the probability of release and a concomitant increase in the size of the readily releasable pool (RRP). The latter component was virtually absent in SynI knock-out (KO) neurons, which indeed displayed impaired PTP. PTP was fully rescued by the expression of wild-type SynI, but not of its dephosphomimetic mutants in the phosphorylation sites for cAMP-dependent protein kinase and Ca²⁺/calmodulin-dependent protein kinases I/II. BDNF potently enhanced PTP through a further increase in the RRP size, which was missing in SynI KO neurons. In these neurons, the BDNF-induced PTP enhancement was rescued by the expression of wild-type SynI, but not of its dephosphomimetic mutant at the mitogen-dependent protein kinase sites. The results indicate that the increase in RRP size necessary for the full expression of PTP, and its sensitivity to BDNF, involve phosphorylation of SynI at distinct sites, thus implicating SynI as an essential downstream effector for the expression of PTP and for its enhancement by BDNF.
Collapse
|
57
|
Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 2012; 32:5398-413. [PMID: 22514304 DOI: 10.1523/jneurosci.4515-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.
Collapse
|
58
|
Alder J, Kramer BC, Hoskin C, Thakker-Varia S. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation. Dev Neurobiol 2012; 72:755-65. [DOI: 10.1002/dneu.20980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
59
|
Huie JR, Garraway SM, Baumbauer KM, Hoy KC, Beas BS, Montgomery KS, Bizon JL, Grau JW. Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation. Neuroscience 2011; 200:74-90. [PMID: 22056599 DOI: 10.1016/j.neuroscience.2011.10.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/22/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration. This simple form of response-outcome (instrumental) learning is not observed when shock is given independent of leg position (uncontrollable stimulation). Uncontrollable electrical stimulation also induces a lasting effect that impairs learning for up to 48 h. Training with controllable shock can counter the adverse consequences of uncontrollable stimulation, to both prevent and reverse the learning deficit. Here it is shown that the protective and restorative effect of instrumental training depends on BDNF. Cellular assays showed that controllable stimulation increased BDNF mRNA expression and protein within the lumbar spinal cord. These changes were associated with an increase in the BDNF receptor TrkB protein within the dorsal horn. Evidence is then presented that these changes play a functional role in vivo. Application of a BDNF inhibitor (TrkB-IgG) blocked the protective effect of instrumental training. Direct (intrathecal) application of BDNF substituted for instrumental training to block both the induction and expression of the learning deficit. Uncontrollable stimulation also induced an increase in mechanical reactivity (allodynia), and this too was prevented by BDNF. TrkB-IgG blocked the restorative effect of instrumental training and intrathecal BDNF substituted for training to reverse the deficit. Taken together, these findings outline a critical role for BDNF in mediating the beneficial effects of controllable stimulation on spinal plasticity.
Collapse
Affiliation(s)
- J R Huie
- Department of Psychology, Mail Stop 4235, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Pearson-Fuhrhop KM, Cramer SC. Genetic influences on neural plasticity. PM R 2011; 2:S227-40. [PMID: 21172685 DOI: 10.1016/j.pmrj.2010.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 09/13/2010] [Indexed: 01/07/2023]
Abstract
Neural plasticity refers to the capability of the brain to alter function or structure in response to a range of events and is a crucial component of both functional recovery after injury and skill learning in healthy individuals. A number of factors influence neural plasticity and recovery of function after brain injury. The current review considers the impact of genetic factors. Polymorphisms in the human genes coding for brain-derived neurotrophic factor and apolipoprotein E have been studied in the context of plasticity and stroke recovery and are discussed here in detail. Several processes involved in plasticity and stroke recovery, such as depression or pharmacotherapy effects, are modulated by other genetic polymorphisms and are also discussed. Finally, new genetic polymorphisms that have not been studied in the context of stroke are proposed as new directions for study. A better understanding of genetic influences on recovery and response to therapy might allow improved treatment after a number of forms of central nervous system injury.
Collapse
|
61
|
Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat Protoc 2011; 6:214-28. [PMID: 21293461 DOI: 10.1038/nprot.2010.188] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Instructing glial cells to generate neurons may prove to be a strategy to replace neurons that have degenerated. Here, we describe a robust protocol for the efficient in vitro conversion of postnatal astroglia from the mouse cerebral cortex into functional, synapse-forming neurons. This protocol involves two steps: (i) expansion of astroglial cells (7 d) and (ii) astroglia-to-neuron conversion induced by persistent and strong retroviral expression of Neurog2 (encoding neurogenin-2) or Mash1 (also referred to as achaete-scute complex homolog 1 or Ascl1) and/or distal-less homeobox 2 (Dlx2) for generation of glutamatergic or GABAergic neurons, respectively (7-21 d for different degrees of maturity). Our protocol of astroglia-to-neuron conversion by a single neurogenic transcription factor provides a stringent experimental system to study the specification of a selective neuronal subtype, thus offering an alternative to the use of embryonic or neural stem cells. Moreover, it can be a useful model for studies of lineage conversion from non-neuronal cells, with potential for brain regenerative medicine.
Collapse
|
62
|
Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, Carruthers CJL, Sutton MA. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2011; 68:1143-58. [PMID: 21172615 DOI: 10.1016/j.neuron.2010.11.034] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
Homeostatic synaptic plasticity is important for maintaining stability of neuronal function, but heterogeneous expression mechanisms suggest that distinct facets of neuronal activity may shape the manner in which compensatory synaptic changes are implemented. Here, we demonstrate that local presynaptic activity gates a retrograde form of homeostatic plasticity induced by blockade of AMPA receptors (AMPARs) in cultured hippocampal neurons. We show that AMPAR blockade produces rapid (<3 hr) protein synthesis-dependent increases in both presynaptic and postsynaptic function and that the induction of presynaptic, but not postsynaptic, changes requires coincident local activity in presynaptic terminals. This "state-dependent" modulation of presynaptic function requires postsynaptic release of brain-derived neurotrophic factor (BDNF) as a retrograde messenger, which is locally synthesized in dendrites in response to AMPAR blockade. Taken together, our results reveal a local crosstalk between active presynaptic terminals and postsynaptic signaling that dictates the manner by which homeostatic plasticity is implemented at synapses.
Collapse
Affiliation(s)
- Sonya K Jakawich
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Lau BWM, Yau SY, So KF. Reproduction: a new venue for studying function of adult neurogenesis? Cell Transplant 2010; 20:21-35. [PMID: 20887675 DOI: 10.3727/096368910x532765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult neurogenesis has been a focus within the past few years because it is a newly recognized form of neuroplasticity that may play significant roles in behaviors and recovery process after disease. Mammalian adult neurogenesis could be found in two brain regions: hippocampus and subventricular zone (SVZ). While it is well established that hippocampal neurogenesis participates in memory formation and anxiety, the physiological function of SVZ neurogenesis is still under intense investigation. Recent studies disclose that SVZ neurogenesis is under regulation of reproductive cues like pheromones. Reciprocally, the newborn neurons may exert their effect on reproductive and maternal behaviors. This review discusses recent understanding of the interrelationship between neurogenesis and reproduction. The studies highlighted in this review illustrate the potential importance of neurogenesis in reproductive function and will provide new insights for the significance of adult neurogenesis.
