51
|
Identification of methionine aminopeptidase 2 as a molecular target of the organoselenium drug ebselen and its derivatives/analogues: Synthesis, inhibitory activity and molecular modeling study. Bioorg Med Chem Lett 2016; 26:5254-5259. [DOI: 10.1016/j.bmcl.2016.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/19/2022]
|
52
|
Saleh M, Kumar G, Abdel-Baki AA, Dkhil MA, El-Matbouli M, Al-Quraishy S. In Vitro Gene Silencing of the Fish Microsporidian Heterosporis saurida by RNA Interference. Nucleic Acid Ther 2016; 26:250-6. [PMID: 27228357 PMCID: PMC4982949 DOI: 10.1089/nat.2016.0613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heterosporis saurida, a microsporidian parasite of lizardfish, Saurida undosquamis, causes severe economic losses in marine aquaculture. Among the novel approaches being explored for treatment of parasitic infections in aquaculture is small interfering RNA molecules. The aim of the present study was to investigate the efficiency of using siRNA to knock down expression of specific genes of H. saurida in vitro. For this purpose, siRNAs specific for ATP/ADP antiporter 1 and methionine aminopeptidase II genes were designed and tested using a previously developed in vitro cultivation model. Silencing of H. saurida target genes was assessed and the efficacy of using siRNA for inhibition of gene expression was measured by quantitative real-time polymerase chain reaction (PCR). Silencing of ATP/ADP antiporter 1 or methionine aminopeptidase II by siRNA reduced H. saurida infection levels in EK-1 cells 40% and 60%, respectively, as measured by qRT-PCR and spore counts. Combined siRNA treatment of both ATP/ADP antiporter 1 and methionine aminopeptidase II siRNAs was more effective against H. saurida infection as seen by the 16S rRNA level and spore counts. Our study concluded that siRNA could be used to advance development of novel approaches to inhibit H. saurida and provide an alternative approach to combat microsporidia.
Collapse
Affiliation(s)
- Mona Saleh
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Gokhlesh Kumar
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Abdel-Azeem Abdel-Baki
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia .,3 Zoology Department, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Mohamed A Dkhil
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia .,4 Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| | - Mansour El-Matbouli
- 1 Clinical Division of Fish Medicine, University of Veterinary Medicine , Vienna, Austria
| | - Saleh Al-Quraishy
- 2 Zoology Department, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
53
|
Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016; 31:911-24. [PMID: 27163679 PMCID: PMC4863467 DOI: 10.1002/jbmr.2828] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/15/2023]
Abstract
Increased vascular endothelial growth factor (VEGF) levels are associated with osteoarthritis (OA) progression. Indeed, VEGF appears to be involved in OA-specific pathologies including cartilage degeneration, osteophyte formation, subchondral bone cysts and sclerosis, synovitis, and pain. Moreover, a wide range of studies suggest that inhibition of VEGF signaling reduces OA progression. This review highlights both the potential significance of VEGF in OA pathology and pain, as well as potential benefits of inhibition of VEGF and its receptors as an OA treatment. With the emergence of the clinical use of anti-VEGF therapy outside of OA, both as high-dose systemic treatments and low-dose local treatments, these particular therapies are now more widely understood. Currently, there is no established disease-modifying drug available for patients with OA, which warrants continued study of the inhibition of VEGF signaling in OA, as stand-alone or adjuvant therapy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612, USA
| |
Collapse
|
54
|
Cheruvallath Z, Tang M, McBride C, Komandla M, Miura J, Ton-Nu T, Erikson P, Feng J, Farrell P, Lawson JD, Vanderpool D, Wu Y, Dougan DR, Plonowski A, Holub C, Larson C. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 1. Bioorg Med Chem Lett 2016; 26:2774-2778. [PMID: 27155900 DOI: 10.1016/j.bmcl.2016.04.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Methionine aminopeptidase 2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. Pre-clinical and clinical studies suggest that MetAP2 inhibitors could be used as a novel treatment for obesity. Herein we describe our use of fragment screening methods and structural biology to quickly identify and elaborate an indazole fragment into a series of reversible MetAP2 inhibitors with <10nM potency, excellent selectivity, and favorable in vitro safety profiles.
Collapse
Affiliation(s)
| | - Mingnam Tang
- Medicinal Chemistry, Takeda California, United States
| | | | | | - Joanne Miura
- Medicinal Chemistry, Takeda California, United States
| | - Thu Ton-Nu
- Medicinal Chemistry, Takeda California, United States
| | - Phil Erikson
- Medicinal Chemistry, Takeda California, United States
| | - Jun Feng
- Medicinal Chemistry, Takeda California, United States
| | | | - J David Lawson
- Computational Sciences, Takeda California, United States
| | | | - Yiqin Wu
- Biological Sciences, Takeda California, United States
| | | | | | - Corine Holub
- Biological Sciences, Takeda California, United States
| | - Chris Larson
- Biological Sciences, Takeda California, United States
| |
Collapse
|
55
|
Morgen M, Jöst C, Malz M, Janowski R, Niessing D, Klein CD, Gunkel N, Miller AK. Spiroepoxytriazoles Are Fumagillin-like Irreversible Inhibitors of MetAP2 with Potent Cellular Activity. ACS Chem Biol 2016; 11:1001-11. [PMID: 26686773 DOI: 10.1021/acschembio.5b00755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Methionine aminopeptidases (MetAPs) are responsible for the cotranslational cleavage of initiator methionines from nascent proteins. The MetAP2 subtype is up-regulated in many cancers, and selective inhibition of MetAP2 suppresses both vascularization and growth of tumors in animal models. The natural product fumagillin is a selective and potent irreversible inhibitor of MetAP2, and semisynthetic derivatives of fumagillin have shown promise in clinical studies for the treatment of cancer, and, more recently, for obesity. Further development of fumagillin derivatives has been complicated, however, by their generally poor pharmacokinetics. In an attempt to overcome these limitations, we developed an easily diversifiable synthesis of a novel class of MetAP2 inhibitors that were designed to mimic fumagillin's molecular scaffold but have improved pharmacological profiles. These substances were found to be potent and selective inhibitors of MetAP2, as demonstrated in biochemical enzymatic assays against three MetAP isoforms. Inhibitors with the same relative and absolute stereoconfiguration as fumagillin displayed significantly higher activity than their diastereomeric and enantiomeric isomers. X-ray crystallographic analysis revealed that the inhibitors covalently modify His231 in the MetAP2 active site via ring-opening of a spiroepoxide. Biochemically active substances inhibited the growth of endothelial cells and a MetAP2-sensitive cancer cell line, while closely related inactive isomers had little effect on the proliferation of either cell type. These effects correlated with altered N-terminal processing of the protein 14-3-3-γ. Finally, selected substances were found to have improved stabilities in mouse plasma and microsomes relative to the clinically investigated fumagillin derivative beloranib.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer
Drug Development Group, German Cancer Research Center (DKFZ), Im Neunheimer
Feld 280, D-69120 Heidelberg, Germany
| | - Christian Jöst
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mona Malz
- Cancer
Drug Development Group, German Cancer Research Center (DKFZ), Im Neunheimer
Feld 280, D-69120 Heidelberg, Germany
| | - Robert Janowski
- Institute
of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), D-85764 Neuherberg, Germany
| | - Dierk Niessing
- Institute
of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), D-85764 Neuherberg, Germany
- Biomedical Center of the Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Christian D. Klein
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Nikolas Gunkel
- Cancer
Drug Development Group, German Cancer Research Center (DKFZ), Im Neunheimer
Feld 280, D-69120 Heidelberg, Germany
| | - Aubry K. Miller
- Cancer
Drug Development Group, German Cancer Research Center (DKFZ), Im Neunheimer
Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
56
|
N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b. Appl Microbiol Biotechnol 2016; 100:7091-102. [PMID: 27023914 DOI: 10.1007/s00253-016-7470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
The methionine aminopeptidase 1b from Plasmodium falciparum (PfMetAP 1b) was cloned, expressed in Escherichia coli and characterized. Surprisingly, and in contrast to other methionine aminopeptidases (MetAPs) that require heavy-metal cofactors such as cobalt, the enzyme is reliably activated by zinc ions. Immobilization of the enzyme is possible by His-tag metal chelation to iminodiacetic acid-agarose and by covalent binding to chloroacetamido-hexyl-agarose. The covalently immobilized enzyme shows long-term stability, allowing a continuous, heterogenous processing of N-terminal methionines, for example, in recombinant proteins. Activation by zinc, instead of cobalt as for other MetAPs, avoids the introduction of heavy metals with toxicological liabilities and oxidative potential into biotechnological processes. The PfMetAP 1b therefore represents a useful tool for the enzymatic, posttranslational processing of recombinant proteins.
Collapse
|
57
|
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8285428. [PMID: 27119084 PMCID: PMC4826915 DOI: 10.1155/2016/8285428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Collapse
|
58
|
Zheng W, Li G, Li X. Affinity purification in target identification: the specificity challenge. Arch Pharm Res 2015; 38:1661-85. [DOI: 10.1007/s12272-015-0635-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
|
59
|
Arif A, Gardner QTAA, Rashid N, Akhtar M. Production of human interferon alpha-2b in Escherichia coli and removal of N-terminal methionine utilizing archaeal methionine aminopeptidase. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
60
|
Ochiya T, Takenaga K, Asagiri M, Nakano K, Satoh H, Watanabe T, Imajoh-Ohmi S, Endo H. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15008. [PMID: 26029719 PMCID: PMC4445002 DOI: 10.1038/mtm.2015.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/19/2023]
Abstract
The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.
Collapse
Affiliation(s)
- Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute , Tokyo, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University School of Medicine , Izumo, Japan
| | - Masataka Asagiri
- The Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | - Kazumi Nakano
- Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan
| | - Hitoshi Satoh
- Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan
| | - Toshiki Watanabe
- Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan
| | | | - Hideya Endo
- The Institute of Medical Science, The University of Tokyo , Tokyo, Japan ; Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
61
|
Omer A, Suryanarayanan V, Selvaraj C, Singh SK, Singh P. Explicit Drug Re-positioning: Predicting Novel Drug-Target Interactions of the Shelved Molecules with QM/MM Based Approaches. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:89-112. [PMID: 26415842 DOI: 10.1016/bs.apcsb.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the demand to enhance the speed of the drug discovery process there has been an increased usage of computational approaches in drug discovery studies. However because of their probabilistic outcomes, the challenge is to exactly mimic the natural environment which can provide the exact charge polarization effect while estimating the binding energy between protein and ligand. There has been a large number of scoring functions from simple one to the complex one available for estimating binding energy. The quantum mechanics/molecular mechanics (QM/MM) hybrid approach has been the preferred choice of interest since last decade for modeling reactions in biomolecular systems. The application of QM/MM approach has been expanded right from rescoring the already known complexes and depicting the correct position of some novel molecule to ranking a large number of molecules. It is expected that the application of QM/MM-based scoring will grow in all areas of drug discovery. However, the most promising area will be its application in repositioning, that is, assigning novel functions or targets to the already existing drugs, as this would stop the rising attrition rates as well as reduce the overall time and cost of drug discovery procedure.
Collapse
Affiliation(s)
- Ankur Omer
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Venkatesan Suryanarayanan
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Poonam Singh
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
62
|
He QL, Titov DV, Li J, Tan M, Ye Z, Zhao Y, Romo D, Liu JO. Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
63
|
He QL, Titov DV, Li J, Tan M, Ye Z, Zhao Y, Romo D, Liu JO. Covalent modification of a cysteine residue in the XPB subunit of the general transcription factor TFIIH through single epoxide cleavage of the transcription inhibitor triptolide. Angew Chem Int Ed Engl 2014; 54:1859-63. [PMID: 25504624 DOI: 10.1002/anie.201408817] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/26/2014] [Indexed: 11/11/2022]
Abstract
Triptolide is a key component of the traditional Chinese medicinal plant Thunder God Vine and has potent anticancer and immunosuppressive activities. It is an irreversible inhibitor of eukaryotic transcription through covalent modification of XPB, a subunit of the general transcription factor TFIIH. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide. Mutation of Cys342 of XPB to threonine conferred resistance to triptolide on the mutant protein. Replacement of the endogenous wild-type XPB with the Cys342Thr mutant in a HEK293T cell line rendered it completely resistant to triptolide, thus validating XPB as the physiologically relevant target of triptolide. Together, these results deepen our understanding of the interaction between triptolide and XPB and have implications for the future development of new analogues of triptolide as leads for anticancer and immunosuppressive drugs.
