51
|
Long SB, Campbell EB, Mackinnon R. Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling. Science 2005; 309:903-8. [PMID: 16002579 DOI: 10.1126/science.1116270] [Citation(s) in RCA: 779] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.
Collapse
Affiliation(s)
- Stephen B Long
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
52
|
Silberberg SD, Chang TH, Swartz KJ. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. ACTA ACUST UNITED AC 2005; 125:347-59. [PMID: 15795310 PMCID: PMC2217512 DOI: 10.1085/jgp.200409221] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P2X receptors are cation selective channels that are activated by extracellular nucleotides. These channels are likely formed by three identical or related subunits, each having two transmembrane segments (TM1 and TM2). To identify regions that undergo rearrangement during gating and to probe their secondary structure, we performed tryptophan scanning mutagenesis on the two putative TMs of the rat P2X4 receptor channel. Mutant channels were expressed in Xenopus oocytes, concentration–response relationships constructed for ATP, and the EC50 estimated by fitting the Hill equation to the data. Of the 22 mutations in TM1 and 24 in TM2, all but one in TM1 and seven in TM2 result in functional channels. Interestingly, the majority of the functional mutants display an increased sensitivity to ATP, and in general these perturbations are more pronounced for TM2 when compared with TM1. For TM1 and for the outer half of TM2, the perturbations are consistent with these regions adopting α-helical secondary structures. In addition, the greatest perturbations in the gating equilibrium occur for mutations near the outer ends of both TM1 and TM2. Surface biotinylation experiments reveal that all the nonfunctional mutants traffic to the surface membrane at levels comparable to the WT channel, suggesting that these mutations likely disrupt ion conduction or gating. Taken together, these results suggest that the outer parts of TM1 and TM2 are helical and that they move during activation. The observation that the majority of nonconducting mutations are clustered toward the inner end of TM2 suggests a critical functional role for this region.
Collapse
Affiliation(s)
- Shai D Silberberg
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
53
|
Labro AJ, Raes AL, Snyders DJ. Coupling of voltage sensing to channel opening reflects intrasubunit interactions in kv channels. ACTA ACUST UNITED AC 2005; 125:71-80. [PMID: 15623896 PMCID: PMC2217479 DOI: 10.1085/jgp.200409194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated K(+) channels play a central role in the modulation of excitability. In these channels, the voltage-dependent movement of the voltage sensor (primarily S4) is coupled to the (S6) gate that opens the permeation pathway. Because of the tetrameric structure, such coupling could occur within each subunit or between adjacent subunits. To discriminate between these possibilities, we analyzed various combinations of a S4 mutation (R401N) and a S6 mutation (P511G) in hKv1.5, incorporated into tandem constructs to constrain subunit stoichiometry. R401N shifted the voltage dependence of activation to negative potentials while P511G did the opposite. When both mutations were introduced in the same alpha-subunit of the tandem, the positive shift of P511G was compensated by the negative shift of R401N. With each mutation in a separate subunit of a tandem, this compensation did not occur. This suggests that for Kv channels, the coupling between voltage sensing and gating reflects primarily an intrasubunit interaction.
Collapse
Affiliation(s)
- Alain J Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | | | | |
Collapse
|
54
|
Pathak M, Kurtz L, Tombola F, Isacoff E. The cooperative voltage sensor motion that gates a potassium channel. ACTA ACUST UNITED AC 2005; 125:57-69. [PMID: 15623895 PMCID: PMC1414780 DOI: 10.1085/jgp.200409197] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.
Collapse
Affiliation(s)
- Medha Pathak
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
55
|
Durell SR, Shrivastava IH, Guy HR. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Biophys J 2005; 87:2116-30. [PMID: 15454416 PMCID: PMC1304639 DOI: 10.1529/biophysj.104.040618] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the preceding, accompanying article, we present models of the structure and voltage-dependent gating mechanism of the KvAP bacterial K+ channel that are based on three types of evidence: crystal structures of portions of the KvAP protein, theoretical modeling criteria for membrane proteins, and biophysical studies of the properties of native and mutated voltage-gated channels. Most of the latter experiments were performed on the Shaker K+ channel. Some of these data are difficult to relate directly to models of the KvAP channel's structure due to differences in the Shaker and KvAP sequences. We have dealt with this problem by developing new models of the structure and gating mechanism of the transmembrane and extracellular portions of the Shaker channel. These models are consistent with almost all of the biophysical data. In contrast, much of the experimental data are incompatible with the "paddle" model of gating that was proposed when the KvAP crystal structures were first published. The general folding pattern and gating mechanisms of our current models are similar to some of our earlier models of the Shaker channel.
Collapse
Affiliation(s)
- Stewart R Durell
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5567, USA
| | | | | |
Collapse
|
56
|
Shrivastava IH, Durell SR, Guy HR. A model of voltage gating developed using the KvAP channel crystal structure. Biophys J 2005; 87:2255-70. [PMID: 15454428 PMCID: PMC1304651 DOI: 10.1529/biophysj.104.040592] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Having inspected the crystal structure of the complete KvAP channel protein, we suspect that the voltage-sensing domain is too distorted to provide reliable information about its native tertiary structure or its interactions with the central pore-forming domain. On the other hand, a second crystal structure of the isolated voltage-sensing domain may well correspond to a native open conformation. We also observe that the paddle model of gating developed from these two structures is inconsistent with many experimental results, and suspect it to be energetically unrealistic. Here we show that the isolated voltage-sensing domain crystal structure can be docked onto the pore domain portion of the full-length KvAP crystal structure in an energetically favorable way to create a model of the open conformation. Using this as a starting point, we have developed rather conventional models of resting and transition conformations based on the helical screw mechanism for the transition from the open to the resting conformation. Our models are consistent with both theoretical considerations and experimental results.
Collapse
Affiliation(s)
- Indira H Shrivastava
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5567, USA
| | | | | |
Collapse
|
57
|
Caprini M, Fava M, Valente P, Fernandez-Ballester G, Rapisarda C, Ferroni S, Ferrer-Montiel A. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity. J Biol Chem 2005; 280:18253-64. [PMID: 15749711 DOI: 10.1074/jbc.m413389200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated ion channels are modular proteins designed by the structural linkage of a voltage sensor and a pore domain. The functional coupling of these two protein modules is a subject of intense research. A major focus has been directed to decipher the role of the S4-S5 linker and the C-end of the inner pore helix in channel gating. However, the contribution of the cytosolic N terminus of S5 remains elusive. To address this issue, we used a chimeric subunit that linked the voltage sensor of the Shaker channel to the prokaryotic KcsA pore domain (denoted as Shaker-KcsA). This chimera preserved the Shaker sequences at both the N terminus of S5 and the C-end of S6. Chimeric Shaker-KcsA subunits did not form functional homomeric channels but were synthesized, folded, and trafficked to the cell surface, as evidenced by their co-assembly with Shaker wild type subunits. Sequential substitution of Shaker amino acids at the C-end of S6 and the N terminus of S5 by the corresponding KcsA created voltage-sensitive channels with voltage-dependent properties that asymptotically approached those of the wild type Shaker channel. Noteworthy, substitution of the region encompassing Phe(401)-Phe(404) at the N-end of Shaker S5 by KcsA residues resulted in a significant gain in voltage sensitivity of the chimeras. Furthermore, analysis of channel function at high [K(+)](o) revealed that the Phe(401)-Phe(404) region is an important molecular determinant for competent coupling of voltage sensing and pore opening. Taken together, these findings indicate that complete replacement of Shaker S5 and S6 by KcsA M1 and M2 is required for voltage-dependent gating of the prokaryotic channel. In addition, our results imply that the region encompassing Phe(401)-Phe(404) in Shaker is involved in protein-protein interactions with the voltage sensor, and signal to the Phe(401) in the S5 segment as a key molecular determinant to pair the voltage sensor and the pore domain.