Collapse
Affiliation(s)
- Benson Wui-Man Lau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | | | | |
Collapse
|
64
|
Age-associated alterations of the neuromuscular junction. Exp Gerontol 2010; 46:193-8. [PMID: 20854887 DOI: 10.1016/j.exger.2010.08.029] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 01/09/2023]
Abstract
Age-related loss of muscle mass and function greatly affects quality of life in the elderly population. Several hypotheses have been proposed but accumulating evidence point to alterations in neuromuscular system during aging as a key event that leads to functional denervation, muscle wasting, and weakness. Over the past few decades, age-associated degeneration of the neuromuscular junction (NMJ) and its components have been well documented. With advancing age, pre-terminal portions of motor axons exhibit regions of abnormal thinning, distension, and sprouting whereas postsynaptic endplates decrease in size and reduce in number, length, and density of postsynaptic folds. Although the exact underlying mechanisms are still lacking, recent studies provided direct evidence that age-associated increase in oxidative stress plays a crucial role in NMJ degeneration and progression of sarcopenia. Homozygous deletion of an important antioxidant enzyme, Cu,Zn superoxide dismutase (CuZnSOD, SOD1) leads to acceleration of age-dependent muscle atrophy, with a significant NMJ degeneration similar to that seen in old wild-type sarcopenic animals. In this short review, we briefly summarize the current understanding of some of the cellular and molecular changes in the NMJ during aging and suggest a role for oxidative stress and mitochondrial dysfunction in age-related changes in the maintenance of neuromuscular innervation.
Collapse
|
65
|
Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010; 8:e1000373. [PMID: 20502524 PMCID: PMC2872647 DOI: 10.1371/journal.pbio.1000373] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 04/12/2010] [Indexed: 02/06/2023] Open
Abstract
Forced expression of single defined transcription factors can selectively and stably convert cultured astroglia into synapse-forming excitatory and inhibitory neurons. Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation. The brain consists of two major cell types: neurons, which transmit information, and glial cells, which support and protect neurons. Interestingly, evidence suggests that some glial cells, including astroglia, can be directly converted into neurons by specific proteins, a transformation that may aid in the functional repair of damaged brain tissue. However, in order for the repaired brain areas to function properly, it is important that astroglia be directed into appropriate neuronal subclasses. In this study, we show that non-neurogenic astroglia from the cerebral cortex can be reprogrammed in vitro using just a single transcription factor to yield fully functional excitatory or inhibitory neurons. We achieved this result through forced expression of the same transcription factors that instruct the genesis of these distinct neuronal subtypes during embryonic forebrain development. Moreover we demonstrate that reactive astroglia isolated from the adult cortex after local injury can be reprogrammed into synapse-forming excitatory or inhibitory neurons following a similar strategy. Our findings provide evidence that endogenous glial cells may prove a promising strategy for replacing neurons that have degenerated due to trauma or disease.
Collapse
Affiliation(s)
- Christophe Heinrich
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Robert Blum
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Sergio Gascón
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Giacomo Masserdotti
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pratibha Tripathi
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Rodrigo Sánchez
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Steffen Tiedt
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Timm Schroeder
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Magdalena Götz
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
- Munich Center for Integrated Protein Science CiPSM, Munich, Germany
- * E-mail: (MG); (BB)
| | - Benedikt Berninger
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
- * E-mail: (MG); (BB)
| |
Collapse
|
66
|
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3:1. [PMID: 20162032 PMCID: PMC2821174 DOI: 10.3389/neuro.02.001.2010] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022] Open
Abstract
Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.
Collapse
Affiliation(s)
- Carla Cunha
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | |
Collapse
|
67
|
Pearson-Fuhrhop KM, Kleim JA, Cramer SC. Brain plasticity and genetic factors. Top Stroke Rehabil 2009; 16:282-99. [PMID: 19740733 DOI: 10.1310/tsr1604-282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brain plasticity refers to changes in brain function and structure that arise in a number of contexts. One area in which brain plasticity is of considerable interest is recovery from stroke, both spontaneous and treatment-induced. A number of factors influence these poststroke brain events. The current review considers the impact of genetic factors. Polymorphisms in the human genes coding for brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) have been studied in the context of plasticity and/or stroke recovery and are discussed here in detail. Several other genetic polymorphisms are indirectly involved in stroke recovery through their modulating influences on processes such as depression and pharmacotherapy effects. Finally, new genetic polymorphisms that have not been studied in the context of stroke are proposed as new directions for study. A better understanding of genetic influences on recovery and response to therapy might allow improved treatment after stroke.
Collapse
|
68
|
|
69
|
BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 2009; 199:203-34. [PMID: 19777221 DOI: 10.1007/s00221-009-1994-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 01/17/2023]
Abstract
In the past 15 years numerous reports provided strong evidence that brain-derived neurotrophic factor (BDNF) is one of the most important modulators of glutamatergic and GABAergic synapses. Remarkable progress regarding localization, kinetics, and molecular mechanisms of BDNF secretion has been achieved, and a large number of studies provided evidence that continuous extracellular supply of BDNF is important for the proper formation and functional maturation of glutamatergic and GABAergic synapses. BDNF can play a permissive role in shaping synaptic networks, making them more susceptible for the occurrence of plastic changes. In addition, BDNF appears to be also an instructive factor for activity-dependent long-term synaptic plasticity. BDNF release just in response to synaptic stimulation might be a molecular trigger to convert high-frequency synaptic activity into long-term synaptic memories. This review attempts to summarize the current knowledge in synaptic secretion and synaptic action of BDNF, including both permissive and instructive effects of BDNF in synaptic plasticity.