Collapse
Affiliation(s)
- Qing-Li He
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Sule NV, Ugrinov A, Mallik S, Srivastava DK. Bridging of a substrate between cyclodextrin and an enzyme's active site pocket triggers a unique mode of inhibition. Biochim Biophys Acta Gen Subj 2014; 1850:141-9. [PMID: 25450177 DOI: 10.1016/j.bbagen.2014.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Methionyl-7-amino-4-methylcoumarin (MetAMC) serves as a substrate for the Escherichia coli methionine aminopeptidase (MetAP) catalyzed reaction, and is routinely used for screening compounds to identify potential antibiotic agents. In pursuit of screening the enzyme's inhibitors, we observed that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), utilized to solubilize hydrophobic inhibitors, inhibited the catalytic activity of the enzyme, and such inhibition was not solely due to sequestration of the substrate by HP-β-CD. METHODS The mechanistic path for the HP-β-CD mediated inhibition of MetAP was probed by performing a detailed account of steady-state kinetics, ligand binding, X-ray crystallographic, and molecular modeling studies. RESULTS X-ray crystallographic data of the β-cyclodextrin-substrate (β-CD-MetAMC) complex reveal that while the AMC moiety of the substrate is confined within the CD cavity, the methionine moiety protrudes outward. The steady-state kinetic data for inhibition of MetAP by HP-β-CD-MetAMC conform to a model mechanism in which the substrate is "bridged" between HP-β-CD and the enzyme's active-site pocket, forming HP-β-CD-MetAMC-MetAP as the catalytically inactive ternary complex. Molecular modeling shows that the scissile bond of HP-β-CD-bound MetAMC substrate does not reach within the proximity of the enzyme's catalytic metal center, and thus the substrate fails to undergo cleavage. CONCLUSIONS The data presented herein suggests that the bridging of the substrate between the enzyme and HP-β-CD cavities is facilitated by interaction of their surfaces, and the resulting complex inhibits the enzyme activity. GENERAL SIGNIFICANCE Due to its potential interaction with physiological proteins via sequestered substrates, caution must be exercised in HP-β-CD mediated delivery of drugs under pathophysiological conditions.
Collapse
Affiliation(s)
- Nitesh V Sule
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, ND 58108, United States.
| | - Angel Ugrinov
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, ND 58108, United States
| | - Sanku Mallik
- Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, United States
| | - D K Srivastava
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
65
|
Park H, Shim JS, Kim BS, Jung HJ, Huh TL, Kwon HJ. Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochem Biophys Res Commun 2014; 450:561-7. [PMID: 24928393 DOI: 10.1016/j.bbrc.2014.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022]
Abstract
Adipocyte-derived leucine aminopeptidase (A-LAP) is a novel member of the M1 family of zinc metallopeptidases, which has been reported to play a crucial role in angiogenesis. In the present study, we conducted a target-based screening of natural products and synthetic chemical libraries using the purified enzyme to search novel inhibitors of A-LAP. Amongst several hits isolated, a natural product purpurin was identified as one of the most potent inhibitors of A-LAP from the screening. In vitro enzymatic analyses demonstrated that purpurin inhibited A-LAP activity in a non-competitive manner with a Ki value of 20 M. In addition, purpurin showed a strong selectivity toward A-LAP versus another member of M1 family of zinc metallopeptidase, aminopeptidase N (APN). In angiogenesis assays, purpurin inhibited the vascular endothelial growth factor (VEGF)-induced invasion and tube formation of human umbilical vein endothelial cells (HUVEC). Moreover, purpurin inhibited in vivo angiogenesis in zebrafish embryo without toxicity. These data demonstrate that purpurin is a novel specific inhibitor of A-LAP and could be developed as a new anti-angiogenic agent.
Collapse
Affiliation(s)
- Hyomi Park
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Av. Universidade, Taipa, Macau Special Administrative Region, China
| | - Beom Seok Kim
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering, University of Sun Moon, Asansi, Chungnam 336-708, Republic of Korea
| | - Tae-Lin Huh
- Department of Genetic Engineering, Kyungpook National University, Puk-Gu, Sankyuk-Dong, 702-701 Daegu, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea.
| |
Collapse
|
66
|
Henrotin Y, Pesesse L, Lambert C. Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis. Ther Adv Musculoskelet Dis 2014; 6:20-34. [PMID: 24489612 DOI: 10.1177/1759720x13514669] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Synovitis is a key feature in osteoarthritis and is associated with symptom severity. Synovial membrane inflammation is secondary to cartilage degradation which occurs in the early stage and is located adjacent to cartilage damage. This inflammation is characterized by the invasion and activation of macrophages and lymphocytes, the release in the joint cavity of large amounts of pro-inflammatory and procatabolic mediators, and by a local increase of synovial membrane vascularity. This latter process plays an important role in the chronicity of the inflammatory reaction by facilitating the invasion of the synovium by immune cells. Therefore, synovial membrane angiogenesis represents a key target for the treatment of osteoarthritis. This paper is a narrative review of the literature referenced in PubMed during the past 5 years. It addresses in particular three questions. What are the mechanisms involved in synovium blood vessels invasion? Are current medications effective in controlling blood vessels formation and invasion? What are the perspectives of research in this area?