Collapse
Affiliation(s)
- Marco Caprini
- Department of Human and General Physiology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
58
|
Scholle A, Zimmer T, Koopmann R, Engeland B, Pongs O, Benndorf K. Effects of Kv1.2 intracellular regions on activation of Kv2.1 channels. Biophys J 2005; 87:873-82. [PMID: 15298895 PMCID: PMC1304496 DOI: 10.1529/biophysj.104.040550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depolarizing voltage steps activate voltage-dependent K(+) (Kv) channels by moving the voltage sensor, which triggers a coupling reaction leading to the opening of the pore. We constructed chimeric channels in which intracellular regions of slowly activating Kv2.1 channels were replaced by respective regions of rapidly activating Kv1.2 channels. Substitution of either the N-terminus, S4-S5 linker, or C-terminus generated chimeric Kv2.1/1.2 channels with a paradoxically slow and approximately exponential activation time course consisting of a fast and a slow component. Using combined chimeras, each of these Kv1.2 regions further slowed activation at the voltage of 0 mV, irrespective of the nature of the other two regions, whereas at the voltage of 40 mV both slowing and accelerating effects were observed. These results suggest voltage-dependent interactions of the three intracellular regions. This observation was quantified by double-mutant cycle analysis. It is concluded that interactions between N-terminus, S4-S5 linker, and/or C-terminus modulate the activation time course of Kv2.1 channels and that part of these interactions is voltage dependent.
Collapse
Affiliation(s)
- Annette Scholle
- Institut für Physiologie II, Friedrich-Schiller-Universität, 07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
For structural studies it would be useful to constrain the voltage sensor of a voltage-gated channel in its deactivated state. Here we consider one Shaker potassium channel mutant and speculate about others that might allow the channel to remain deactivated at zero membrane potential. Ionic and gating currents of F370C Shaker, expressed in Xenopus oocytes, were recorded in patches with internal application of the methanethiosulfonate reagent MTSET. It appears that the voltage dependence of voltage sensor movement is strongly shifted by reaction with internal MTSET, such that the voltage sensors appear to remain deactivated even at positive potentials. A disadvantage of this construct is that the rate of modification of voltage sensors by MTSET is quite low, ∼0.17 mM−1·s−1 at −80 mV, and is expected to be much lower at depolarized potentials.
Collapse
Affiliation(s)
- Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | |
Collapse
|
60
|
Gibor G, Yakubovich D, Peretz A, Attali B. External barium affects the gating of KCNQ1 potassium channels and produces a pore block via two discrete sites. ACTA ACUST UNITED AC 2005; 124:83-102. [PMID: 15226366 PMCID: PMC2229603 DOI: 10.1085/jgp.200409068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.
Collapse
Affiliation(s)
- Gilad Gibor
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
61
|
Grabe M, Lecar H, Jan YN, Jan LY. A quantitative assessment of models for voltage-dependent gating of ion channels. Proc Natl Acad Sci U S A 2004; 101:17640-5. [PMID: 15591352 PMCID: PMC539724 DOI: 10.1073/pnas.0408116101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated ion channels open and close, or "gate," in response to changes in membrane potential. The electric field across the membrane-protein complex exerts forces on charged residues driving the channel into different functional conformations as the membrane potential changes. To act with the greatest sensitivity, charged residues must be positioned at key locations within or near the transmembrane region, which requires desolvating charged groups, a process that can be energetically prohibitive. Although there is good agreement on which residues are involved in this process for voltage-activated potassium channels, several different models of the sensor geometry and gating motions have been proposed. Here we incorporate low-resolution structural information about the channel into a Poisson-Boltzmann calculation to determine solvation barrier energies and gating charge values associated with each model. The principal voltage-sensing helix, S4, is represented explicitly, whereas all other regions are represented as featureless, dielectric media with complex boundaries. From our calculations, we conclude that a pure rotation of the S4 segment within the voltage sensor is incapable of producing the observed gating charge values, although this shortcoming can be partially remedied by first tipping and then minimally translating the S4 helix. Models in which the S4 segment has substantial interaction with the low-dielectric environment of the membrane incur solvation energies of hundreds of k(B)T, and activation times based on these energies are orders of magnitude slower than experimentally observed.
Collapse
Affiliation(s)
- Michael Grabe
- Howard Hughes Medical Institute and Department of Physiology and Biochemistry, University of California, San Francisco, CA 94143-0725, USA
| | | | | | | |
Collapse
|
62
|
Lundbaek JA, Birn P, Hansen AJ, Søgaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE, Andersen OS. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. ACTA ACUST UNITED AC 2004; 123:599-621. [PMID: 15111647 PMCID: PMC2234500 DOI: 10.1085/jgp.200308996] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.
Collapse
|
63
|
Elliott DJS, Neale EJ, Aziz Q, Dunham JP, Munsey TS, Hunter M, Sivaprasadarao A. Molecular mechanism of voltage sensor movements in a potassium channel. EMBO J 2004; 23:4717-26. [PMID: 15565171 PMCID: PMC535096 DOI: 10.1038/sj.emboj.7600484] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 10/22/2004] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the prototypical Shaker potassium channel. We introduced pairs of cysteines, one in S4 and the other in S5, and examined proximity changes between each pair of cysteines during activation, using Cd2+ and copper-phenanthroline, which crosslink the cysteines with metal and disulphide bridges, respectively. Modelling of the results suggests a novel mechanism: in the resting state, the top of the S3b-S4 voltage sensor paddle lies close to the top of S5 of the adjacent subunit, but moves towards the top of S5 of its own subunit during depolarization--this motion is accompanied by a reorientation of S4 charges to the extracellular phase.