Collapse
|
70
|
McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: A role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009; 88:246-63. [DOI: 10.1016/j.pneurobio.2009.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/19/2009] [Accepted: 04/29/2009] [Indexed: 01/15/2023]
|
71
|
Madara JC, Levine ES. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol 2008; 100:3175-84. [PMID: 18922945 DOI: 10.1152/jn.90880.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In addition to its effects on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) plays an important role in modulating synaptic transmission and plasticity in many brain areas, most notably the neocortex and hippocampus. These effects may underlie a role for BDNF in learning and memory as well as developmental plasticity. Consistent with localization of the tropomyosin-related kinase B receptor to both sides of the synapse, BDNF appears to have pre- and postsynaptic effects, but the underlying cellular mechanisms are unclear and it is not known whether pre- and postsynaptic modulations by BDNF occur simultaneously. To address these issues, we recorded dual-component (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-D-aspartate [NMDA]) miniature excitatory postsynaptic currents (mEPSCs) from cortical and hippocampal pyramidal neurons and dentate gyrus granule cells from acute brain slices. BDNF had no effect on the fast component of mEPSC decay or on the peak amplitude, suggesting that BDNF did not modulate postsynaptic AMPA receptors, although BDNF rapidly modulated NMDA receptors, as seen by an enhancement of the slow component of mEPSC decay that was prevented by blocking postsynaptic NMDA receptors. At the same time, BDNF acted presynaptically to enhance mEPSC frequency. Surprisingly, the effect on frequency was also NMDA receptor dependent, but required activation of presynaptic, not postsynaptic, NMDA receptors. BDNF also enhanced action potential-dependent glutamate release via presynaptic NMDA receptors, an effect that was unmasked when voltage-gated calcium channels were partially inhibited. Our results indicate that BDNF acutely modulates presynaptic release and postsynaptic responsiveness through simultaneous effects on pre- and postsynaptic NMDA receptors.
Collapse
Affiliation(s)
- Joseph C Madara
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
72
|
Crozier RA, Bi C, Han YR, Plummer MR. BDNF modulation of NMDA receptors is activity dependent. J Neurophysiol 2008; 100:3264-74. [PMID: 18842955 DOI: 10.1152/jn.90418.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic transmission, is known to influence associative synaptic plasticity and refinement of neural connectivity. We now show that BDNF modulation of glutamate currents in hippocampal neurons exhibits the additional property of use dependence, a postsynaptic mechanism resulting in selective modulation of active channels. We demonstrate selectivity by varying the repetition rate of iontophoretically applied glutamate pulses during BDNF exposure. During relatively high-frequency glutamate pulses (0.1 Hz), BDNF application elicited a doubling of the glutamate current. During low-frequency pulses (0.0033 Hz), however, BDNF evoked a dramatically diminished response. This effect was apparently mediated by calcium because manipulations that prevented elevation of intracellular calcium largely eliminated the action of BDNF on glutamate currents. To confirm N-methyl-D-aspartate (NMDA) receptor involvement and assess spatial requirements, we made cell-attached single-channel recordings from somatic NMDA receptors. Inclusion of calcium in the pipette was sufficient to produce enhancement of channel activity by BDNF. Substitution of EGTA for calcium prevented BDNF effects. We conclude that BDNF modulation of postsynaptic NMDA receptors requires concurrent neuronal activity potentially conferring synaptic specificity on the neurotrophin's actions.
Collapse
Affiliation(s)
- Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Laboratories, Piscataway, NJ 08854-8082, USA
| | | | | | | |
Collapse
|
73
|
Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 2008; 31:563-90. [PMID: 18558867 DOI: 10.1146/annurev.neuro.31.060407.125631] [Citation(s) in RCA: 639] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory experience and the resulting synaptic activity within the brain are critical for the proper development of neural circuits. Experience-driven synaptic activity causes membrane depolarization and calcium influx into select neurons within a neural circuit, which in turn trigger a wide variety of cellular changes that alter the synaptic connectivity within the neural circuit. One way in which calcium influx leads to the remodeling of synapses made by neurons is through the activation of new gene transcription. Recent studies have identified many of the signaling pathways that link neuronal activity to transcription, revealing both the transcription factors that mediate this process and the neuronal activity-regulated genes. These studies indicate that neuronal activity regulates a complex program of gene expression involved in many aspects of neuronal development, including dendritic branching, synapse maturation, and synapse elimination. Genetic mutations in several key regulators of activity-dependent transcription give rise to neurological disorders in humans, suggesting that future studies of this gene expression program will likely provide insight into the mechanisms by which the disruption of proper synapse development can give rise to a variety of neurological disorders.
Collapse
Affiliation(s)
- Steven W Flavell
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, and Departments of Neurology and Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
74
|
Pillai A, Veeranan-Karmegam R, Dhandapani KM, Mahadik SP. Cystamine prevents haloperidol-induced decrease of BDNF/TrkB signaling in mouse frontal cortex. J Neurochem 2008; 107:941-51. [PMID: 18786174 DOI: 10.1111/j.1471-4159.2008.05665.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Rodent studies indicate that several antipsychotic drugs have time-dependent (and differential) effects on BDNF levels in the brain. Earlier studies from our laboratory have indicated that long-term treatment with haloperidol (HAL) decreases BDNF, reduced GSH and anti-apoptotic marker, Bcl-xl protein levels and increases the expression of pro-apoptotic proteins in rat frontal cortex. Furthermore, findings from human as well as rodent studies suggest that treatment of schizophrenia must involve the neuroprotective strategies to improve the neuropathology and thereby clinical outcome. In the present study, we investigated the potential of cystamine (CYS), an anti-oxidant and anti-apoptotic compound, to prevent HAL-induced reduction in BDNF, GSH, and Bcl-xl protein levels in mice and the signaling mechanism(s) involved in the beneficial effects of CYS. The results indicated that CYS as well as cysteamine (the FDA-approved precursor of CYS) increased BDNF protein levels in mouse frontal cortex 7 days after treatment. CYS co-treatment prevented chronic HAL treatment-induced reduction in BDNF, GSH, and Bcl-xl protein levels. CYS treatment enhanced TrkB-tyrosine phosphorylation and activated Akt and extracellular signal-regulated kinase (ERK)1/2, downstream molecules of TrkB signaling. In addition, in vitro experiments with mouse cortical neurons showed that CYS prevented the HAL-induced reduction in neuronal cell viability and BDNF protein levels, and increase in apoptosis. BDNF-neutralizing antibody as well as K252a, a selective inhibitor of neurotrophin signaling blocked the CYS-mediated neuroprotection. Moreover, CYS-mediated neuroprotection is also blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. Thus, CYS protects cortical neurons through a mechanism involving TrkB receptor activation, and a signaling pathway involving phosphatidylinositol 3-kinase and MAPK. The findings from the present study may be helpful for the development of novel neuroprotective strategies to improve the treatment outcome of schizophrenia.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Medical Research Service, Augusta, Georgia 30904, USA.