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, CHU Sart-Tilman, University of Liège, 4000 Liège, Belgium
| | - Laurence Pesesse
- Bone and Cartilage Research Unit, Institute of Pathology, University of Liège, Liège, Belgium
| | - Cecile Lambert
- Bone and Cartilage Research Unit, Institute of Pathology, University of Liège, Liège, Belgium
| |
Collapse
|
67
|
Blanchet E, Vansteelandt M, Le Bot R, Egorov M, Guitton Y, Pouchus YF, Grovel O. Synthesis and antiproliferative activity of ligerin and new fumagillin analogs against osteosarcoma. Eur J Med Chem 2014; 79:244-50. [PMID: 24742383 DOI: 10.1016/j.ejmech.2014.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022]
Abstract
Ligerin (1) is a natural chlorinated merosesquiterpenoid related to fumagillin (2) exhibiting a selective antiproliferative activity against osteosarcoma cell lines and an in vivo antitumor activity in a murine model. Semisynthesis of ligerin analogs was performed in order to study the effects of the C3-spiroepoxide substitution by a halogenated moiety together with the modulation of the C6 chain. Results showed that all derivatives exhibited an in vitro antiproliferative activity against osteosarcoma cell lines and that chlorohydrin compounds were equally or more active than their spiroepoxy analogs. Among semisynthetic analogs, the parent compound 1 was the best candidate for further studies since it exhibited higher or equivalent activity compared to TNP470 (3) against SaOS2 and MG63 human osteosarcoma cells with a four times weaker toxicity against HFF2 human fibroblasts. Quantitative videomicroscopy analysis was conducted and allowed a better understanding of the mechanism of its antiproliferative activity.
Collapse
Affiliation(s)
- Elodie Blanchet
- University of Nantes, Faculty of Pharmacy, MMS-EA260, Nantes F-44000, France; Atlanthera, Atlantic Bone Screen, Nantes, France
| | | | - Ronan Le Bot
- Atlanthera, Atlantic Bone Screen, Nantes, France
| | - Maxim Egorov
- Atlanthera, Atlantic Bone Screen, Nantes, France
| | - Yann Guitton
- University of Nantes, Faculty of Pharmacy, MMS-EA260, Nantes F-44000, France
| | | | - Olivier Grovel
- University of Nantes, Faculty of Pharmacy, MMS-EA260, Nantes F-44000, France.
| |
Collapse
|
68
|
van den Heever JP, Thompson TS, Curtis JM, Ibrahim A, Pernal SF. Fumagillin: an overview of recent scientific advances and their significance for apiculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2728-37. [PMID: 24621007 DOI: 10.1021/jf4055374] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fumagillin is a potent fungal metabolite first isolated from Aspergillus fumigatus. It is widely used in apiculture and human medicine against a variety of microsporidian fungal infections. It has been the subject of research in cancer treatments by employing its angiogenesis inhibitory properties. The toxicity of fumagillin has limited its use for human applications and spurred the development of analogues using structure-activity relationships relating to its angiogenesis properties. These discoveries may hold the key to the development of alternative chemical treatments for use in apiculture. The toxicity of fumagillin to humans is important for beekeeping, because any residues remaining in hive products pose a direct risk to the consumer. The analytical methods published to date measure fumagillin and its decomposition products but overlook the dicyclohexylamine counterion of the salt form widely used in apiculture.
Collapse
Affiliation(s)
- Johan P van den Heever
- Alberta Agriculture and Rural Development , Animal Health and Assurance Division, Agri-Food Laboratories Branch, 6909-116 Street, Edmonton, Alberta, Canada T6H 4P2
| | | | | | | | | |
Collapse
|
69
|
Chemistry and biology of bengamides and bengazoles, bioactive natural products from Jaspis sponges. Mar Drugs 2014; 12:1580-622. [PMID: 24646945 PMCID: PMC3967228 DOI: 10.3390/md12031580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 02/25/2014] [Indexed: 12/13/2022] Open
Abstract
Sponges corresponding to the Jaspidae family have proved to be a prolific source of bioactive natural products. Among these, the bengamides and the bengazoles stand out by virtue of their unprecedented molecular architectures and impressive biological profiles, including antitumor, antibiotic and anthelmintic properties. As a consequence, intense research activity has been devoted to these compounds from both chemical and biological standpoints. This review describes in detail the research into these classes of natural products and the benefits they offer in chemistry and biology.
Collapse
|
70
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
71
|
Design, synthesis and evaluation of a cellular stable and detectable biotinylated fumagillin probe and investigation of cell permeability of fumagillin and its analogs to endothelial and cancer cells. Eur J Med Chem 2013; 70:631-9. [PMID: 24211639 DOI: 10.1016/j.ejmech.2013.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 01/28/2023]
Abstract
Fumagillin (1), a natural product of fungal origin, and its analogs were discovered to be extremely potent and highly selective inhibitors restraining endothelial cell proliferation in vitro by covalently binding to MetAP2. In order to further understand the unclear biological mechanisms and pharmacological processes of fumagillin and its derivatives, fumagillin-biotin conjugate 8 was designed and synthesized, which is linked with a 27-atom connection chain and by urethane (carbamate) bonds between fumagillol and D-norbiotinamine. The conjugate 8 shows comparable activity and selectivity against HUVEC proliferation as fumagillin. It was demonstrated that the conjugate 8 is stable inside the cell and its linker is of a suitable length for the detection of biotin in native and denatured conditions. Using the conjugate 8, it was determined that the cell permeability of fumagillin (1) and its analogs are not responsible for their inhibitory activity difference against the proliferation of endothelial and cancer cells. Furthermore, we confidently believe that our present strategy is a versatile and convenient method for investigating drug's cell permeability along with other studies regardless of reversible or irreversible interaction between the drug and binding target/s.
Collapse
|
72
|
New approach for screening anti-tumor compounds. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03325643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
73
|
Kishor C, Arya T, Reddi R, Chen X, Saddanapu V, Marapaka AK, Gumpena R, Ma D, Liu JO, Addlagatta A. Identification, Biochemical and Structural Evaluation of Species-Specific Inhibitors against Type I Methionine Aminopeptidases. J Med Chem 2013; 56:5295-305. [DOI: 10.1021/jm400395p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandan Kishor
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Tarun Arya
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Ravikumar Reddi
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Xiaochun Chen
- Department of Pediatrics, University of Maryland School of Medicine, 655 West
Baltimore, Street, Baltimore, Maryland 21201, United States
| | - Venkateshwarlu Saddanapu
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Anil Kumar Marapaka
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Rajesh Gumpena
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| | - Dawei Ma
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354
Fenglin Road, Shanghai 200032, China
| | - Jun O. Liu
- Departments of Pharmacology
and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland
21205, United States
| | - Anthony Addlagatta
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka,
Hyderabad AP-500 007, India
| |
Collapse
|
74
|
Friis T, Engel AM, Bendiksen CD, Larsen LS, Houen G. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro. Cancers (Basel) 2013; 5:762-85. [PMID: 24202320 PMCID: PMC3795364 DOI: 10.3390/cancers5030762] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity in vivo since it inhibits ECs in vitro with a morphology resembling that obtained with antibodies to VEGF.