Collapse
Affiliation(s)
| | - Edward J Neale
- School of Biomedical Sciences, Leeds University, Leeds, UK
| | - Qadeer Aziz
- School of Biomedical Sciences, Leeds University, Leeds, UK
| | - James P Dunham
- School of Biomedical Sciences, Leeds University, Leeds, UK
| | - Tim S Munsey
- School of Biomedical Sciences, Leeds University, Leeds, UK
| | - Malcolm Hunter
- School of Biomedical Sciences, Leeds University, Leeds, UK
| | - Asipu Sivaprasadarao
- School of Biomedical Sciences, Leeds University, Leeds, UK
- School of Biomedical Sciences, Leeds University, Leeds LS2 9JT, UK. Tel.: +44 0113 343 4326; Fax: +44 0113 343 4228; E-mail:
| |
Collapse
|
64
|
Piper DR, Hinz WA, Tallurri CK, Sanguinetti MC, Tristani-Firouzi M. Regional specificity of human ether-a'-go-go-related gene channel activation and inactivation gating. J Biol Chem 2004; 280:7206-17. [PMID: 15528201 DOI: 10.1074/jbc.m411042200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Slow activation and rapid C-type inactivation produce inward rectification of the current-voltage relationship for human ether-a'-go-go-related gene (hERG) channels. To characterize the voltage sensor movement associated with hERG activation and inactivation, we performed an Ala scan of the 32 amino acids (Gly(514)-Tyr(545)) that comprise the S4 domain and the flanking S3-S4 and S4-S5 linkers. Gating and ionic currents of wild-type and mutant channels were measured using cut-open oocyte Vaseline gap and two microelectrode voltage clamp techniques to determine the voltage dependence of charge movement, activation, and inactivation. Mapping the position of the charge-perturbing mutations (defined as |DeltaDeltaG| > 1.0 kcal/mol) on a three-dimensional S4 homology model revealed a spiral pattern. As expected, mutation of these residues also altered activation. However, mutation of residues in the S3-S4 and S4-S5 linkers and the C-terminal end of S4 perturbed activation (|DeltaDeltaG| > 1.0 kcal/mol) without altering charge movement, suggesting that the native residues in these regions couple S4 movement to the opening of the activation gate or stabilize the open or closed state of the channel. Finally, mutation of a distinct set of residues impacted inactivation and mapped to a single face of the S4 helix that was devoid of activation-perturbing residues. These results define regions on the S4 voltage sensor that contribute differentially to hERG activation and inactivation gating.
Collapse
Affiliation(s)
- David R Piper
- Department of Physiology, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | |
Collapse
|
65
|
Fleishman SJ, Yifrach O, Ben-Tal N. An Evolutionarily Conserved Network of Amino Acids Mediates Gating in Voltage-dependent Potassium Channels. J Mol Biol 2004; 340:307-18. [PMID: 15201054 DOI: 10.1016/j.jmb.2004.04.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/26/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
A novel sequence-analysis technique for detecting correlated amino acid positions in intermediate-size protein families (50-100 sequences) was developed, and applied to study voltage-dependent gating of potassium channels. Most contemporary methods for detecting amino acid correlations within proteins use very large sets of data, typically comprising hundreds or thousands of evolutionarily related sequences, to overcome the relatively low signal-to-noise ratio in the analysis of co-variations between pairs of amino acid positions. Such methods are impractical for voltage-gated potassium (Kv) channels and for many other protein families that have not yet been sequenced to that extent. Here, we used a phylogenetic reconstruction of paralogous Kv channels to follow the evolutionary history of every pair of amino acid positions within this family, thus increasing detection accuracy of correlated amino acids relative to contemporary methods. In addition, we used a bootstrapping procedure to eliminate correlations that were statistically insignificant. These and other measures allowed us to increase the method's sensitivity, and opened the way to reliable identification of correlated positions even in intermediate-size protein families. Principal-component analysis applied to the set of correlated amino acid positions in Kv channels detected a network of inter-correlated residues, a large fraction of which were identified as gating-sensitive upon mutation. Mapping the network of correlated residues onto the 3D structure of the Kv channel from Aeropyrum pernix disclosed correlations between residues in the voltage-sensor paddle and the pore region, including regions that are involved in the gating transition. We discuss these findings with respect to the evolutionary constraints acting on the channel's various domains. The software is available on our website
Collapse
Affiliation(s)
- Sarel J Fleishman
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
66
|
Abstract
Positively charged voltage sensors of sodium and potassium channels are driven outward through the membrane's electric field upon depolarization. This movement is coupled to channel opening. A recent model based on studies of the KvAP channel proposes that the positively charged voltage sensor, christened the “voltage-sensor paddle”, is a peripheral domain that shuttles its charged cargo through membrane lipid like a hydrophobic cation. We tested this idea by attaching charged adducts to cysteines introduced into the putative voltage-sensor paddle of Shaker potassium channels and measuring fractional changes in the total gating charge from gating currents. The only residues capable of translocating attached charges through the membrane-electric field are those that serve this function in the native channel. This remarkable specificity indicates that charge movement involves highly specialized interactions between the voltage sensor and other regions of the protein, a mechanism inconsistent with the paddle model.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Physiology, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
67
|
Kondratiev A, Tomaselli GF. Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels. Mol Pharmacol 2003; 64:741-52. [PMID: 12920212 DOI: 10.1124/mol.64.3.741] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytoplasmic side of the voltage-dependent Na+ channel pore is putatively formed by the S6 segments of domains I to IV. The role of amino acid residues of I-S6 and II-S6 in channel gating and local anesthetic (LA) block was investigated using the cysteine scanning mutagenesis of the rat skeletal muscle Na+ channel (Nav1.4). G428C uniquely reduced sensitivity to rested state or first-pulse block by lidocaine without alterations in the voltage dependence or kinetics of gating that would otherwise account for the increase in the IC50 for block. Mutations in I-S6 (N434C and I436C) and in II-S6 (L785C and V787C) increased sensitivity to first-pulse block by lidocaine. Enhanced inactivation accounted for the increased sensitivity of N434C to lidocaine and hastening of inactivation of I436C in the absence of drug could account for higher affinity first-pulse block. Mutations in I-S6 (I424C, I425C, and F430C) and in II-S6 (I782C and V786C) reduced the use-dependent lidocaine block. The reduction in use-dependent block of F430C was consistent with alterations in inactivation gating; the other mutants did not exhibit gating changes that could explain the reduced sensitivity to lidocaine. Therefore, several amino acids (I424, I425, G428, I782, and V786), in addition to those previously identified (Yarov-Yarovoy et al., 2002), alter the sensitivity of Nav1.4 to lidocaine, independent of mutation-induced changes in gating. The magnitude of the change in the IC50 values, the isoform, and LA dependence of the changes in affinity suggest that the determinants of binding in I-S6 and II-S6 are subsidiary to those in IV-S6.