| | | | | | | |
Collapse
|
75
|
Simsek-Duran F, Lonart G. The role of RIM1alpha in BDNF-enhanced glutamate release. Neuropharmacology 2008; 55:27-34. [PMID: 18499195 DOI: 10.1016/j.neuropharm.2008.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/14/2008] [Accepted: 04/11/2008] [Indexed: 11/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to activate proline-directed Ser/Thr protein kinases and to enhance glutamatergic transmission via a Rab3a-dependent molecular pathway. The identity of molecular targets in BDNF's action on Rab3a pathway, a synaptic vesicle protein involved in vesicle trafficking and synaptic plasticity, is not fully known. Here we demonstrate that BDNF enhances depolarization-evoked efflux of [(3)H]-glutamate from nerve terminals isolated from the CA1 region of the hippocampus. BDNF also potentiated hyperosmotic shock-evoked [(3)H]-glutamate efflux, indicating an effect on the size of the readily releasable pool. This effect of BDNF was completely abolished in nerve terminals derived from Rim1alphaKO (Rab3 interacting molecule 1alpha null mutant) mice. Using in vitro phosphorylation assays we identified two novel phosphorylation sites, Ser447 and Ser745 that were substrates for ERK2, a proline-directed kinase known to be activated by BDNF. The pSer447 site was phosphorylated under resting conditions in hippocampal CA1 nerve terminals and its phosphorylation was enhanced by BDNF treatment, as indicated by the use of a pSer447-RIM1alpha antibody we have developed. Together these findings identify RIM1alpha, a component of the Rab3a molecular pathway in mediating presynaptic plasticity, as a necessary factor in BDNF's enhancement of [(3)H]-glutamate efflux from hippocampal CA1 nerve terminals and indicate a possible role for RIM1alpha phosphorylation in BDNF-dependent presynaptic plasticity.
Collapse
Affiliation(s)
- Fatma Simsek-Duran
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Road Norfolk, VA 23507, USA
| | | |
Collapse
|
76
|
TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 2008; 11:497-504. [PMID: 18311133 DOI: 10.1038/nn2068] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/08/2008] [Indexed: 02/07/2023]
Abstract
Changes in visual cortical responses that are induced by monocular visual deprivation are a widely studied example of competitive, experience-dependent neural plasticity. It has been thought that the deprived-eye pathway will fail to compete against the open-eye pathway for limited amounts of brain-derived neurotrophic factor, which acts on TrkB and is needed to sustain effective synaptic connections. We tested this model by using a chemical-genetic approach in mice to inhibit TrkB kinase activity rapidly and specifically during the induction of cortical plasticity in vivo. Contrary to the model, TrkB kinase activity was not required for any of the effects of monocular deprivation. When the deprived eye was re-opened during the critical period, cortical responses to it recovered. This recovery was blocked by TrkB inhibition. These findings suggest a more conventional trophic role for TrkB signaling in the enhancement of responses or growth of new connections, rather than a role in competition.
Collapse
|
77
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
78
|
Lu JT, Li CY, Zhao JP, Poo MM, Zhang XH. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. J Neurosci 2007; 27:9711-20. [PMID: 17804631 PMCID: PMC6672961 DOI: 10.1523/jneurosci.2513-07.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive correlated spiking can induce long-term potentiation (LTP) and long-term depression (LTD) of many excitatory synapses on glutamatergic neurons, in a manner that depends on the timing of presynaptic and postsynaptic spiking. However, it is mostly unknown whether and how such spike-timing-dependent plasticity (STDP) operates at neocortical excitatory synapses on inhibitory interneurons, which have diverse physiological and morphological characteristics. In this study, we found that these synapses exhibit target-cell-dependent STDP. In layer 2/3 of the somatosensory cortex, the pyramidal cell (PC) forms divergent synapses on fast spiking (FS) and low-threshold spiking (LTS) interneurons that exhibit short-term synaptic depression and facilitation in response to high-frequency stimulation, respectively. At PC-LTS synapses, repetitive correlated spiking induced LTP or LTD, depending on the timing of presynaptic and postsynaptic spiking. However, regardless of the timing and frequency of spiking, correlated activity induced only LTD at PC-FS synapses. This target-cell-specific STDP was not caused by the difference in the short-term plasticity between these two types of synapses. Activation of postsynaptic NMDA subtype of glutamate receptors (NMDARs) was required for LTP induction at PC-LTS synapses, whereas activation of metabotropic glutamate receptors was required for LTD induction at both PC-LTS and PC-FS synapses. Additional analysis of synaptic currents suggests that LTP and LTD of PC-LTS synapses, but not LTD of PC-FS synapses, involves presynaptic modifications. Such dependence of both the induction and expression of STDP on the type of postsynaptic interneurons may contribute to differential processing and storage of information in cortical local circuits.
Collapse
Affiliation(s)
- Jiang-teng Lu
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Cheng-yu Li
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jian-Ping Zhao
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Mu-ming Poo
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Xiao-hui Zhang
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
79
|
Bardoni R, Ghirri A, Salio C, Prandini M, Merighi A. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats. Dev Neurobiol 2007; 67:960-75. [PMID: 17506495 DOI: 10.1002/dneu.20401] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies show that excitatory glutamatergic transmission is potentiated by BDNF in superficial dorsal horn, both at the pre- and the postsynaptic site. The role of BDNF in modulating GABA and glycine-mediated inhibitory transmission has not been fully investigated. To determine whether the neurotrophin is effective in regulating the spontaneous release of the two neurotransmitters, we have recorded miniature inhibitory postsynaptic currents (mIPSCs) in lamina II of post-natal rats. We show that application of BDNF enhanced the spontaneous release of GABA and glycine, in presence of tetrodotoxin. The effect was blocked by the trk-receptor inhibitor k-252a. Amplitude and kinetics of mIPSCs were not altered. Evoked GABA and glycine IPSCs (eIPSCs) were depressed by BDNF and the coefficient of variation of eIPSC amplitude was significantly increased. By recording glycine eIPSCs with the paired-pulse protocol, an increase of paired-pulse ratio during BDNF application was observed. We performed parallel ultrastructural studies to unveil the circuitry involved in the effects of BDNF. These studies show that synaptic interactions between full length functional trkB receptors and GABA-containing profiles only occur at non peptidergic synaptic glomeruli of types I and II. Expression of trkB in presynaptic vesicle-containing dendrites originating from GABAergic islet cells, indicates these profiles as key structures in the modulation of inhibitory neurotransmission by the neurotrophin. Our results thus describe a yet uncharacterized effect of BDNF in lamina II, giving further strength to the notion that the neurotrophin plays an important role in pain neurotransmission.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | |
Collapse
|
80
|
Berninger B, Guillemot F, Götz M. Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. Eur J Neurosci 2007; 25:2581-90. [PMID: 17561834 DOI: 10.1111/j.1460-9568.2007.05509.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In-vitro expanded neural stem cells (NSCs) of the adult subependymal zone (SEZ) may serve as a source for replacing degenerating neurones in disease and trauma. Crucial for the viability of this approach is the ability to selectively generate specific types of neurones from these cells. Here we show that NSCs derived from the adult mouse SEZ and expanded in vitro as neurosphere cells lose their in-vivo specification and generate a mixture of progeny comprising both GABAergic and also, surprisingly, glutamatergic neurones. When forced to express the pro-neural transcription factor neurogenin 2, virtually all progeny of in-vitro expanded adult NSCs acquire a glutamatergic identity, whereas only GABAergic neurones are generated upon expression of the transcription factor Mash1. Respecification of expanded NSCs from the adult SEZ by neurogenin 2 was accompanied by upregulation of the T-box transcription factor Tbr1, suggesting that their progeny had acquired a dorsal telencephalic identity. Thus, in-vitro expanded adult NSCs have the competence to become directed towards distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided.