Collapse
Affiliation(s)
- Tina Friis
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
75
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|
76
|
Sarabia F, Martín-Gálvez F, García-Ruiz C, Sánchez-Ruiz A, Vivar-García C. Epi-, Epoxy-, and C2-Modified Bengamides: Synthesis and Biological Evaluation. J Org Chem 2013; 78:5239-53. [DOI: 10.1021/jo4003272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco Sarabia
- Department of Organic Chemistry,
Faculty of Sciences, University of Málaga, Campus de Teatinos s/n
29071-Málaga, Spain
| | - Francisca Martín-Gálvez
- Department of Organic Chemistry,
Faculty of Sciences, University of Málaga, Campus de Teatinos s/n
29071-Málaga, Spain
| | - Cristina García-Ruiz
- Department of Organic Chemistry,
Faculty of Sciences, University of Málaga, Campus de Teatinos s/n
29071-Málaga, Spain
| | - Antonio Sánchez-Ruiz
- Department of Organic Chemistry,
Faculty of Sciences, University of Málaga, Campus de Teatinos s/n
29071-Málaga, Spain
| | - Carlos Vivar-García
- Department of Organic Chemistry,
Faculty of Sciences, University of Málaga, Campus de Teatinos s/n
29071-Málaga, Spain
| |
Collapse
|
77
|
Zhang F, Bhat S, Gabelli SB, Chen X, Miller MS, Nacev BA, Cheng YL, Meyers DJ, Tenney K, Shim JS, Crews P, Amzel LM, Ma D, Liu JO. Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in cells. J Med Chem 2013; 56:3996-4016. [PMID: 23634668 DOI: 10.1021/jm400227z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1-4), but all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1-4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Arico-Muendel CC, Belanger B, Benjamin D, Blanchette HS, Caiazzo TM, Centrella PA, DeLorey J, Doyle EG, Gradhand U, Griffin ST, Hill S, Labenski MT, Morgan BA, O'Donovan G, Prasad K, Skinner S, Taghizadeh N, Thompson CD, Wakefield J, Westlin W, White KF. Metabolites of PPI-2458, a selective, irreversible inhibitor of methionine aminopeptidase-2: structure determination and in vivo activity. Drug Metab Dispos 2013; 41:814-26. [PMID: 23355637 DOI: 10.1124/dmd.112.048355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, [(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-[(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only ∼10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ([(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Collapse
|
79
|
Martín-Gálvez F, García-Ruiz C, Sánchez-Ruiz A, Valeriote FA, Sarabia F. An array of bengamide E analogues modified at the terminal olefinic position: synthesis and antitumor properties. ChemMedChem 2013; 8:819-31. [PMID: 23512621 DOI: 10.1002/cmdc.201300033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 12/12/2022]
Abstract
Based on our previously described synthetic strategy for bengamide E, a natural product of marine origin with antitumor activity, a small library of analogues modified at the terminal olefinic position was generated with the objective of investigating the effect of structural modifications on antitumor properties. Biological evaluation of these analogues, consisting of IC50 determinations against various tumor cell lines, revealed important aspects with respect to the structural requirements of this olefinic position for activity. Interestingly, the analogue possessing a cyclopentyl group displayed greater potency than the parent bengamide E, representing a key finding upon which to base further investigations into the design of new analogues with promising biological activities.
Collapse
Affiliation(s)
- Francisca Martín-Gálvez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n. 29071 Málaga, Spain
| | | | | | | | | |
Collapse
|
80
|
Bhat S, Shim JS, Liu JO. Tricyclic thiazoles are a new class of angiogenesis inhibitors. Bioorg Med Chem Lett 2013; 23:2733-7. [PMID: 23518276 DOI: 10.1016/j.bmcl.2013.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
Abstract
Tricyclic thiazoleamine derivatives that were identified as hits in a screen against human umbilical vein endothelial cell proliferation were subjected to a structure-activity relationship study. Two structurally superimposable scaffolds-4H-thiochromeno[4,3-d]thiazol-2-amine and 5,6-dihydro-4H-benzo[6,7]cyclohepta[1,2-d]thiazol-2-amine derivatives-yielded low-micromolar inhibitors, and two among them 37 and 43 also exhibited antiangiogenic activity in an endothelial tube formation assay. Thus, 37 and 43 can serve as leads to develop a novel class of antiangiogenic agents.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology & Molecular Sciences, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
81
|
Zhang P, Yang X, Zhang F, Gabelli SB, Wang R, Zhang Y, Bhat S, Chen X, Furlani M, Amzel LM, Liu JO, Ma D. Pyridinylpyrimidines selectively inhibit human methionine aminopeptidase-1. Bioorg Med Chem 2013; 21:2600-17. [PMID: 23507151 DOI: 10.1016/j.bmc.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure-activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5'-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a-30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.