Collapse
Affiliation(s)
- Andrei Kondratiev
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
68
|
Neale EJ, Elliott DJ, Hunter M, Sivaprasadarao A. Evidence for Intersubunit Interactions between S4 and S5 Transmembrane Segments of the Shaker Potassium Channel. J Biol Chem 2003. [DOI: 10.1074/jbc.m301991200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
69
|
Lainé M, Lin MCA, Bannister JPA, Silverman WR, Mock AF, Roux B, Papazian DM. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 2003; 39:467-81. [PMID: 12895421 DOI: 10.1016/s0896-6273(03)00468-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recently proposed model for voltage-dependent activation in K+ channels, largely influenced by the KvAP X-ray structure, suggests that S4 is located at the periphery of the channel and moves through the lipid bilayer upon depolarization. To investigate the physical distance between S4 and the pore domain in functional channels in a native membrane environment, we engineered pairs of cysteines, one each in S4 and the pore of Shaker channels, and identified two instances of spontaneous intersubunit disulfide bond formation, between R362C/A419C and R362C/F416C. After reduction, these cysteine pairs bound Cd2+ with high affinity, verifying that the residues are in atomic proximity. Molecular modeling based on the MthK structure revealed a single position for S4 that was consistent with our results and many other experimental constraints. The model predicts that S4 is located in the groove between pore domains from different subunits, rather than at the periphery of the protein.
Collapse
Affiliation(s)
- Muriel Lainé
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Flynn GE, Zagotta WN. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore. J Gen Physiol 2003; 121:563-82. [PMID: 12771192 PMCID: PMC2217351 DOI: 10.1085/jgp.200308819] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels belong to the P-loop-containing family of ion channels that also includes KcsA, MthK, and Shaker channels. In this study, we investigated the structure and rearrangement of the CNGA1 channel pore using cysteine mutations and cysteine-specific modification. We constructed 16 mutant channels, each one containing a cysteine mutation at one of the positions between 384 and 399 in the S6 region of the pore. By measuring currents activated by saturating concentrations of the full agonist cGMP and the partial agonists cIMP and cAMP, we show that mutating S6 residues to cysteine caused both favorable and unfavorable changes in the free energy of channel opening. The time course of cysteine modification with 2-aminoethylmethane thiosulfonate hydrochloride (MTSEA) was complex. For many positions we observed decreases in current activated by cGMP and concomitant increases in current activated by cIMP and cAMP. A model where modification affected both gating and permeation successfully reproduced the complex time course of modification for most of the mutant channels. From the model fits to the time course of modification for each mutant channel, we quantified the following: (a) the bimolecular rate constant of modification in the open state, (b) the change in conductance, and (c) the change in the free energy of channel opening for modification of each cysteine. At many S6 cysteines, modification by MTSEA caused a decrease in conductance and a favorable change in the free energy of channel opening. Our results are interpreted within the structural framework of the known structures of KcsA and MthK. We conclude that: (a) MTSEA modification affects both gating and permeation, (b) the open configuration of the pore of CNGA1 channels is consistent with the structure of MthK, and (c) the modification of S6 residues disrupts the helical packing of the closed channel, making it easier for channels to open.
Collapse
Affiliation(s)
- Galen E Flynn
- Department of Physiology and Biophysics, University of Washington, Seattle 98195-7290, USA
| | | |
Collapse
|
71
|
Talavera K, Janssens A, Klugbauer N, Droogmans G, Nilius B. Pore structure influences gating properties of the T-type Ca2+ channel alpha1G. J Gen Physiol 2003; 121:529-40. [PMID: 12743166 PMCID: PMC2217349 DOI: 10.1085/jgp.200308794] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selectivity filter of all known T-type Ca2+ channels is built by an arrangement of two glutamate and two aspartate residues, each one located in the P-loops of domains I-IV of the alpha1 subunit (EEDD locus). The mutations of the aspartate residues to glutamate induce changes in the conduction properties, enhance Cd2+ and proton affinities, and modify the activation curve of the channel. Here we further analyze the role of the selectivity filter in the gating mechanisms of T-type channels by comparing the kinetic properties of the alpha1G subunit (CaV3.1) to those of pore mutants containing aspartate-to-glutamate substitution in domains III (EEED) or IV (EEDE). The change of the extracellular pH induced similar effects on the activation properties of alpha1G and both pore mutants, indicating that the larger affinity of the mutant channels for protons is not the cause of the gating modifications. Both mutants showed alterations in several gating properties with respect to alpha1G, i.e., faster macroscopic inactivation in the voltage range from -10 to 50 mV, positive voltage shift and decrease in the voltage sensitivity of the time constants of activation and deactivation, decrease of the voltage sensitivity of the steady-state inactivation, and faster recovery from inactivation for long repolarization periods. Kinetic modeling suggests that aspartate-to-glutamate mutations in the EEDD locus of alpha1G modify the movement of the gating charges and alter the rate of several gating transitions. These changes are independent of the alterations of the selectivity properties and channel protonation.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratorium voor Fysiologie, Campus Gasthuisberg, KU Leuven, Belgium.
| | | | | | | | | |
Collapse
|
72
|
Abstract
Potassium (K+) channels mediate numerous electrical events in excitable cells, including cellular membrane potential repolarization. The hERG K+ channel plays an important role in myocardial repolarization, and inhibition of these K+ channels is associated with long QT syndromes that can cause fatal cardiac arrhythmias. In this study, we identify saxitoxin (STX) as a hERG channel modifier and investigate the mechanism using heterologous expression of the recombinant channel in HEK293 cells. In the presence of STX, channels opened slower during strong depolarizations, and they closed much faster upon repolarization, suggesting that toxin-bound channels can still open but are modified, and that STX does not simply block the ion conduction pore. STX decreased hERG K+ currents by stabilizing closed channel states visualized as shifts in the voltage dependence of channel opening to more depolarized membrane potentials. The concentration dependence for steady-state modification as well as the kinetics of onset and recovery indicate that multiple STX molecules bind to the channel. Rapid application of STX revealed an apparent "agonist-like" effect in which K+ currents were transiently increased. The mechanism of this effect was found to be an effect on the channel voltage-inactivation relationship. Because the kinetics of inactivation are rapid relative to activation for this channel, the increase in K+ current appeared quickly and could be subverted by a decrease in K+ currents due to the shift in the voltage-activation relationship at some membrane potentials. The results are consistent with a simple model in which STX binds to the hERG K+ channel at multiple sites and alters the energetics of channel gating by shifting both the voltage-inactivation and voltage-activation processes. The results suggest a novel extracellular mechanism for pharmacological manipulation of this channel through allosteric coupling to channel gating.