Collapse
Affiliation(s)
- Benedikt Berninger
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany.
| | | | | |
Collapse
|
81
|
Meng H, Gao R, Dai Q, Qiao X. Differential regulation of glutamate receptor-mediated BDNF mRNA expression in the cerebellum and its defects in stargazer mice. Neuropharmacology 2007; 53:81-91. [PMID: 17544459 DOI: 10.1016/j.neuropharm.2007.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/12/2007] [Accepted: 04/14/2007] [Indexed: 10/23/2022]
Abstract
Activity-dependent regulation of BDNF expression plays important roles in synaptic plasticity and neuronal function. We have investigated glutamate receptor-mediated regulation of BDNF expression in the cerebellum of wild-type and stargazer (stg) mice. Both in vivo and in vitro studies revealed that BDNF response kinetics in the cerebellum were much delayed with reversed sensitivity to NMDA versus non-NMDA agonist exposures significantly different from those in the cortex and hippocampus of wild-type mice. In stg mice, the severely impaired BDNF expression was restricted to the cerebellum while responses in the forebrain were intact. A selective failure of BDNF mRNA response to AMPA stimulation, but not NMDA, was evident in cultured stg cerebellar granule cells. These results demonstrate that BDNF expression is differentially regulated with region-specific kinetics. It indicates that the BDNF expression defect in the stg cerebellum is attributable to the AMPA receptor defect caused by the stargazin mutation.
Collapse
Affiliation(s)
- Hongdi Meng
- Department of Ophthalmology, Pharmacology and Neuroscience, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
82
|
Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, Gage FH, Schinder AF. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 2007; 4:e409. [PMID: 17121455 PMCID: PMC1637132 DOI: 10.1371/journal.pbio.0040409] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 09/22/2006] [Indexed: 11/18/2022] Open
Abstract
The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function. Adult neurogenesis in the hippocampus generates neurons with striking functional similarity to neurons born during development, indicating that adult-born neurons incorporate normally into hippocampal circuits.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Zhao
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Henriette van Praag
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Alejandro F Schinder
- Fundación Instituto Leloir, Buenos Aires, Argentina
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Michel S, Clark JP, Ding JM, Colwell CS. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus. Eur J Neurosci 2007; 24:1109-16. [PMID: 16930436 PMCID: PMC2582382 DOI: 10.1111/j.1460-9568.2006.04972.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raised the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity tropomyosin-related receptor kinase may be important as modulators of this excitatory input into the SCN. In order to test this possibility, we used whole-cell patch-clamp methods to measure spontaneous excitatory currents in mouse SCN neurons. We found that the amplitude and frequency of these currents were increased by BDNF and decreased by the neurotrophin receptor inhibitor K252a. The neurotrophin also increased the magnitude of currents evoked by application of N-methyl-d-aspartate and amino-methyl proprionic acid. Next, we measured the rhythms in action potential discharge from the SCN brain slice preparation. We found that application of K252a dramatically reduced the magnitude of phase shifts of the electrical activity rhythm generated by the application of glutamate. By itself, BDNF caused phase shifts that resembled those produced by glutamate and were blocked by K252a. The results demonstrate that BDNF and neurotrophin receptors can enhance glutamatergic synaptic transmission within a subset of SCN neurons and potentiate glutamate-induced phase shifts of the circadian rhythm of neural activity in the SCN.
Collapse
Affiliation(s)
- S. Michel
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. P. Clark
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - J. M. Ding
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - C. S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA
| |
Collapse
|
84
|
Amaral MD, Chapleau CA, Pozzo-Miller L. Transient receptor potential channels as novel effectors of brain-derived neurotrophic factor signaling: potential implications for Rett syndrome. Pharmacol Ther 2007; 113:394-409. [PMID: 17118456 PMCID: PMC1862519 DOI: 10.1016/j.pharmthera.2006.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 02/07/2023]
Abstract
In addition to their prominent role as survival signals for neurons in the developing nervous system, neurotrophins have established their significance in the adult brain as well, where their modulation of synaptic transmission and plasticity may participate in associative learning and memory. These crucial activities are primarily the result of neurotrophin regulation of intracellular Ca(2+) homeostasis and, ultimately, changes in gene expression. Outlined in the following review is a synopsis of neurotrophin signaling with a particular focus upon brain-derived neurotrophic factor (BDNF) and its role in hippocampal synaptic plasticity and neuronal Ca(2+) homeostasis. Neurotrophin signaling through tropomyosin-related kinase (Trk) and pan-neurotrophin receptor 75 kD (p75(NTR)) receptors are also discussed, reviewing recent results that indicate signaling through these two receptor modalities leads to opposing cellular outcomes. We also provide an intriguing look into the transient receptor potential channel (TRPC) family of ion channels as distinctive targets of BDNF signaling; these channels are critical for capacitative Ca(2+) entry, which, in due course, mediates changes in neuronal structure including dendritic spine density. Finally, we expand these topics into an exploration of mental retardation (MR), in particular Rett Syndrome (RTT), where dendritic spine abnormalities may underlie cognitive impairments. We propose that understanding the role of neurotrophins in synapse formation, plasticity, and maintenance will make fundamental contributions to the development of therapeutic strategies to improve cognitive function in developmental disorders associated with MR.
Collapse
Affiliation(s)
- Michelle D Amaral
- Department of Neurobiology, Civitan International Research Center, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | |
Collapse
|
85
|
Kim YI, Choi HJ, Colwell CS. Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons. J Neurosci Res 2007; 84:1512-20. [PMID: 16983663 PMCID: PMC2582386 DOI: 10.1002/jnr.21063] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raises the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB may be important as modulators of this excitatory input into the SCN. To test this possibility, we used whole-cell patch-clamp methods to measure excitatory currents in rat SCN neurons. These currents were evoked by electrical stimulation of the optic nerve. We found that the amplitude of the N-methyl-D-aspartate (NMDA) component of the evoked excitatory postsynaptic currents (NMDA-EPSC) was increased by application of BDNF. The neurotrophin also increased the magnitude of NMDA-evoked currents in SCN neurons. The BDNF enhancement of the NMDA-EPSC was blocked by treatment with the neurotrophin receptor antagonist K252a as well as treatment with the soluble form of the TrkB receptor engineered as an immunoadhesin (TrkB IgG). Finally, the BDNF enhancement was lost in brain slices treated with the NR2B antagonist ifenprodil. The results demonstrate that BDNF and TrkB receptors are important regulators of retinal glutamatergic synaptic transmission within the SCN.