Collapse
Affiliation(s)
- Pengtao Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang K, Yang T, Wu Q, Zhao X, Nice EC, Huang C. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 2013; 9:293-310. [PMID: 22809208 DOI: 10.1586/epr.12.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug target deconvolution, a process that identifies targets to small molecules in complex biological samples, which underlie the biological responses that are observed when a drug is administered, plays an important role in current drug discovery. Despite the fact that genomics and proteomics have provided a flood of information that contributes to the progress of drug target identification and validation, the current approach to drug target deconvolution still poses dilemmas. Chemistry-based functional proteomics, a multidisciplinary strategy, has become the preferred method of choice to deconvolute drug target pools, based on direct interactions between small molecules and their protein targets. This approach has already identified a broad panel of previously undefined enzymes with potential as drug targets and defined targets that can rationalize side effects and toxicity for new drug candidates and existing therapeutics. Herein, the authors discuss both activity-based protein profiling and compound-centric chemical proteomics approaches used in chemistry-based functional proteomics and their applications for the identification and characterization of small molecular targets.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, PR China
| | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Xu W, Lu JP, Ye QZ. Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases. J Med Chem 2012; 55:8021-7. [PMID: 22913487 DOI: 10.1021/jm3008695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural-product-derived bengamides possess potent antiproliferative activity and target human methionine aminopeptidases (MetAPs) for their cellular effects. Several derivatives were designed, synthesized, and evaluated as MetAP inhibitors. Here, we present four new X-ray structures of human MetAP1 in complex with the inhibitors. Together with the previous structures of bengamide derivatives with human MetAP2 and tubercular MtMetAP1c, analysis of the interactions of these inhibitors at the active site provides structural basis for further modification of these bengamide inhibitors for improved potency and selectivity as anticancer and antibacterial therapeutics.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
85
|
Kass DJ, Rattigan E, Kahloon R, Loh K, Yu L, Savir A, Markowski M, Saqi A, Rajkumar R, Ahmad F, Champion HC. Early treatment with fumagillin, an inhibitor of methionine aminopeptidase-2, prevents Pulmonary Hypertension in monocrotaline-injured rats. PLoS One 2012; 7:e35388. [PMID: 22509410 PMCID: PMC3324555 DOI: 10.1371/journal.pone.0035388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/16/2012] [Indexed: 01/30/2023] Open
Abstract
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclohexanes/administration & dosage
- Disease Models, Animal
- Fatty Acids, Unsaturated/administration & dosage
- Gene Expression Regulation
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hemodynamics
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Male
- Monocrotaline/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/cytology
- Myofibroblasts/drug effects
- Myofibroblasts/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Rats
- Rats, Sprague-Dawley
- Sesquiterpenes/administration & dosage
Collapse
Affiliation(s)
- Daniel J Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and the Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sundberg TB, Darricarrere N, Cirone P, Li X, McDonald L, Mei X, Westlake CJ, Slusarski DC, Beynon RJ, Crews CM. Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. ACTA ACUST UNITED AC 2012; 18:1300-11. [PMID: 22035799 DOI: 10.1016/j.chembiol.2011.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
Identification of methionine aminopeptidase-2 (MetAP-2) as the molecular target of the antiangiogenic compound TNP-470 has sparked interest in N-terminal Met excision's (NME) role in endothelial cell biology. In this regard, we recently demonstrated that MetAP-2 inhibition suppresses Wnt planar cell polarity (PCP) signaling and that endothelial cells depend on this pathway for normal function. Despite this advance, the substrate(s) whose activity is altered upon MetAP-2 inhibition, resulting in loss of Wnt PCP signaling, is not known. Here we identify the small G protein Rab37 as a MetAP-2-specific substrate that accumulates in the presence of TNP-470. A functional role for aberrant Rab37 accumulation in TNP-470's mode of action is demonstrated using a Rab37 point mutant that is resistant to NME, because expression of this mutant phenocopies the effects of MetAP-2 inhibition on Wnt PCP signaling-dependent processes.
Collapse
Affiliation(s)
- Thomas B Sundberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Biochemical characterization of recombinant methionine aminopeptidases (MAPs) from Mycobacterium tuberculosis H37Rv. Mol Cell Biochem 2012; 365:191-202. [PMID: 22466806 DOI: 10.1007/s11010-012-1260-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/08/2012] [Indexed: 01/06/2023]
Abstract
Methionine aminopeptidase (MAP) performs the essential post-translational N-terminal methionine excision (NME) of nascent polypeptides during protein synthesis. To characterize MAP from Mycobacterium tuberculosis, two homolgues, mapA (Rv0734) and mapB (Rv2861c), were over expressed and purified as recombinant proteins in E. coli. In vitro activity assay of apo-MtbMAPs using L-Met-p-nitro anilide as substrate revealed MtbMAP A to be catalytically more efficient compared to MtbMAP B. Ni(2+) was the best activator of apo-MtbMAP A, whereas Ni(2+) and Co(2+) activated apo-MtbMAP B equally. MtbMAP B showed higher thermo-stability, but was feedback inhibited by higher concentrations of L-methionine. Aminopeptidase inhibitors like actinonin and bestatin inhibited both MtbMAPs, more prominently MtbMAP B. Among the site-directed mutants of MtbMAP B, substitution of metal-binding residue D142 completely abolished enzyme activity, whereas substitution of residues forming S1' pocket, C105S and T94C, had only moderate effects on substrate hydrolysis. Present study identified a specific insertion region in MtbMAP A sequence which differentiates it from other bacterial and eukaryotic MAPs. A deletion mutant lacking amino acids from this insertion region (MtbMAP A-∆164-176) was constructed to probe into their structural and functional role in activity and stability of MtbMAP A. The limited success in soluble expression of this deletion mutant suggests further optimizations of expression conditions or alternative bioinformatics approaches for further characterization of this deletion mutant of MtbMAP A.