Collapse
Affiliation(s)
- Jixin Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | |
Collapse
|
73
|
Silverman WR, Roux B, Papazian DM. Structural basis of two-stage voltage-dependent activation in K+ channels. Proc Natl Acad Sci U S A 2003; 100:2935-40. [PMID: 12606713 PMCID: PMC151444 DOI: 10.1073/pnas.0636603100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the voltage sensor and the detailed physical basis of voltage-dependent activation in ion channels have not been determined. We now have identified conserved molecular rearrangements underlying two major voltage-dependent conformational changes during activation of divergent K(+) channels, ether-à-go-go (eag) and Shaker. Two conserved arginines of the S4 voltage sensor move sequentially into an extracellular gating pocket, where they interact with an acidic residue in S2. In eag, these transitions are modulated by a divalent ion that binds in the gating pocket. Conservation of key molecular details in the activation mechanism confirms that voltage sensors in divergent K(+) channels share a common structure. Molecular modeling reveals that structural constraints derived from eag and Shaker specify the unique packing arrangement of transmembrane segments S2, S3, and S4 within the voltage sensor.
Collapse
Affiliation(s)
- William R Silverman
- Department of Physiology and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA
| | | | | |
Collapse
|
74
|
Abstract
The cytoplasmic ends of the four S6 transmembrane segments of voltage-gated potassium channels converge in a bundle crossing that acts as the activation gate that opens in response to a depolarization. To explore whether the cytoplasmic extension of the S6 segment (the S6 tail) plays a role in coupling voltage sensor and activation gate movements, we examined the effect of cysteine substitution from residues N482 to T489 on the kinetics and voltage-dependence of S4 charge movement and on the kinetics of deactivation of ionic current. Among these mutants, F484C has the steepest voltage-dependent charge movement, the largest Q-V shift, and the fastest OFF gating currents. Further study of the residue at position 484, using mutagenesis and modification of F484C by cysteine reagents, suggests that aromaticity at this position is essential to maintain normal coupling. We used periodicity analysis to appraise the possibility that the S6 tail has an alpha-helical structure. Although we obtained an alpha-periodicity index of 2.41 for gating current parameters, a new randomization test produced an indecisive conclusion about the secondary structure of this region. Taken together, our results suggest that the tail end of S6 plays an important role in coupling between activation gating and charge movement.
Collapse
Affiliation(s)
- Shinghua Ding
- Department of Physiology, Institute of Hyperexcitability, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
75
|
Peretz A, Schottelndreier H, Aharon-Shamgar LB, Attali B. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification. J Physiol 2002; 545:751-66. [PMID: 12482884 PMCID: PMC2290713 DOI: 10.1113/jphysiol.2002.028381] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The I(KS) K(+) channel plays a major role in repolarizing the cardiac action potential. It consists of an assembly of two structurally distinct alpha and beta subunits called KCNQ1 and KCNE1, respectively. Using two different expression systems, Xenopus oocytes and Chinese hamster ovary cells, we investigated the effects of external protons on homomeric and heteromeric KCNQ1 channels. External acidification (from pH 7.4 to pH 5.5) markedly decreased the homomeric KCNQ1 current amplitude and caused a positive shift (+25 mV) in the voltage dependence of activation. Low external pH (pH(o)) also slowed down the activation and deactivation kinetics and strongly reduced the KCNQ1 inactivation process. In contrast, external acidification reduced the maximum conductance and the macroscopic inactivation of the KCNQ1 mutant L273F by only a small amount. The heteromeric I(KS) channel complex was weakly affected by low pH(o), with minor effects on I(KS) current amplitude. However, substantial current inhibition was produced by protons with the N-terminal KCNE1 deletion mutant Delta11-38. Low pH(o) increased the current amplitude of the pore mutant V319C when co-expressed with KCNE1. The slowing of I(KS) deactivation produced by low pH(o) was absent in the KCNE1 mutant Delta39-43, suggesting that the residues lying at the N-terminal boundary of the transmembrane segment are involved in this process. In all, our results suggest that external acidification acts on homomeric and heteromeric KCNQ1 channels via multiple mechanisms to affect gating and maximum conductance. The external pH effects on I(Kr) versus I(KS) may be important determinants of arrhythmogenicity under conditions of cardiac ischaemia and reperfusion.
Collapse
Affiliation(s)
- Asher Peretz
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
76
|
Aziz QH, Partridge CJ, Munsey TS, Sivaprasadarao A. Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel. J Biol Chem 2002; 277:42719-25. [PMID: 12196543 DOI: 10.1074/jbc.m207258200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (K(v)) channels are integral membrane proteins, composed of four subunits, each comprising six (S1-S6) transmembrane segments. S1-S4 comprise the voltage-sensing domain, and S5-S6 with the linker P-loop forms the ion conducting pore domain. During activation, S4 undergoes structural rearrangements that lead to the opening of the channel pore and ion conduction. To obtain details of these structural changes we have used the engineered disulfide bridge approach. For this we have introduced the L361C mutation at the extracellular end of S4 of the Shaker K channel and expressed the mutant channel in Xenopus oocytes. When exposed to mild oxidizing conditions (ambient oxygen or copper phenanthroline), Cys-361 formed an intersubunit disulfide bridge as revealed by the appearance of a dimeric band on Western blotting. As a consequence, the mutant channel suffered a significant loss in conductance (measured by two-electrode voltage clamp). Removal of native cysteines failed to prevent the disulfide formation, indicating that Cys-361 forms a disulfide with its counterpart in the neighboring subunit. The effect was voltage-dependent and occurred during channel activation after Cys-361 has been exposed to the extracellular phase. Although the disulfide bridge reduced the maximal conductance, it caused a hyperpolarizing shift in the conductance-voltage relationship and reduced the deactivation kinetics of the channel. The latter two effects suggest stabilization of the open state of the channel. In conclusion, we report that during activation the intersubunit distance between the N-terminal ends of the S4 segments of the L361C mutant Shaker K channel is reduced.
Collapse
Affiliation(s)
- Qadeer H Aziz
- School of Biomedical Sciences, Leeds University, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
77
|
Lu Z, Klem AM, Ramu Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 2002; 120:663-76. [PMID: 12407078 PMCID: PMC2229552 DOI: 10.1085/jgp.20028696] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 09/24/2002] [Accepted: 09/25/2002] [Indexed: 11/20/2022] Open
Abstract
Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1-S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5-S6, equivalent to M1-M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4-S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
78
|
Abstract
Voltage-dependent gating in K(+) channels results from the mechanical coupling of voltage sensor movements to pore opening. We used single and double mutations in the pore of the Shaker K(+) channel to analyze a late concerted pore opening transition and interpreted the results in the context of known K(+) channel structures. Gating sensitive mutations are located at mechanistically informative regions of the pore and are coupled energetically across distances up to 15 A. We propose that the pore is intrinsically more stable when closed, and that to open the pore the voltage sensors must exert positive work by applying an outward lateral force near the inner helix bundle.