Collapse
Affiliation(s)
- Y I Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea.
| | | | | |
Collapse
|
86
|
Abstract
Information in the nervous system may be carried by both the rate and timing of neuronal spikes. Recent findings of spike timing-dependent plasticity (STDP) have fueled the interest in the potential roles of spike timing in processing and storage of information in neural circuits. Induction of long-term potentiation (LTP) and long-term depression (LTD) in a variety of in vitro and in vivo systems has been shown to depend on the temporal order of pre- and postsynaptic spiking. Spike timing-dependent modification of neuronal excitability and dendritic integration was also observed. Such STDP at the synaptic and cellular level is likely to play important roles in activity-induced functional changes in neuronal receptive fields and human perception.
Collapse
Affiliation(s)
- Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
87
|
Tongiorgi E, Domenici L, Simonato M. What is the biological significance of BDNF mRNA targeting in the dendrites? Clues from epilepsy and cortical development. Mol Neurobiol 2006; 33:17-32. [PMID: 16388108 DOI: 10.1385/mn:33:1:017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 06/02/2005] [Indexed: 01/19/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is a regulatory factor of several, partially contrasting, aspects of the biology of neural cells, including survival, growth, differentiation, and cell death. Regulation of the local availability of BDNF at distinct subcellular domains such as the cell soma, dendrites, axons, and spines appears to be the key to conferring spatial and temporal specificity of the different effects elicited by this neurotrophin. This article reviews recent findings in the context of epileptogenesis and visual cortex maturation that showed that different BDNF messenger RNA (mRNA) transcripts are localized at different subcellular locations in hippocampal and cortical neurons. It also reviews findings demonstrating that strong depolarizing stimuli, both in vitro and in vivo, elicit accumulation of BDNF mRNA and protein in the distal dendrites through a signaling pathway involving the activation of the N-methyl-D-aspartate and tyrosine kinase B receptors and an intracellular increase in Ca2+ concentration. Finally, this article proposes that the regulation of the delivery of BDNF mRNA and protein to the different subcellular domains--particularly the dendritic compartment--may represent a fundamental aspect of the processes of cellular and synaptic morphological rearrangements underlying epileptogenesis and postnatal development of the visual cortex.
Collapse
Affiliation(s)
- Enrico Tongiorgi
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, Trieste, Italy.
| | | | | |
Collapse
|
88
|
Tyler WJ, Zhang XL, Hartman K, Winterer J, Muller W, Stanton PK, Pozzo-Miller L. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J Physiol 2006; 574:787-803. [PMID: 16709633 PMCID: PMC1817733 DOI: 10.1113/jphysiol.2006.111310] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exerting its actions pre-, post- and peri-synaptically, brain-derived neurotrophic factor (BDNF) is one of the most potent modulators of hippocampal synaptic function. Here, we examined the effects of BDNF on a rapidly recycling pool (RRP) of vesicles within excitatory synapses. First, we estimated vesicular release in hippocampal cultures by performing FM4-64 imaging in terminals impinging on enhanced green fluorescent protein (eGFP)-labelled dendritic spines - a hallmark of excitatory synapses. Consistent with a modulation of the RRP, BDNF increased the evoked destaining rate of FM4-64 only during the initial phase of field stimulation. Multiphoton microscopy in acute hippocampal slices confirmed these observations by selectively imaging the RRP, which was loaded with FM1-43 by hyperosmotic shock. Slices exposed to BDNF showed an increase in the evoked and spontaneous rates of FM1-43 destaining from terminals in CA1 stratum radiatum, mostly representing excitatory terminals of Schaffer collaterals. Variance-mean analysis of evoked EPSCs in CA1 pyramidal neurons further confirmed that release probability is increased in BDNF-treated slices, without changes in the number of independent release sites or average postsynaptic quantal amplitude. Because BDNF was absent during dye loading, imaging, destaining and whole-cell recordings, these results demonstrate that BDNF induces a long-lasting enhancement in the probability of transmitter release at hippocampal excitatory synapses by modulating the RRP. Since the endogenous BDNF scavenger TrkB-IgG prevented the enhancement of FM1-43 destaining rate caused by induction of long-term potentiation in acute hippocampal slices, the modulation of a rapidly recycling vesicle pool may underlie the role of BDNF in hippocampal long-term synaptic plasticity.
Collapse
Affiliation(s)
- William J Tyler
- Department of Neurobiology, SHEL-1002, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Furutani K, Okubo Y, Kakizawa S, Iino M. Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber-Purkinje cell synapses via BDNF. Proc Natl Acad Sci U S A 2006; 103:8528-33. [PMID: 16709674 PMCID: PMC1482525 DOI: 10.1073/pnas.0600497103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The maintenance of synaptic functions is essential for neuronal information processing, but cellular mechanisms that maintain synapses in the adult brain are not well understood. Here, we report an activity-dependent maintenance mechanism of parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum. When postsynaptic metabotropic glutamate receptor (mGluR) or inositol 1,4,5-trisphosphate (IP(3)) signaling was chronically inhibited in vivo, PF-PC synaptic strength decreased because of a decreased transmitter release probability. The same effects were observed when PF activity was inhibited in vivo by the suppression of NMDA receptor-mediated inputs to granule cells. PF-PC synaptic strength similarly decreased after the in vivo application of an antibody against brain-derived neurotrophic factor (BDNF). Furthermore, the weakening of synaptic connection caused by the blockade of mGluR-IP(3) signaling was reversed by the in vivo application of BDNF. These results indicate that a signaling cascade comprising PF activity, postsynaptic mGluR-IP(3) signaling and subsequent BDNF signaling maintains presynaptic functions in the mature cerebellum.
Collapse
Affiliation(s)
- Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sho Kakizawa
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
90
|
Chan YS, Lai CH, Shum DKY. Spatial coding capacity of central otolith neurons. Exp Brain Res 2006; 173:205-14. [PMID: 16683136 DOI: 10.1007/s00221-006-0491-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Accepted: 04/01/2006] [Indexed: 12/19/2022]
Abstract
This review focuses on recent approaches to unravel the capacity of otolith-related brainstem neurons for coding head orientations. In the first section, the spatiotemporal features of central vestibular neurons in response to natural otolithic stimulation are reviewed. Experiments that reveal convergent inputs from bilateral vestibular end organs bear important implications on the processing of spatiotemporal signals and integration of head orientational signals within central otolith neurons. Another section covers the maturation profile of central otolith neurons in the recognition of spatial information. Postnatal changes in the distribution pattern of neuronal subpopulations that subserve the horizontal and vertical otolith systems are highlighted. Lastly, the expression pattern of glutamate receptor subunits and neurotrophin receptors in otolith-related neurons within the vestibular nuclear complex are reviewed in relation to the potential roles of these receptors in the development of vestibular function.