Collapse
|
88
|
Bhat S, Shim JS, Zhang F, Chong CR, Liu JO. Substituted oxines inhibit endothelial cell proliferation and angiogenesis. Org Biomol Chem 2012; 10:2979-92. [PMID: 22391578 DOI: 10.1039/c2ob06978d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
89
|
Titov DV, Liu JO. Identification and validation of protein targets of bioactive small molecules. Bioorg Med Chem 2011; 20:1902-9. [PMID: 22226983 DOI: 10.1016/j.bmc.2011.11.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/22/2022]
Abstract
Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful. We have classified for the first time the existing methods into two distinct and complementary types, the 'top-down' and 'bottom-up' approaches. In a typical top-down approach, the cellular phenotype is used as a starting point and the molecular target is approached through systematic narrowing down of possibilities by taking advantage of the detailed existing knowledge of cellular pathways and processes. In contrast, the bottom-up approach entails the direct detection and identification of the molecular targets using affinity-based or genetic methods. A special emphasis is placed on target validation, including correlation analysis and genetic methods, as this area is often ignored despite its importance.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology, Johns Hopkins University School of Medicine, MD, USA
| | | |
Collapse
|
90
|
Olaleye O, Raghunand TR, Bhat S, Chong C, Gu P, Zhou J, Zhang Y, Bishai WR, Liu JO. Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 91 Suppl 1:S61-5. [PMID: 22115541 PMCID: PMC11059541 DOI: 10.1016/j.tube.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis claims about five thousand lives daily world-wide, while one-third of the world is infected with dormant tuberculosis. The increased emergence of multi- and extensively drug-resistant strains of M. tuberculosis (Mtb) has heightened the need for novel antimycobacterial agents. Here, we report the discovery of 7-bromo-5-chloroquinolin-8-ol (CLBQ14)-a congener of clioquinol (CQ) as a potent and selective inhibitor of two methionine aminopeptidases (MetAP) from M. tuberculosis: MtMetAP1a and MtMetAP1c. MetAP is a metalloprotease that removes the N-terminal methionine during protein synthesis. N-terminal methionine excision (NME) is a universally conserved process required for the post-translational modification of a significant part of the proteome. The essential role of MetAP in microbes makes it a promising target for the development of new therapeutics. Using a target-based approach in a high-throughput screen, we identified CLBQ14 as a novel MtMetAP inhibitor with higher specificity for both MtMetAP1s relative to their human counterparts. We also found that CLBQ14 is potent against replicating and aged non-growing Mtb at low micro molar concentrations. Furthermore, we observed that the antimycobacterial activity of this pharmacophore correlates well with in vitro enzymatic inhibitory activity. Together, these results revealed a new mode of action of clioquinol and its congeners and validated the therapeutic potential of this pharmacophore for TB chemotherapy.
Collapse
Affiliation(s)
- Omonike Olaleye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Present address: College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004
| | - Tirumalai R. Raghunand
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Present address: Center for Cellular and Molecular Biology, Hyderabad, India
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Curtis Chong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Present address: Dana Farber Cancer Institute, Harvard Medical School, Boston, MA. Boston, MA 02215-5450, USA
| | - Peihua Gu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiangbing Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
91
|
Ashraf S, Mapp PI, Walsh DA. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. ACTA ACUST UNITED AC 2011; 63:2700-10. [PMID: 21538326 DOI: 10.1002/art.30422] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the contributions of angiogenesis to inflammation, joint damage, and pain behavior in a rat meniscal transection model of osteoarthritis (OA). METHODS OA was induced in male Lewis rats (n=8 per group) by meniscal transection. Animals were orally dosed with dexamethasone (0.1 mg/kg/day), indomethacin (2 mg/kg/day), or the specific angiogenesis inhibitor PPI-2458 (5 mg/kg every other day). Controls consisted of naive and vehicle-treated rats. Synovial inflammation was measured as the macrophage fractional area (expressed as the percentage), thickness of the synovial lining, and joint swelling. Synovial angiogenesis was measured using the endothelial cell proliferation index and vascular density. Channels positive for vessels at the osteochondral junction were assessed (osteochondral angiogenesis). Medial tibial plateaus were assessed for chondropathy, osteophytosis, and channels crossing the osteochondral junction. Pain behavior was measured as weight-bearing asymmetry. RESULTS Dexamethasone and indomethacin each reduced pain behavior, synovial inflammation, and synovial angiogenesis 35 days after meniscal transection. Dexamethasone reduced, but indomethacin had no significant effect on, the total joint damage score. PPI-2458 treatment reduced synovial and osteochondral angiogenesis, synovial inflammation, joint damage, and pain behavior. CONCLUSION Our findings indicate that synovial inflammation and joint damage are closely associated with pain behavior in the meniscal transection model of OA. Inhibition of angiogenesis may reduce pain behavior both by reducing synovitis and by preventing structural change. Targeting angiogenesis could therefore prove useful in reducing pain and structural damage in OA.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Arthritis Research UK Pain Centre, Department of Academic Rheumatology, University of Nottingham, City Hospital, Nottingham, UK.
| | | | | |
Collapse
|
92
|
QSAR study of anthranilic acid sulfonamides as methionine aminopeptidase-2 inhibitors. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
93
|
Hong J. Role of natural product diversity in chemical biology. Curr Opin Chem Biol 2011; 15:350-4. [PMID: 21489856 PMCID: PMC3110584 DOI: 10.1016/j.cbpa.2011.03.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
Abstract
Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.
Collapse
Affiliation(s)
- Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
94
|
Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 2011; 7:182-8. [PMID: 21278739 DOI: 10.1038/nchembio.522] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/06/2011] [Indexed: 11/09/2022]
Abstract
Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
For over 40 years, natural products have served us well in combating cancer. The main sources of these successful compounds are microbes and plants from the terrestrial and marine environments. The microbes serve as a major source of natural products with anti‐tumour activity. A number of these products were first discovered as antibiotics. Another major contribution comes from plant alkaloids, taxoids and podophyllotoxins. A vast array of biological metabolites can be obtained from the marine world, which can be used for effective cancer treatment. The search for novel drugs is still a priority goal for cancer therapy, due to the rapid development of resistance to chemotherapeutic drugs. In addition, the high toxicity usually associated with some cancer chemotherapy drugs and their undesirable side‐effects increase the demand for novel anti‐tumour drugs active against untreatable tumours, with fewer side‐effects and/or with greater therapeutic efficiency. This review points out those technologies needed to produce the anti‐tumour compounds of the future.