Collapse
Affiliation(s)
- Ofer Yifrach
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
79
|
Affiliation(s)
- Richard Horn
- Department of Physiology, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
80
|
Affiliation(s)
- Chris S Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
81
|
Affiliation(s)
- H Peter Larsson
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
82
|
Abstract
In Kv channels, an activation gate is thought to be located near the intracellular entrance to the ion conduction pore. Although the COOH terminus of the S6 segment has been implicated in forming the gate structure, the residues positioned at the occluding part of the gate remain undetermined. We use a mutagenic scanning approach in the Shaker Kv channel, mutating each residue in the S6 gate region (T469-Y485) to alanine, tryptophan, and aspartate to identify positions that are insensitive to mutation and to find mutants that disrupt the gate. Most mutants open in a steeply voltage-dependent manner and close effectively at negative voltages, indicating that the gate structure can both support ion flux when open and prevent it when closed. We find several mutant channels where macroscopic ionic currents are either very small or undetectable, and one mutant that displays constitutive currents at negative voltages. Collective examination of the three types of substitutions support the notion that the intracellular portion of S6 forms an activation gate and identifies V478 and F481 as candidates for occlusion of the pore in the closed state.
Collapse
Affiliation(s)
- David H Hackos
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Building 36, Room 2C19 36, Convent Drive, MSC 4066, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
83
|
Kehl SJ, Eduljee C, Kwan DCH, Zhang S, Fedida D. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn(2+). J Physiol 2002; 541:9-24. [PMID: 12015417 PMCID: PMC2290311 DOI: 10.1113/jphysiol.2001.014456] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using human Kv1.5 channels expressed in HEK293 cells we assessed the ability of H+o to mimic the previously reported action of Zn(2+) to inhibit macroscopic hKv1.5 currents, and using site-directed mutagenesis, we addressed the mechanistic basis for the inhibitory effects of H(+)(o) and Zn(2+). As with Zn(2+), H(+)(o) caused a concentration-dependent, K(+)(o)-sensitive and reversible reduction of the maximum conductance (g(max)). With zero, 5 and 140 mM K(+)(o) the pK(H) for this decrease of g(max) was 6.8, 6.2 and 6.0, respectively. The concentration dependence of the block relief caused by increasing [K(+)](o) was well fitted by a non-competitive interaction between H(+)(o) and K(+)(o), for which the K(D) for the K(+) binding site was 0.5-1.0 mM. Additionally, gating current analysis in the non-conducting mutant hKv1.5 W472F showed that changing from pH 7.4 to pH 5.4 did not affect Q(max) and that charge immobilization, presumed to be due to C-type inactivation, was preserved at pH 5.4. Inhibition of hKv1.5 currents by H+o or Zn(2+) was substantially reduced by a mutation either in the channel turret (H463Q) or near the pore mouth (R487V). In light of the requirement for R487, the homologue of Shaker T449, as well as the block-relieving action of K(+)(o), we propose that H(+) or Zn(2+) binding to histidine residues in the pore turret stabilizes a channel conformation that is most likely an inactivated state.
Collapse
Affiliation(s)
- Steven J Kehl
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| | | | | | | | | |
Collapse
|
84
|
Rich TC, Yeola SW, Tamkun MM, Snyders DJ. Mutations throughout the S6 region of the hKv1.5 channel alter the stability of the activation gate. Am J Physiol Cell Physiol 2002; 282:C161-71. [PMID: 11742809 DOI: 10.1152/ajpcell.00232.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The S6 segment of voltage-gated K(+) channels is thought to contribute to the gate that opens the central permeation pathway. Here we present evidence that mutations throughout the cytoplasmic end of S6 strongly influence hKv1.5 channel gating characteristics. Modification of hKv1.5 at positions T505, V512, and S515 resulted in large negative shifts in the voltage dependence of activation, whereas modifications at position Y519 resulted in negative (Y519N) and positive (Y519F) shifts. When adjusted for the altered voltage sensitivity, activation kinetics of mutated channels were similar to those of the wild-type (WT) channel; however, deactivation kinetics of mutations T505I, T505V, V512A, and V512M [time constant (tau) = 35, 250, 170, and 420 ms, respectively] were still slower than WT (tau = 8.3 ms). In addition, deactivation of WT channels was highly temperature sensitive. However, deactivation of T505I and V512A channels was largely temperature insensitive. Together, these data suggest that mutations in S6 decouple activation from deactivation by altering the open-state stability and that residues on both sides of the highly conserved Pro-X-Pro sequence influence the movement of S6 during channel gating.
Collapse
Affiliation(s)
- Thomas C Rich
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
85
|
Abstract
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.
Collapse
Affiliation(s)
- Z Lu
- Department of Physiology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|
86
|
Cestèle S, Scheuer T, Mantegazza M, Rochat H, Catterall WA. Neutralization of gating charges in domain II of the sodium channel alpha subunit enhances voltage-sensor trapping by a beta-scorpion toxin. J Gen Physiol 2001; 118:291-302. [PMID: 11524459 PMCID: PMC2229501 DOI: 10.1085/jgp.118.3.291] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.
Collapse
Affiliation(s)
- Sandrine Cestèle
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280
- Université de la Méditerranée, I.F.R. Jean Roche, Centre National de la Recherche Scientifique, 13916 Marseille, France
| | - Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280
| | - Massimo Mantegazza
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280
| | - Hervé Rochat
- Université de la Méditerranée, I.F.R. Jean Roche, Centre National de la Recherche Scientifique, 13916 Marseille, France
| | - William A. Catterall
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280
| |
Collapse
|
87
|
Fedida D, Hesketh JC. Gating of voltage-dependent potassium channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:165-99. [PMID: 11376798 DOI: 10.1016/s0079-6107(01)00006-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of voltage-dependent ion channels is primarily controlled by the applied potential difference across the membrane. For potassium channels the Drosophila Shaker channel has served as an archetype of all other potassium channels in studies of activation mechanisms. In the Shaker potassium channel much of the voltage sensitivity is conferred by the S4 transmembrane helix, which contains seven positively charged residues. During gating, the movement of these charges produces gating currents. Mutagenic and fluorescence studies indicate that four of these residues are particularly important and contribute to the majority of gating charge, R362, R365, R368 and R371. The channel is thought to dwell in several closed states prior to opening. Ionic-charge pairing with negatively charged residues in the S2 and S3 helices is thought to be important in regulating these closed states and detailed kinetic models have attempted to define the kinetics and charge of the transitions between these states. Neutral residues throughout the S4 and S5 helices are thought to control late steps in channel opening and may have important roles in modulating the stability of the open state and late closed states. In response to depolarization, the S4 helix is thought to undergo a rotational translation and this movement is also important in studies of the movement of the pore helices, S5 and S6, during opening. This review will examine residues that are important during activation as well as kinetic models that have attempted to quantitatively define the activation pathway of voltage-dependent potassium channels.