Collapse
Affiliation(s)
- Ying-Shing Chan
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|
91
|
Gärtner A, Polnau DG, Staiger V, Sciarretta C, Minichiello L, Thoenen H, Bonhoeffer T, Korte M. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J Neurosci 2006; 26:3496-504. [PMID: 16571757 PMCID: PMC6673845 DOI: 10.1523/jneurosci.3792-05.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurotrophins have been shown to play a critical role in activity-dependent synaptic plasticity such as long-term potentiation (LTP) in the hippocampus. Although the role of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor [tyrosine receptor kinase B (TrkB)] is well documented, it still remains unresolved whether presynaptic or postsynaptic activation of TrkB is involved in the induction of LTP. To address this question, we locally and specifically interfered with a downstream target of the TrkB receptor, phospholipase Cgamma (PLCgamma). We prevented PLCgamma signaling by overexpression of the PLCgamma pleckstrin homology (PH) domain with a Sindbis virus vector. The isolated PH domain has an inhibitory effect and thereby blocks endogenous PLCgamma signaling and consequently also IP3 production. Surprisingly, concurrent presynaptic and postsynaptic blockade of PLCgamma signaling was required to reduce LTP to levels comparable with those in TrkB and BDNF knock-out mice. Blockade of presynaptic or postsynaptic signaling alone did not result in a significant reduction of LTP.
Collapse
|
92
|
Vaynman S, Ying Z, Wu A, Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 2006; 139:1221-34. [PMID: 16580138 DOI: 10.1016/j.neuroscience.2006.01.062] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/19/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Synaptic plasticity and behaviors are likely dependent on the capacity of neurons to meet the energy demands imposed by neuronal activity. We used physical activity, a paradigm intrinsically associated with energy consumption/expenditure and cognitive enhancement, to study how energy metabolism interacts with the substrates for neuroplasticity. We found that in an area critical for learning and memory, the hippocampus, exercise modified aspects of energy metabolism by decreasing oxidative stress and increasing the levels of cytochrome c oxidase-II, a specific component of mitochondrial machinery. We infused 1,25-dihydroxyvitamin D3, a modulator of energy metabolism, directly into the hippocampus during 3 days of voluntary wheel running and measured its effects on brain-derived neurotrophic factor-mediated synaptic plasticity. Brain-derived neurotrophic factor is a central player for the effects of exercise on synaptic and cognitive plasticity. We found that 25-dihydroxyvitamin D3 decreased exercise-induced brain-derived neurotrophic factor but had no significant effect on neurotrophin-3 levels, thereby suggesting a level of specificity for brain-derived neurotrophic factor in the hippocampus. 25-Dihydroxyvitamin D3 injection also abolished the effects of exercise on the consummate end-products of brain-derived neurotrophic factor action, i.e. cyclic AMP response element-binding protein and synapsin I, and modulated phosphorylated calmodulin protein kinase II, a signal transduction cascade downstream to brain-derived neurotrophic factor action that is important for learning and memory. We also found that exercise significantly increased the expression of the mitochondrial uncoupling protein 2, an energy-balancing factor concerned with ATP production and free radical management. Our results reveal a fundamental mechanism by which key elements of energy metabolism may modulate the substrates of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- S Vaynman
- Department of Physiological Science, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
93
|
Alder J, Thakker-Varia S, Crozier RA, Shaheen A, Plummer MR, Black IB. Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity. J Neurosci 2006; 25:3080-5. [PMID: 15788764 PMCID: PMC6725079 DOI: 10.1523/jneurosci.2970-04.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trophin-induced synaptic plasticity consists of both presynaptic and postsynaptic processes. The potential interdependence of these mechanisms and their temporal relationships are undefined. The synaptic vesicle protein Rab3A is required for the early, initial 10 min phase but not for the later phase of BDNF-enhanced transmission. We now examine the temporal distinction and mechanistic relationships between these phases of BDNF action. Rab3A mutant cells did not exhibit increased miniature EPSC frequency in response to BDNF in cell culture, indicating an absence of the presynaptic component. In contrast, BDNF enhanced postsynaptic glutamate-induced current in the mutant neurons as in the wild type, indicating that the postsynaptic component of the response was intact. Finally, the postsynaptic NMDA receptor subunit NR2B was phosphorylated at Tyr1472 by BDNF in Rab3A knock-outs, as shown previously in wild type. Our results are the first to demonstrate that presynaptic and postsynaptic components of BDNF-enhanced synaptic activity are independent and temporally distinct.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | |
Collapse
|
94
|
Ring RH, Alder J, Fennell M, Kouranova E, Black IB, Thakker-Varia S. Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: a novel role for nociceptin in hippocampal neurite outgrowth. JOURNAL OF NEUROBIOLOGY 2006; 66:361-77. [PMID: 16408296 DOI: 10.1002/neu.20223] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain derived neurotrophic factor (BDNF) exhibits a sequence of actions on neurons ranging from acute enhancement of transmission to long-term promotion of neurite outgrowth and synaptogenesis associated with learning and memory. The manifold effects of BDNF on neuronal modifications may be mediated by genomic alterations. We previously found that BDNF treatment acutely increases transcription of the synaptic vesicle protein Rab3A, required for trophin-induced synaptic plasticity, as well as the peptide VGF, which increases during learning. To elucidate comprehensive transcriptional programs associated with short- and long-term BDNF exposure, we now examine mRNA abundance and complexity using Affymetrix GeneChips in cultured hippocampal neurons. Consistent with the modulation of synaptic plasticity, BDNF treatment (3-6 h) induced mRNAs encoding the synapse-associated proteins synaptojanin 2, neuronal pentraxin 1, septin 9, and ryanodine receptor 2. BDNF also induced expression of mRNAs encoding neuropeptides (6-12 h), including prepronociceptin, neuropeptide Y, and secretogranin. To determine whether these neuropeptides induced by BDNF mediate neuronal development, we examined their effects on hippocampal neurons. The four mature peptides derived from post-translational processing of the ppNociceptin propeptide induced the expression of several immediate early genes in hippocampal cultures, indicating neuronal activation. To examine the significance of activation, the effects of nociceptin (orphanin FQ) and nocistatin on neurite outgrowth were examined. Quantitative morphometric analysis revealed that nociceptin significantly increased both average neurite length and average number of neurites per neuron, while nocistatin had no effect on these parameters. These results reveal a novel role for nociceptin and suggest that these neuropeptide systems may contribute to the regulation of neuronal function by BDNF.