Collapse
Affiliation(s)
- Arnold L Demain
- Charles A Dana Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
96
|
Shim JS, Matsui Y, Bhat S, Nacev BA, Xu J, Bhang HEC, Dhara S, Han KC, Chong CR, Pomper MG, So A, Liu JO. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J Natl Cancer Inst 2010; 102:1855-73. [PMID: 21088277 DOI: 10.1093/jnci/djq457] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Angiogenesis plays an important role in tumor growth and metastasis; therefore, inhibition of angiogenesis is a promising strategy for developing new anticancer drugs. Type 2 methionine aminopeptidase (MetAP2) protein is likely a molecular target of angiogenesis inhibitors. METHODS Nitroxoline, an antibiotic used to treat urinary tract infections, was identified from a high-throughput screen of a library of 175,000 compounds for MetAP2 inhibitors and from a parallel screen using the Johns Hopkins Drug Library to identify currently used clinical drugs that can also inhibit human umbilical vein endothelial cells (HUVEC) proliferation. To investigate the mechanism of action of nitroxoline, inhibition of MetAP2 activity and induction of senescence were assessed in HUVEC. To test the antiangiogenic activity of nitroxoline, endothelial tube formation in Matrigel and microvessel formation in Matrigel plugs in vivo were assessed. Antitumor efficacy of nitroxoline was evaluated in mouse models of human breast cancer xenograft (n = 10) and bladder cancer orthotopic xenograft (n = 11). Furthermore, the mechanism of action of nitroxoline was investigated in vivo. RESULTS Nitroxoline inhibited MetAP2 activity in vitro (half maximal inhibitory concentration [IC(50)] = 54.8 nM, 95% confidence interval [CI] = 22.6 to 132.8 nM) and HUVEC proliferation (IC(50) = 1.9 μM, 95% CI = 1.54 to 2.39 μM). Nitroxoline inhibited MetAP2 activity in HUVEC in a dose-dependent manner and induced premature senescence in a biphasic manner. Nitroxoline inhibited endothelial tube formation in Matrigel and reduced microvessel density in vivo. Mice (five per group) treated with nitroxoline showed a 60% reduction in tumor volume in breast cancer xenografts (tumor volume on day 30, vehicle vs nitroxoline, mean = 215.4 vs 86.5 mm(3), difference = 128.9 mm(3), 95% CI = 32.9 to 225.0 mm(3), P = .012) and statistically significantly inhibited growth of bladder cancer in an orthotopic mouse model (tumor bioluminescence intensities of vehicle [n = 5] vs nitroxoline [n = 6], P = .045). CONCLUSION Nitroxoline shows promise as a potential therapeutic antiangiogenic agent.
Collapse
Affiliation(s)
- Joong Sup Shim
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hines J, Ju R, Dutschman GE, Cheng YC, Crews CM. Reversal of TNP-470-induced endothelial cell growth arrest by guanine and guanine nucleosides. J Pharmacol Exp Ther 2010; 334:729-38. [PMID: 20571059 PMCID: PMC2939662 DOI: 10.1124/jpet.110.169110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/22/2023] Open
Abstract
The mechanism of action of TNP-470 [O-(chloroacetyl-carbamoyl) fumagillol], which potently and selectively inhibits the proliferation of endothelial cells, is incompletely understood. Previous studies have established its binding protein and the most distal effector of its growth arrest activity as methionine aminopeptidase 2 (MetAP-2) and p21(WAF1/CIP1), respectively. However, the mechanistic steps between these two effectors have not been identified. We have found that addition of exogenous guanine and guanine-containing nucleosides to culture medium will completely reverse the cytostatic effect of TNP-470 on both cultured bovine aortic and mouse pulmonary endothelial cells. Western blotting showed that supplementation with exogenous guanosine reverses the induction of p21(WAF1/CIP1) by TNP-470. This "rescue" by guanine/guanosine was abolished when the guanine salvage pathway of nucleotide biosynthesis was inhibited with Immucillin H, suggesting that TNP-470 might reduce de novo guanine synthesis in endothelial cells. However, an analysis of inosine 5'-monophosphate dehydrogenase, the rate-limiting enzyme in de novo guanine synthesis and target of the antiangiogenic drug mycophenolic acid, showed no TNP-470-induced changes. Curiously, quantitation of cellular nucleotides confirmed that GTP levels were not reduced after TNP-470 treatment. Addition of guanosine at the start of G(1) phase causes a doubling in GTP levels that persists to the G(1)/S phase transition, where commitment to TNP-470 growth arrest occurs. Thus, guanine rescue involves an augmentation of cellular GTP beyond physiological levels rather than a restoration of a drug-induced GTP deficit. Determining the mechanism whereby this causes restoration of endothelial cell proliferation is an ongoing investigation.
Collapse
Affiliation(s)
- John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
98
|
Ofek P, Miller K, Eldar-Boock A, Polyak D, Segal E, Satchi-Fainaro R. Rational Design of Multifunctional Polymer Therapeutics for Cancer Theranostics. Isr J Chem 2010. [DOI: 10.1002/ijch.201000020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
99
|
Sarabia F, Martín-Gálvez F, Chammaa S, Martín-Ortiz L, Sánchez-Ruiz A. Chiral Sulfur Ylides for the Synthesis of Bengamide E and Analogues. J Org Chem 2010; 75:5526-32. [DOI: 10.1021/jo100696w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Francisca Martín-Gálvez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Samy Chammaa
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Laura Martín-Ortiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Antonio Sánchez-Ruiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| |
Collapse
|
100
|
Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 2010; 49:5588-99. [PMID: 20521764 PMCID: PMC2906754 DOI: 10.1021/bi1005464] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methionine aminopeptidase (MetAP) catalyzes the hydrolytic cleavage of the N-terminal methionine from newly synthesized polypeptides. The extent of removal of methionyl from a protein is dictated by its N-terminal peptide sequence. Earlier studies revealed that MetAPs require amino acids containing small side chains (e.g., Gly, Ala, Ser, Cys, Pro, Thr, and Val) as the P1' residue, but their specificity at positions P2' and beyond remains incompletely defined. In this work, the substrate specificities of Escherichia coli MetAP1, human MetAP1, and human MetAP2 were systematically profiled by screening against a combinatorial peptide library and kinetic analysis of individually synthesized peptide substrates. Our results show that although all three enzymes require small residues at the P1' position, they have differential tolerance for Val and Thr at this position. The catalytic activity of human MetAP2 toward Met-Val peptides is consistently 2 orders of magnitude higher than that of MetAP1, suggesting that MetAP2 is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo. At positions P2'-P5', all three MetAPs have broad specificity but are poorly active toward peptides containing a proline at the P2' position. In addition, the human MetAPs disfavor acidic residues at the P2'-P5' positions. The specificity data have allowed us to formulate a simple set of rules that can reliably predict the N-terminal processing of E. coli and human proteins.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210
| | - Feiran Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Benjamin A. Nacev
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Dehua Pei
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210
| |
Collapse
|