Collapse
Affiliation(s)
- D Fedida
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, V6T 1Z3, Vancouver, Canada.
| | | |
Collapse
|
88
|
Elinder F, Männikkö R, Larsson HP. S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol 2001; 118:1-10. [PMID: 11429439 PMCID: PMC2233763 DOI: 10.1085/jgp.118.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET(+)). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 A) to a position close (8 A) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
89
|
Elinder F, Männikkö R, Larsson HP. S4 Charges Move Close to Residues in the Pore Domain during Activation in a K Channel. J Gen Physiol 2001. [DOI: 10.1085/jgp.118.1.1-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES−) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET+). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 Å) to a position close (8 Å) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.
Collapse
Affiliation(s)
- Fredrik Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roope Männikkö
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - H. Peter Larsson
- Neurological Sciences Institute, Oregon Health Sciences University, Portland, OR 97006
| |
Collapse
|
90
|
Caprini M, Ferroni S, Planells-Cases R, Rueda J, Rapisarda C, Ferrer-Montiel A, Montal M. Structural compatibility between the putative voltage sensor of voltage-gated K+ channels and the prokaryotic KcsA channel. J Biol Chem 2001; 276:21070-6. [PMID: 11274182 DOI: 10.1074/jbc.m100487200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface.
Collapse
Affiliation(s)
- M Caprini
- Department of Human and General Physiology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
91
|
Elinder F, Arhem P, Larsson HP. Localization of the extracellular end of the voltage sensor S4 in a potassium channel. Biophys J 2001; 80:1802-9. [PMID: 11259293 PMCID: PMC1301369 DOI: 10.1016/s0006-3495(01)76150-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The opening and closing of the pore of voltage-gated ion channels is the basis for the nervous impulse. These conformational changes are triggered by the movement of an intrinsic voltage sensor, the fourth transmembrane segment, S4. The central problem of how the movement of S4 is coupled to channel opening and where S4 is located in relation to the pore is still unsolved. Here, we estimate the position of the extracellular end of S4 in the Shaker potassium channel by analyzing the electrostatic effect of introduced charges in the pore-forming motif (S5-S6). We also present a three-dimensional model for all transmembrane segments. Knowledge of this structure is essential for the attempts to understand how voltage opens these channels.
Collapse
Affiliation(s)
- F Elinder
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
92
|
Panchenko VA, Glasser CR, Mayer ML. Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis. J Gen Physiol 2001; 117:345-60. [PMID: 11279254 PMCID: PMC2217257 DOI: 10.1085/jgp.117.4.345] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Accepted: 02/28/2001] [Indexed: 11/20/2022] Open
Abstract
The pores of glutamate receptors and K(+) channels share sequence homology, suggesting a conserved secondary structure. Scanning mutagenesis with substitution of alanine and tryptophan in GluR6 channels was performed based on the structure of KcsA. Our assay used disruption of voltage-dependent polyamine block to test for changes in the packing of pore-forming regions. Alanine scanning from D567 to R603 revealed reduced rectification resulting from channel block in two regions. A periodic pattern from F575 to M589 aligned with the pore helix in KcsA, whereas a cluster of sensitive positions around Q590, a site regulated by RNA editing, mapped to the selectivity filter in KcsA. Tryptophan scanning from D567 to R603 revealed similar patterns, but with a complete disruption of spermine block for 7 out of the 37 positions and a pM dissociation constant for Q590W. Molecular modeling with KcsA coordinates showed that GluR6 pore helix mutants disrupting polyamine block pack against M1 and M2, and are not exposed in the ion channel pore. In the selectivity filter, tryptophan creates an aromatic cage consistent with the pM dissociation constant for Q590W. A scan with glutamate substitution was used to map the cytoplasmic entrance to the pore based on charge neutralization experiments, which established that E594 was uniquely required for high affinity polyamine block. In E594Q mutants, introduction of glutamate at positions S593-L600 restored polyamine block at positions corresponding to surface-exposed residues in KcsA. Our results reinforce proposals that the pore region of glutamate receptors contains a helix and pore loop analogous to that found in K(+) channels. At the cytoplasmic entrance of the channel, a negatively charged amino acid, located in an extended loop with solvent-exposed side chains, is required for high affinity polyamine block and probably attracts cations via a through space electrostatic mechanism.
Collapse
MESH Headings
- Alanine/genetics
- Animals
- Bacterial Proteins
- Cell Line
- Crystallization
- Humans
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Kidney/cytology
- Membrane Potentials/physiology
- Models, Chemical
- Molecular Sequence Data
- Mutagenesis/physiology
- Oocytes/physiology
- Patch-Clamp Techniques
- Polyamines/pharmacology
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/genetics
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Sequence Homology, Amino Acid
- Tryptophan/genetics
- Xenopus laevis
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Victor A. Panchenko
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Carla R. Glasser
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark L. Mayer
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
93
|
Durell SR, Guy HR. A putative prokaryote voltage-gated Ca(2+) channel with only one 6TM motif per subunit. Biochem Biophys Res Commun 2001; 281:741-6. [PMID: 11237720 DOI: 10.1006/bbrc.2001.4408] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until now, voltage-gated Ca(2+) channel proteins have been found only in eukaryotes. Here we report that a gene recently discovered in the eubacterium Bacillus halodurans codes for a protein closely related to eukaryotic Ca(2+) channels, but that has only one 6-transmembrane-segement (6TM) motif, instead of four, in its pore-forming subunit. This is supported by the comparison of consensus sequences, which, along with the patterns of residue conservation, indicates a similar structure in the membrane to voltage-gated K(+) channels. From this we hypothesize that Ca(2+) channels originally evolved in bacteria, and that the specific eubacteria protein highlighted here is an ideal candidate for structure determination efforts.
Collapse
Affiliation(s)
- S R Durell
- Molecular Structure Section, Laboratory of Experimental and Computational Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892, USA
| | | |
Collapse
|
94
|
Enkvetchakul D, Loussouarn G, Makhina E, Nichols CG. ATP interaction with the open state of the K(ATP) channel. Biophys J 2001; 80:719-28. [PMID: 11159439 PMCID: PMC1301270 DOI: 10.1016/s0006-3495(01)76051-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanism of ATP-sensitive potassium (K(ATP)) channel closure by ATP is unclear, and various kinetic models in which ATP binds to open or to closed states have previously been presented. Effects of phosphatidylinositol bisphosphate (PIP2) and multiple Kir6.2 mutations on ATP inhibition and open probability in the absence of ATP are explainable in kinetic models where ATP stabilizes a closed state and interaction with an open state is not required. Evidence that ATP can in fact interact with the open state of the channel is presented here. The mutant Kir6.2[L164C] is very sensitive to Cd2+ block, but very insensitive to ATP, with no significant inhibition in 1 mM ATP. However, 1 mM ATP fully protects the channel from Cd2+ block. Allosteric kinetic models in which the channel can be in either open or closed states with or without ATP bound are considered. Such models predict a pedestal in the ATP inhibition, i.e., a maximal amount of inhibition at saturating ATP concentrations. This pedestal is predicted to occur at >50 mM ATP in the L164C mutant, but at >1 mM in the double mutant L164C/R176A. As predicted, ATP inhibits Kir6.2[L164C/R176A] to a maximum of approximately 40%, with a clear plateau beyond 2 mM. These results indicate that ATP acts as an allosteric ligand, interacting with both open and closed states of the channel.