Collapse
Affiliation(s)
- Robert H Ring
- Wyeth Research, Discovery Neuroscience, CN8000, Princeton, New Jersey 08543, USA
| | | | | | | | | | | |
Collapse
|
95
|
Pereira DB, Rebola N, Rodrigues RJ, Cunha RA, Carvalho AP, Duarte CB. Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. J Neurosci Res 2006; 83:832-44. [PMID: 16477614 DOI: 10.1002/jnr.20784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) modulates glutamatergic excitatory transmission in hippocampal primary cultures by acting at a presynaptic locus. Although it has been suggested that BDNF also modulates adult hippocampus glutamatergic transmission, this remains a matter of controversy. To clarify a putative role for this neurotrophin in the modulation of glutamate release we applied exogenous BDNF to isolated adult rat hippocampal nerve terminals. BDNF, at 100 ng/ml, potentiated by 25% the K(+)-evoked release of [(3)H]glutamate from hippocampal synaptosomes. The small effect of BDNF on [(3)H]glutamate release correlated with a modest increase in phospholipase Cgamma (PLCgamma) phosphorylation, and with the lack of effect of BDNF on extracellular-signal regulated kinase (ERK) and Akt phosphorylation. Immunocytochemistry studies demonstrated that only about one-third of glutamatergic synaptosomes were positive for TrkB immunoreactivity. Furthermore, biotinylation and subsynaptic fractionation studies showed that only one-fourth of total full-length TrkB was present at the plasma membrane, evenly distributed between the presynaptic active zone and the postsynaptic density. These results indicate that BDNF modulates synaptic transmission presynaptically in a small subset of hippocampal glutamatergic synapses that contain TrkB and that express the receptor on the plasma membrane.
Collapse
Affiliation(s)
- Daniela B Pereira
- Department of Zoology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
96
|
Zhang FX, Lai CH, Tse YC, Shum DKY, Chan YS. Expression of Trk receptors in otolith-related neurons in the vestibular nucleus of rats. Brain Res 2005; 1062:92-100. [PMID: 16256078 DOI: 10.1016/j.brainres.2005.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/18/2005] [Accepted: 09/25/2005] [Indexed: 01/19/2023]
Abstract
The expression of the three Trk receptors (TrkA, TrkB, and TrkC) in otolith-related neurons within the vestibular nuclei of adult Sprague-Dawley rats was examined immunohistochemically. Conscious animals were subjected to sinusoidal linear acceleration along either the anterior-posterior (AP) or interaural (IA) axis on the horizontal plane. Neuronal activation was defined by Fos expression in cell nuclei. Control animals, viz labyrinthectomized rats subjected to stimulation and normal rats that remained stationary, showed only a few sporadically scattered Fos-labeled neurons. Among experimental rats, the number of Fos-labeled neurons and their distribution pattern in each vestibular subnucleus in animals stimulated along the antero-posterior axis were similar to those along the interaural axis. No apparent topography was observed among neurons activated along these two directions. Only about one-third of the Trk-immunoreactive neurons in the vestibular nucleus expressed Fos. Double-labeled Fos/TrkA, Fos/TrkB and Fos/TrkC neurons constituted 85-98% of the total number of Fos-labeled neurons in vestibular nuclear complex and its subgroups x and y. Our findings suggest that Trk receptors and their cognate neurotrophins in central otolith neurons may contribute to the modulation of gravity-related spatial information during horizontal head movements.
Collapse
Affiliation(s)
- F X Zhang
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
97
|
Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 2005; 26:631-8. [PMID: 16246434 DOI: 10.1016/j.tips.2005.10.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 09/14/2005] [Accepted: 10/06/2005] [Indexed: 12/22/2022]
Abstract
After decades of effort, the field of depression research is far from understanding how antidepressant drugs mediate their clinical effects. The time lag of 2-6 weeks of therapy that is necessary to obtain antidepressant efficacy indicates a requirement for long-term regulation of molecules activated by drug treatment. The focus of antidepressant research has thus expanded from examining acute monoamine-mediated mechanisms to include long-term transcriptional regulators such as cAMP response element-binding protein (CREB) and trophic factors such as brain-derived nerve growth factor and insulin-like growth factor. In addition, the recent discovery of antidepressant-induced neurogenesis provides another avenue by which antidepressants might exert their effects. Current efforts are aimed at understanding how CREB and trophic factor signaling pathways are coupled to neurogenic effects and how alterations in behavioral, molecular and cellular endpoints are related to the alleviation of the symptoms of depression.
Collapse
|
98
|
Nagappan G, Lu B. Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 2005; 28:464-71. [PMID: 16040136 DOI: 10.1016/j.tins.2005.07.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/21/2005] [Accepted: 07/13/2005] [Indexed: 02/02/2023]
Abstract
Although brain-derived neurotrophic factor (BDNF) has emerged as a key regulator of activity-dependent synaptic plasticity, a conceptually challenging question is how this diffusible molecule achieves local and synapse-specific modulation. One hypothesis is that neuronal activity enhances BDNF signaling by selectively modulating TrkB receptors at active neurons or synapses without affecting receptors on neighboring, less-active ones. Growing evidence suggests that neuronal activity facilitates cell-surface expression of TrkB. BDNF secreted from active synapses and neurons recruits TrkB from extrasynaptic sites into lipid rafts, microdomains of membrane that are enriched at synapses. Postsynaptic rises in cAMP concentrations facilitate translocation of TrkB into the postsynaptic density. Finally, neuronal activity promotes BDNF-induced TrkB endocytosis, a signaling event important for many long-term BDNF functions. These mechanisms could collectively underlie synapse-specific regulation by BDNF.
Collapse
Affiliation(s)
- Guhan Nagappan
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, MSC 3714, Bethesda, MD 20892-4480, USA
| | | |
Collapse
|
99
|
Represa A, Ben-Ari Y. Trophic actions of GABA on neuronal development. Trends Neurosci 2005; 28:278-83. [PMID: 15927682 DOI: 10.1016/j.tins.2005.03.010] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/17/2005] [Accepted: 03/24/2005] [Indexed: 11/28/2022]
Abstract
During brain development, transmitter-gated receptors are operative before synapse formation, suggesting that their action is not restricted to synaptic transmission. GABA, which is the principal excitatory transmitter in the developing brain, acts as an epigenetic factor to control processes including cell proliferation, neuroblast migration and dendritic maturation. These effects appear to be mediated through a paracrine, diffuse, non-synaptic mode of action that precedes the more focused, rapid mode of operation characteristic of synaptic connections. This sequential operation implies that GABA is used as an informative agent but in a unique context at an early developmental stage. This sequence also implies that by altering these effects, drugs acting on the GABA system could be pathogenic during pregnancy.
Collapse
Affiliation(s)
- Alfonso Represa
- INMED/INSERM U29, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | |
Collapse
|
100
|
Abstract
Mechanisms underlying the fast action of neurotrophins include intracellular Ca(2+) signaling, neuronal excitation, augmentation of synaptic excitation by modulation of N-methyl-d-aspartate receptor activity and control of synaptic inhibition through the regulation of the K(+)-Cl(-) cotransporter KCC2. The fastest action of brain-derived neurotrophic factor and neurotrophin-4/5 occurs within milliseconds, and involves activation of TrkB and the opening of the Na(+) channel Na(v)1.9. Through these rapid actions, neurotrophins shape neuronal activity, modulate synaptic transmission and produce instructive signals for the induction of long-term changes in the efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Yury Kovalchuk
- Institut für Physiologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | |
Collapse
|