Collapse
Affiliation(s)
- D Enkvetchakul
- Division of Renal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
95
|
Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit. J Biol Chem 2001; 276:20-7. [PMID: 11024055 DOI: 10.1074/jbc.m006992200] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations of amino acid residues in the inner two-thirds of the S6 segment in domain III of the rat brain type IIA Na(+) channel (G1460A to I1473A) caused periodic positive and negative shifts in the voltage dependence of activation, consistent with an alpha-helix having one face on which mutations to alanine oppose activation. Mutations in the outer one-third of the IIIS6 segment all favored activation. Mutations in the inner half of IIIS6 had strong effects on the voltage dependence of inactivation from closed states without effect on open-state inactivation. Only three mutations had strong effects on block by local anesthetics and anticonvulsants. Mutations L1465A and I1469A decreased affinity of inactivated Na(+) channels up to 8-fold for the anticonvulsant lamotrigine and its congeners 227c89, 4030w92, and 619c89 as well as for the local anesthetic etidocaine. N1466A decreased affinity of inactivated Na(+) channels for the anticonvulsant 4030w92 and etidocaine by 3- and 8-fold, respectively, but had no effect on affinity of the other tested compounds. Leu-1465, Asn-1466, and Ile-1469 are located on one side of the IIIS6 helix, and mutation of each caused a positive shift in the voltage dependence of activation. Evidently, these amino acid residues face the lumen of the pore, contribute to formation of the high-affinity receptor site for pore-blocking drugs, and are involved in voltage-dependent activation and coupling to closed-state inactivation.
Collapse
Affiliation(s)
- V Yarov-Yarovoy
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | |
Collapse
|
96
|
Silverman WR, Tang CY, Mock AF, Huh KB, Papazian DM. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol 2000; 116:663-78. [PMID: 11055995 PMCID: PMC2229486 DOI: 10.1085/jgp.116.5.663] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Extracellular Mg(2+) directly modulates voltage-dependent activation in ether-à-go-go (eag) potassium channels, slowing the kinetics of ionic and gating currents (Tang, C.-Y., F. Bezanilla, and D.M. Papazian. 2000. J. Gen. Physiol. 115:319-337). To exert its effect, Mg(2+) presumably binds to a site in or near the eag voltage sensor. We have tested the hypothesis that acidic residues unique to eag family members, located in transmembrane segments S2 and S3, contribute to the Mg(2+)-binding site. Two eag-specific acidic residues and three acidic residues found in the S2 and S3 segments of all voltage-dependent K(+) channels were individually mutated in Drosophila eag, mutant channels were expressed in Xenopus oocytes, and the effect of Mg(2+) on ionic current kinetics was measured using a two electrode voltage clamp. Neutralization of eag-specific residues D278 in S2 and D327 in S3 eliminated Mg(2+)-sensitivity and mimicked the slowing of activation kinetics caused by Mg(2+) binding to the wild-type channel. These results suggest that Mg(2+) modulates activation kinetics in wild-type eag by screening the negatively charged side chains of D278 and D327. Therefore, these residues are likely to coordinate the bound ion. In contrast, neutralization of the widely conserved residues D284 in S2 and D319 in S3 preserved the fast kinetics seen in wild-type eag in the absence of Mg(2+), indicating that D284 and D319 do not mediate the slowing of activation caused by Mg(2+) binding. Mutations at D284 affected the eag gating pathway, shifting the voltage dependence of Mg(2+)-sensitive, rate limiting transitions in the hyperpolarized direction. Another widely conserved residue, D274 in S2, is not required for Mg(2+) sensitivity but is in the vicinity of the binding site. We conclude that Mg(2+) binds in a water-filled pocket between S2 and S3 and thereby modulates voltage-dependent gating. The identification of this site constrains the packing of transmembrane segments in the voltage sensor of K(+) channels, and suggests a molecular mechanism by which extracellular cations modulate eag activation kinetics.
Collapse
Affiliation(s)
- William R. Silverman
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Chih-Yung Tang
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Allan F. Mock
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Kyung-Bong Huh
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Diane M. Papazian
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| |
Collapse
|
97
|
Abstract
The mechanism by which physiological signals regulate the conformation of molecular gates that open and close ion channels is poorly understood. Voltage clamp fluorometry was used to ask how the voltage-sensing S4 transmembrane domain is coupled to the slow inactivation gate in the pore domain of the Shaker K(+) channel. Fluorophores attached at several sites in S4 indicate that the voltage-sensing rearrangements are followed by an additional inactivation motion. Fluorophores attached at the perimeter of the pore domain indicate that the inactivation rearrangement projects from the selectivity filter out to the interface with the voltage-sensing domain. Some of the pore domain sites also sense activation, and this appears to be due to a direct interaction with S4 based on the finding that S4 comes into close enough proximity to the pore domain for a pore mutation to alter the nanoenvironment of an S4-attached fluorophore. We propose that activation produces an S4-pore domain interaction that disrupts a bond between the S4 contact site on the pore domain and the outer end of S6. Our results indicate that this bond holds the slow inactivation gate open and, therefore, we propose that this S4-induced bond disruption triggers inactivation.
Collapse
Affiliation(s)
- Eli Loots
- Department of Molecular and Cell Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
98
|
Affiliation(s)
- B A Yi
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | |
Collapse
|
99
|
Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 2000; 102:657-70. [PMID: 11007484 DOI: 10.1016/s0092-8674(00)00088-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.
Collapse
Affiliation(s)
- D L Minor
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Gandhi CS, Loots E, Isacoff EY. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 2000; 27:585-95. [PMID: 11055440 DOI: 10.1016/s0896-6273(00)00068-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X-ray crystallography has made considerable recent progress in providing static structures of ion channels. Here we describe a complementary method-systematic fluorescence scanning-that reveals the structural dynamics of a channel. Local protein motion was measured from changes in the fluorescent intensity of a fluorophore attached at one of 37 positions in the pore domain and in the S4 voltage sensor of the Shaker K+ channel. The local rearrangements that accompany activation and slow inactivation were mapped onto the homologous structure of the KcsA channel and onto models of S4. The results place clear constraints on S4 location, voltage-dependent movement, and the mechanism of coupling of S4 motion to the operation of the slow inactivation gate in the pore domain.
Collapse
Affiliation(s)
- C S Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|